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Chapter 1

Introduction

HAL: Hey, Dave, what are you doing?
Bowman works swiftly.
HAL: Hey, Dave. I’ve got ten years of service experience and an
irreplaceable amount of time and effort has gone into making me
what I am.

Stanley Kubrick and Arthur C. Clarke
2001: A Space Odyssey

This chapter aims to give a rough introduction to the field of computational
linguistics. Is it really possible to create an artificial agent, capable of such ad-
vanced language-capabilities as speaking English? What would it take to build a
computer like HAL? These are the questions we will be addressing in the subse-
quent sections.

1.1 Overview

Let’s first consider an example. Suppose we confront HAL with the following
sentence:

(1.1) Joe taught Steve to play the guitar.

First of all it is important to understand the different representations the
information from example 1.1 goes through, beginning with a sound-wave and
ending in a semantic representation of the concepts behind the utterance.

Sound is what figure 1.1 shows. It is an oscillogram1 of the utterance from
example 1.1. It is a graphical representation of the input a sound-device gets
when recording voice with a microphone.

1In our case: graph of pressure fluctuation versus time.
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CHAPTER 1. INTRODUCTION 4

Figure 1.1: An oscillogram of the utterance Joe taught steve to play the guitar

Speech recognition is what HAL would have to be doing to convert this rep-
resentation of a sound-wave into a “written” representation, or, putting it more
accurately, a string of morphemes, which could be called the “nuclear” unit of
speech and language, that can be matched against a dictionary in order to ob-
tain a written representation. Today powerful speech-recognition-systems, which
perform exactly that task, are available commercially at a broad range, han-
dling many different languages, specialized vocabularies and difficult recording-
situations. This is why we will not deal with speech-related issues in this paper,
but rather start with a string-representation of written language.

An ASCII-coded string is therefore the first representation our system would
be confronted with.

Morphological analysis is what the next step is sometimes referred to. Now
that a string of words making up a sentence is available, each word being a string
of characters, we can go about analyzing the words. In this step the system would
have to find out that “taught” is a past-tense form of the verb “teach”, etc.

An intermediate representation could be used to pass data from the mor-
phological analysis to the syntactic one. Usually this isn’t neccessary because,
in practice, morphological and syntactic analysis are often handled in a highly
integrated way.
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Figure 1.2: A syntax tree based on the ERG

Syntactic analysis is the process of putting the words into a more structured
form, taking into account the grammar of the language.

A syntax-tree could be a way to represent output from the syntactic analysis.
Such a tree could make statements like, “This sentence consists of a subject in
nominative singular S, a predicate P and two accusative-objects O1 and O2, S

being Joe, P being taught, O1 being Steve, and O2 consisting of the function word
to, the verb V , the function word the, and a noun N , V being play and N being
guitar”.

It is important to keep in mind that this is only one possibility. The output
of a syntactic analysis could instead make statements like, “This sentence is an
active-voice sentence, the agent being Joe, the experiencer being Steve, the action
being teach, etc.”.

What exactly such an output looks like is highly dependent on the gram-
matical framework of choice. Figure 1.2 shows an output based on a syntactic
analysis carried out using the ERG (English Resource Grammar: as distributed
by Stanford’s LinGO-initiative).

Semantic analysis is a more accurate term of what is commonly seen as the
“understanding”-part of NLU (Natural Language Understanding). Whether a
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computer will ever be able to truly “understand” a meaningful sentence is subject
to broad discussions in the field of AI-research and philosophy. For now, let’s just
settle with the rather pragmatic approach to semantics Winograd (1971, p281)
used.

A semantic theory must describe the relationship between the words
and syntactic structures of natural language and the postulated for-
malism of concepts and operations on concepts.

Semantic representation If we chose, for example, First Order Predicate-
Calculus (FOPC, for short) as a semantic representation, the output of the se-
mantic analysis could be something like

∀g∃e, pIsa(e, T eaching) ∧ Teacher(e, Joe) ∧ Student(e, Steve) ∧ Subject(e, p)∧

Isa(p, P layInstrument) ∧ Instrument(p, g) ∧ Isa(g, Guitar)

This notation could be read like “for every g there exists an e and a p, such
that e is the event of teaching, the teacher participating in e being Joe, the
student participating in e being Steve the subject being taught in e being p, p

being the event of playing an instrument, the instrument in p being g, and g

being any Guitar”.
Again FOPC is only one way of representing semantic data and the actual

semantic representation is dependent on the semantic model of choice. Some
semantic models don’t even require a semantic representation at all.

1.2 Ambiguity

One of the most difficult tasks in discovering the meaning of a sentence is to
choose between the meanings it could possibly have. Usually in a given situation
a sentence can only be assigned one meaning that is plausible, but how is an
artificial agent to decide upon the “plausibility” of an interpretation of a sentence?

Consider the following sentence from Schank (1971)

We saw the Grand Canyon flying to Chicago.

There are many interpretations that could be assigned to this sentence. Here
are some of them:

• While we were flapping our wings, flying to Chicago, we saw the Grand
Canyon.

• We saw the Grand Canyon, which was travelling in an airplane to Chicago.

• When travelling to Chicago in an airplane, we saw the Grand Canyon.
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That there are multiple interpretations for this single sentence is due to am-
biguities on almost every level of language processing: sense-ambiguity, for ex-
ample. The word fly can be used in the sense of travel by airplane as in We flew
to Chicago, or in the sense of flying as in Birds fly.

Another example for ambiguity is structural ambiguity. In order to under-
stand the above sentence, HAL will have to decide where the gerundive phrase
flying to Chicago should be attached. It can either be part of a gerundive sen-
tence, whose subject is the Grand Canyon, or it can be an adjunct modifying the
phrase headed by saw, leaving either We as the ones who perform the action of
flying, or the Grand Canyon, that does the flying.

This task of choosing the right interpretation is called “disambiguation”, and
many of the problems researchers in the field of NLP are concerned with are
instances of disambiguation-problems.

1.3 Knowledge

Disambiguation often requires the machine to have knowledge about the “world”
it operates in. A machine operating in a so called “real-world-environment”, like
HAL, would therefore need substantial knowledge of the real world. HAL has to
be aware of facts such as, that people have no wings, and can only fly by plane,
or that the Grand Canyon cannot fly, neither by plane, nor by flapping its wings.

Giving HAL such knowledge is probably one of the most difficult tasks AI-
research has to face. John McCarthy, one of the big names in AI, has done
remarkable research in that area. The reader is referred to his book McCarthy
(1990) and especially to some of his papers McCarthy (1958), McCarthy & Hayes
(1969), McCarthy (1977, 1989) and the paper about his 1971 lecture, for which
he was awarded the Turing Award McCarthy (1987).
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Morphology

The major problem [in time travel] is quite simply one of grammar,
and the main work to consult in this matter is Dr Dan Streetmen-
tioner’s Time Traveller’s Handbook of 1001 Tense Formations. It will
tell you for instance how to describe something that was about to hap-
pen to you in the past before you avoided it by time-jumping forward
two days in order to avoid it. The event will be described differently
according to whether you are talking about it from the standpoint of
your own natural time, from a time in the further future, or a time
in the further past and is further complicated by the possibility of
conducting conversations whilst you are actually travelling from one
time to another with the intention of becoming your own mother or
father.

Most readers get as far as the Future Semi-Conditionally Modified
Subinverted Plagal Past Subjunctive Intentional before giving up:
[. . . ]

Douglas Adams
The Restaurant at the End of the Universe

2.1 Overview

(2.1) After playing for hours the guitarists recharged their tuner’s batteries.

Example 2.1 aims to introduce the reader to the most important scenarios in
morphological processing.

A computer-program attempting to understand this sentence would have to
know each word in the sentence, but how is a computer supposed to understand
the word, or rather, the substring recharged from the above string? It certainly

8



CHAPTER 2. MORPHOLOGY 9

wouldn’t find it in any dictionary (in the sense of a string-array listing word-
forms). It would be nonsensical to build up a dictionary containing all thinkable
forms of a free morpheme like charge, since it would have to list

• (a) charge

• (more) charges

• (to) charge

• (He) charges

• (It is) charging

• (Yesterday I) charged

• (to) recharge

• (He) recharges

• (It is) recharging

• (Yesterday I) recharged

• (it is) charged

• (it is) uncharged

• (it is) unchargeable

• . . .

Such a dictionary wouldn’t only use up masses of memory, it would also be
completely unmaintainable.

It would be desirable to have a dictionary list only-so called “root forms”, like
charge, and equip the system with rules like

1. It can be used as a verb

2. It can be used as a noun

3. It can be used as an adjective

4. The past-tense form of the verb can be derived by attaching the suffix -ed

5. The third-person-singular form of the verb can be derived by attaching the
suffix -es

6. The progressive form of the verb can be derived by attaching the suffix -ing
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7. The prefix re- can be attached to the verb

8. The plural form of the noun can be derived by attaching the suffix -es.

9. The prefix un- can be attached to the adjective

10. The suffix -able can be attached to the adjective

Rule 4 applies to almost every verb in the dictionary. (We will use the term “in
the dictionary” to actually describe the concept of “either listed in the dictionary
or derivable from a form in the dictionary”.) Therefore the possibility of storing
such rules centrally eliminates a considerable amount of redundancy from the
system.

This doesn’t only save physical storage-capacity, it also leaves the system of
morphological rules and their applications as an independent module, which has
many advantages. One of them is giving the system the ability to apply known
rules to new words. If a human listener is confronted with new words he has
never heard before, say a great gardel and a big red tarivar he can assume that
I gardelized my tarivar could possibly mean “I turned my tarivar into a gardel”,
regardless of what the words are supposed to mean.

2.2 A Linguistic Perspective to Morphology

So far we have seen the need for a dictionary listing root-forms and morphological
rules, and a system capable of applying the rules to words in the dictionary. In
this section we will have a closer look at some examples of morphological rules in
order to give the reader a rough idea of English morphology and the difficulties
it confronts a non-human understander with. A more detailled description can
be found in Weisler & Milekic (2000, pp79ff).

2.2.1 Derivational Morphology

Rules of derivational morphology are simply rules “deriving” more complex word-
forms from simpler ones, often altering their meaning or syntactic category.

One of the most prominent rules of derivational morphology is probably the
appending of the suffix -ly to derive an adverb from an adjective. This rule can
be applied to almost any adjective, with three consequences:

• the substring ly is appended to the word-form

• the word-form is now an adverb, rather than an adjective

• the meaning of the word changes to “in an X manner”
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-able
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FORM

FORM

Figure 2.1: A tree showing the derivation of undrinkable

Another rule of derivational morphology uses the suffix -er, to derive painter
from (to) paint. It alters the meaning to “someone who Xs”.

In the case of -ist, it gets obvious, that not every rule can be applied to every
word form. A guitarist is someone who plays the guitar, a violinist is someone
who plays the violin, but no one has ever heard of a *drumist.

Considering the suffix -able, turning a verb into an adjective, leaving the
meaning as “it is possible to X it.”, and the prefix un-, altering the meaning of
an adjective to “not X” makes clear that it is also possible to subsequently apply
rules to forms that are already morphologically derived from a root form. The
form undrinkable can only be derived by first deriving drinkable from drink. The
un--rule can then be applied to the new form drinkable to produce undrinkable.
Figure 2.1 shows a tree-representation of this concept.

Some more complications can be seen when, for example, considering the de-
prefix, altering the meaning of a verb to “to reverse the action of Xing”. Words
like deflate suggest that not all root-forms actually exist, given a derived form
that exists. *flate is obviously not an English word, although the de- prefix
seems to exactly behave like a morphological rule. That the morpheme *flate
might actually exist is further suggested by the evidence that forms like inflate
and inflation can be derived from it.

The word deodorize seems to be of similar nature, but this time the unbound
morpheme odor does exist as a root form, while the derivation *odorize does not
exist as a word-form. Yet it is still possible to do further derivations, like applying
the de--rule, leaving the form as deodorize, which is again an existent word-form.

delete and depress are similar cases. While delete does not seem to have
anything to do with a morphological derivation, but only happens to start with
de “by chance”, the form press does exist, yet the application of the de--rule
doesn’t derive that meaning of depress.
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2.2.2 Inflectional Morphology

While the manifestation of derivational morphology is usually limited to a change
in its written form (usually an affix), a change of syntactic category and a change
in meaning, inflectional morphology serves a rather different purpose. Rules of
inflectional morphology produce an extremely regular semantic effect by modu-
lating certain grammatical aspects of meaning, such as person, number, tense,
case, etc. They are usually more regular than rules of derivational morphology
and they never change syntactic category.

Nominative Sg. filia (daughter)
Nominative Pl. filiae (daughters)
Genetive Sg. filiae (daughter’s)
Genetive Pl. filiarum (daughters’)
Dative Sg. filiae (I told my daughter something)
Dative Pl. filiis (I told my daughters something)
Accusative Sg. filiam (I love my daughter)
Accusative Pl. filias (I love my daughters)
Vocative Sg. filia (‘Daughter, I love you!’)
Vocative Pl. filiae (‘Daughters, I love you both!’)
Ablative Sg. filia (N/A)
Ablative Pl. filiis (N/A)
Table 2.1: Inflectional table of the latin word “filia”

Generally nouns inflect for case and number, but case is usually neglected
because it doesn’t alter the appearence of a word-form in English. Table 2.1 is an
inflectional table of the latin word filia, -ae. In Latin the word form depends on
its case, that means it depends on how and where the form is used in a sentence.
Therefore daughter as in I love my daughter is a different word-form as in I’ve
told my daughter a thousand times not to do that.

While case is widely irrelevant for English morphology, number isn’t. The plu-
ral form of dog, dogs can be derived by applying a rule of inflectional morphology,
in this case the suffix -s. Again exceptions like foot/feet, goose/geese or fish/fish
complicate things. Plural-nouns are another exception. These are nouns that are
understood to only make sense in a plural form like jeans, and mass-nouns, that
are understood to describe an uncountable amount of something, and are only
valid in their singular forms, like money.

The inflectional system of verbs is a lot more complex, because verbs inflect
for person, number, tense and in many languages for features like whether it is
used in a conjunctive construction. The German language for example has an
indicative and two different conjunctive forms of a verb and six tenses, leaving
each word form with 3 ∗ 2 ∗ 6 ∗ 3 = 108 possible inflections. Fortunately they are
highly redundant.
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A typical example of verbal inflection is the rule appending -ed to a verb,
in order to derive a past-tense word-form. Again exceptions are present like
teach/taught, catch/caught or take/took and numerous other irregular forms.

2.3 A Naive Approach to Model Morphological

Knowledge

The reader should by now have a picture of what morphology is all about and
what kind of data is needed to do morphological analysis, but how is it mod-
eled? How do we get a computer to recognize a word like undrinkable, given a
dictionary-entry drink, a rule for -able and a rule for un-? How do we store such
data physically?

Let’s start with some morphological data for a parser in a simple problem-
domain, say animals.

What we need is a dictionary listing root-forms:

• bird

• cat

• dog

• fish

• frog

In order to inflect the words for number we need rule R1

1. Rule R1 can be applied to any form in the dictionary but ‘fish’

2. When applied, R1

(a) appends the string s to the root-form

(b) changes the number to PLURAL.

And in order to handle the word fish we need another rule R2

1. Rule R2 can be applied only to the form fish.

2. When applied, R2

(a) changes the number to PLURAL.

Then we want to model some derivational morphology, let’s call it “babytalk”,
producing forms like doggie, fishie or froggie.
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1. Rule R3 can be applied to the forms bird and fish

2. When applied, R3

(a) appends the string -ie to the root-form

(b) sets the “babytalk-mark” to TRUE.

1. Rule R4 can be applied to the forms dog and frog

2. When applied, R4

(a) appends the string -gie to the root-form

(b) sets the “babytalk-mark” to TRUE.

1. Rule R5 can be applied to the form cat

2. When applied, R5

(a) changes the form to kittie

(b) sets the “babytalk-mark” to TRUE.

A model like this might already be directly implementable using a rule-based
inference-system like Prolog, but in order to achieve better performance, let’s
“precompute” some values, and put our morphological model in a procedural
terminology, defining the functions as shown in table 2.2.

P 1 num=plural

P 2 num=plural

P 3 babytalk=true

P 4 babytalk=true

P 5 babytalk=true

Table 2.2: Function-definitions of the procedures P 1

through P 5

In table 2.2 we simply turned the rules into procedures. Instead of rule R1

which requires the grammatical numerus (num) to be plural, we now have a
procedure P 1, which carries out this action, namely assign a global-flag (which
we’ll call num) the value plural.

Given these function-definitions we can show the return-values of the possible
function-calls to be:

bird

cat

dog
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fish

frog

birdie← P 3(bird)

fishie← P 3(fish)

doggie← P 4(dog)

froggie← P 4(frog)

kittie← P 5(cat)

birds← P 1(bird)

dogs← P 1(dog)

frogs← P 1(frog)

cats← P 1(cat)

fish← P 2(fish)

birdies← P 1(birdie)← P 1(P 3(bird))

fishies← P 1(fishie)← P 1(P 3(fish))

doggies← P 1(doggie)← P 1(P 4(dog))

froggies← P 1(froggie)← P 1(P 4(frog))

kitties← P 1(kittie)← P 1(P 5(cat))

While bird is itself a word-form, P 3 derives birdie← P 3(bird), and P 1 derives
birds ← R1(bird). The new form birdie can again be used as an argument to
P 1, this time deriving birdies← P 1(birdie), or, putting it differently, birdies←

P 1(P 3(bird))
If we group the above list by procedures, listing only arguments and return-

values, we get table 2.3.

P 1 NUM = PLURAL

birds← bird

cats← cat

dogs← dog

frogs← frog

birdies← birdie

fishies← fishie

doggies← doggie

froggies← froggie

kitties← kittie

P 2 NUM = PLURAL fish← fish

P 3 BABY TALK = TRUE
birdie← bird

fishie← fish

P 4 BABY TALK = TRUE
doggie← dog

froggie← frog

P 5 BABY TALK = TRUE kittie← cat
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P1

frog
cat

bird

dog

+s

froggie
kittie
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(a)
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fish
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Figure 2.2: The subsystem handling plural-inflection

P3

bird fish

+ie

(a)

P4

dog frog

+gie

(b)

P5

cat

kittie

(c)

Figure 2.3: The subsystem handling babytalk-derivation

The graphical representations from figures 2.2 and 2.3 show the same data
from table 2.3, namely functions and their input and output-values.

Figures 2.2 through 2.8 make use of the convention that unlabelled arcs pass
whatever they received as an input to the called function. This value can also be
referenced explicitly with the symbol “+”, so the appending of an affix can be
effectively depicted.

Figure 2.2 shows the functions needed for inflectional, figure 2.3 the ones
needed for derivational morphology.

The next question we ask ourselves, or rather the model, is: Where does the
data come from? Where does it go to? If we compose figures 2.2 and 2.3 into
figure 2.4, we get a model capable of answering that. Note that so far we have
never added any data to the model, we have simply rearranged it. In figure 2.4
it is still possible to make out each “subdiagram” as shown in figure 2.2 or 2.3.
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P1

frog
cat

bird

dog

+s

kittie

P2

fish
P3

bird

fish+ie
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dog
frog

+gie

P5

cat

Figure 2.4: A more detailled version of figures 2.2 and 2.3

q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

Figure 2.5: A model for basic input

Next we need a final shift in perspectives:
We propose the function q0 that “produces” all of the input to our system,

and some functions fish, bird, cat, . . . each of which gets as input the atomic
values. ’fish’, ‘cat’, ‘frog’, . . . This is shown in figure 2.5. The new functions are
depicted using a double circle because they do not neccessarily have to do any
output. They could simply “swallow” their input.

Next we have to account for plural inflection. This can be done by simply
copying the plural-inflection-related parts of the diagrams from figure 2.2 into
figure 2.5. The outcome is shown in figure 2.6. Again arcs depict function calls
and they are labeled corresponding to the data they pass. We insert the new
procedure q1, which “is interested” in all plural-forms.

Since we also want to cope with babytalk-derivation we do the same for the
procedures P 3, P 4 and P 5, in other words copy figure 2.3 into figure 2.5, to get
figure 2.7, proposing a function q2 getting the babytalk forms.
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Figure 2.6: A model for basic and plural-inflected input
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Figure 2.7: A model for basic input and derived babytalk-forms
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Figure 2.8: A model for the whole system

Figures 2.6 and 2.7 can be easily integrated into figure 2.8, to give a system
handling both plural-inflection and babytalk-derivation.

Still we haven’t added any information to the model, that couldn’t be found
in our initial rule-based system described by R1 through R5. We have step by
step transformed our rule-based approach to a procedural one, and finally into
an automaton, as described in the next section.

2.4 Finite State Automata

Although it’s syntactically not quite correct, conceptually figure 2.8 can already
be interpreted as what is called a “Finite State Automaton”, FSA for short.

This section will give the reader a rough introduction to FSAs. More detailled
information on FSAs and their applications in Speech and Language Processing
can be found in Jurafsky & Martin (2000). Readers already familiar with FSAs
might want to skip it.

The first approach to FSAs might come to our minds, when trying to build
an effective model for accessing a simple list of words. Think of how one usually
looks up a word in the dictionary, say we are trying to look up dictionary in our
dictionary.

1. For all items in the dictionary:

2. Find an item that begins with d.

3. If there is no item that begins with d, dictionary can’t be in the dictionary.

4. For all items that begin with d
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(a) Find an item that begins with di.

(b) If there is no item that begins with di, dictionary can’t be in the
dictionary.

(c) For all items that begin with di :

i. Find an item that begins with dic

ii. . . .

iii. If there is no item that is dictionary, dictionary can’t be in the
dictionary.

iv. If there is an item that is dictionary, dictionary is in the dictionary.

The recursive nature already gets obvious here.
Now think of a dictionary containing some root-forms and for each one a

unique root-form-ID, that identifies the root-form in further processing, as shown
in table 2.3.

xabcde 1001
xabfgh 1002
nnki 1003
aabcde 1004
aabfgh 1005
xarki 1006

Table 2.3: A sample dictionary

Figure 2.9 shows a tree-representation of the same table, that fits the above
algorithm much better. Now what makes this tree-representation of the above
recursive-algorithm and FSA? The interpretation does. One starts at node q0.
Nodes depict the model’s idea of “states”, so we say, “The automaton IS in state
q0”. If the word to be looked up begins with x, one simply follows the arc to
q6, or putting it in a more professional terminology; “The automaton takes the
transition to q6” because arcs depict possible transitions. If the next character is
an a, the automaton takes the transition from state q6 to q5, etc.

Note that this tree representation is already an “FST”, not just an FSA. FST
is short for “Finite State Transducer”, and it is similar to the idea of an FSA.
The only difference is that the transducer has the ability, not just to match a
given input-stream, but also to recode it to an output-stream. In our example
this can be seen for example at the transition between states q5 and q26. This
transition is the first one, where it is completely determined, that if the input
should match an entry in the transducer the output is going to be 1006, the
xarki -entry’s root-form-ID. The new syntax is this: When a transition is labelled
i:o, then the transition is taken as soon as the input-signal i is read from the
input-stream, and whenever that transition is taken the signal o is sent to the
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a b

Figure 2.9: A dictionary as a tree

output-stream.
Note that this paper doesn’t follow the normal convention in that respect.

Usually an FST is understood to recode an input-stream to a similar but slightly
modified output-stream, which is why the convention that a transition labelled i,
means i:i is widely used. Since the FSTs we are handling aren’t slightly recoding
an input-signal, but rather mapping two sets of values to each other it is more
practical to follow the convention that i actually means i:ε, which leads us to a
new syntactic element of FSTs and FSAs: The ε-signal.

ε matching an input-stream means “don’t read any signals from the input-
stream, simply follow the transition”, ε feeding an output-stream means “don’t
do any output”. Its meaning is roughly related to the concept of the “empty
string”, which might be more accessible to readers from a technical background.

In figure 2.9 it is apparent that the subtrees headed by q3 and q17 are com-
pletely redundant, as well as the ones headed by q9 and q23, and the ones headed
by q26 and q12. q1, q7, q24, q10, q15 and q21 are also completely equal. These
redundant nodes or subtrees can now be removed by showing them only once in
the diagram, and referencing them in all “situations” needed. The outcome of
such a proceeding is shown in figure 2.10.

Figure 2.10 shows us the power of the FST. What we have created is a compact
data-structure, highly optimized towards performant lookup. A system checking
whether xabcde is in the FST would simply traverse it. As soon as it gets to a
final state (q10 in our example), the string is matched. By the time it’s matched,
the output will already be ready in the output-stream, and the time used to do
the traversal is quite short: It can be expressed as shown in Equation 2.1.
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Figure 2.10: The same dictionary as FST

T (L) ' L ∗
num(states)

num(transitions)
+ O + F (2.1)

The average time taken to match a string that is in the FST is directly pro-
portional to the product of its length L, and the branching factor B, because the
time taken to match a whole string is directly proportional to the time it takes
to process a single state and to the number of states that are to be processed.
The average time taken to process a single state is directly proportional to the
branching factor B, that is the average count of transitions leaving a single node,
therefore B is the count of states in the FST divided by the count of transitions.
Of course the actual branching-factor along that arc is dependent on the string
itself. The number of states to be processed is usually (in the simplified frame-
work presented here) the number of characters in the string. The variable O

is symbolic for a constant summand, accounting for the time it takes to do the
output. F accounts for the constant amount of time it takes the framework to
enter and leave the FST.

The reader interested in a more detailed and technically sophisticated descrip-
tion of FST-processing is referred to the sourcecode-documentation of LISA’s
FST-toolkit, presented in the second part.

2.5 Finite State Morphological Parsing

In the previous section we saw how to model a simple dictionary using an FST. It
has already been mentioned that figure 2.8 can already be viewed as an automa-
ton. Although it is syntactically not quite correct, conceptually it can be inter-
preted just like an automaton, given that the unlabelled arcs are ε-transitions.

Say we wanted to do morphological analysis of the string birdies: The au-
tomaton would start in state q0, then read the substring bird, then take the
ε-transitions to P 3, then read the substring ie, take the transition to q2, then
take the ε-transition to P 1, read the last substring s, and get to the final state q1.
If we give procedures bird, P 1 and P 3 the ability to set the global flags root-
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q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

q1

P1 s

P2

P3

gie

ie

P4

q2

kit
kittie

Figure 2.11: A syntactically correct FSA derived from figure 2.8

form=bird, num=plural and babytalk=true (as defined in table 2.2) a
complete morphological analysis will be available.

The concept of ambiguity enters the scene as soon as we have a more de-
tailled look at the word fish. After reading the substring fish and doing a
transition to the state fish, the system has no way to determine whether to
take that state as a final state, leaving rootform=fish, num=singular and
babytalk=false (given that the default-value of num is singular, and the
default-value of babytalk is false), or to do the ε-transitions to P 2 and q1

leaving num=plural. This is completely intuitive. Not even a human reader
has the ability of telling whether the word-form fish is singular or plural, when
confronted only with the string fish. We have to give our system the ability to let
the ambiguity arise at this stage of processing, leaving the disambiguation for the
syntactic or semantic analysis. This will not be handled in greater detail here, we
will only give two key concepts of handling nondeterministic FSAs: The problem
could be handled by parallel processing for example by forking the interpreter-
process traversing the FSA, leaving one process for each possibility. One might
also use backtracking for example by maintaining a stack of return-states to try
after processing of one possibility is finished.

The big syntactic flaw of figure 2.8 is that it completely fails to match kittie,
when interpreted as an FSA, since the substring ‘cat’ would have to be matched
to get to state cat. This syntactic error comes from composing the procedure’s
I/O-diagrams into figure 2.8, but there’s nothing simpler than correcting that, as
figure 2.11 shows. All that’s needed is a new state, let’s call it kit, that is reached
after reading ‘kittie’, setting both root=cat and babytalk=true.

But still figure 2.11 isn’t a very elegant way to do finite state morphological
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q0 q5
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bird
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dog

q1s
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Figure 2.12: Getting rid of the indeterminisms from figure 2.11

parsing. One of the main problems with figure 2.11 is the great degree of in-
determinisms that arise from the ε-transitions that were carried over from the
conceptual I/O-diagrams.

In order to get rid of these indeterminisms we need to finally get rid of our
artificial procedures P 1 and P 5, transferring the program-logic into the transitions
rather than the states. The idea is depicted in figures 2.12 and 2.13.

The FSA in figure 2.12 has only two kinds of indeterminisms involved. The
first one arises from the ambiguity of the interpretation of the word-form fish, the
other one is deciding whether to stay in a final state if one is reached or trying to
do a transition. We can get rid of that kind of indeterminism by proposing a signal
that terminates each word. We can then propose a new state qF , and instead of
making all of the other states final ones, we equip them with a transition to this
final state qF that is taken if, and only if, the end-of-word-signal is read.

Of course it is possible to augment an FST representing a dictionary and
an FST representing the morphological system around it into a single one. The
dictionary-FST would in our example replace states q3 through q8, and the transi-
tions leading to them. Such an FST would match single input characters instead
of substrings, and it would be possible to directly compile such an FST, to achieve
optimal performance.
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q0 q5

q4

q3

q7

q6

fish:ROOT=FISH

bird:ROOT=BIRD

cat:ROOT=CAT

frog:ROOT=FROG

dog:ROOT=DOG

q1s:NUM=PL
gie:MIN=TRUE

ie:MIN=TRUE

q2

q8kittie:ROOT=CAT

ie:MIN=TRUE

gie:MIN=TRUE

s:NUM=PL

s:NUM=PL

s:NUM=PL

s:NUM=PL

:MIN=TRUE

Figure 2.13: A more accurate version of figure 2.12



Chapter 3

Syntax

3.1 Overview

In order to gain a deeper understanding of syntax, it is important to understand
the role of syntax in the overall process of “understanding” a meaningful sentence,
which turns out to be a rather difficult task. This is also the reason why so many
syntactic theories have been developed, and why some of them hardly seem to
have anything in common.

Instead of going into a detailed discussion about this, we will only give an
overview of the traditional approaches to “sentence-structure”.

The word sentence-structure already points us in the right direction of the
linguistic approach to syntax. The purpose of syntax is to put a string of symbols
in relation to each other. Linguistics is the study of language, and therefore the
role of syntax in linguistics is to put words in relation to each other, which is
widely related to the idea known as “grammar”.

Weisler & Milekic (2000, p124) define this term as follows:

A grammar - a theory of linguistic knowledge - must characterize
what we know about the physical signals on one end of the lingusitic
equation, and what we know about meaning on the other. [. . . ]

This already confronts us with semantics, which we want to leave for the next
chapter. That’s why we actually talk about the syntactic aspects of grammar
only, whenever we use the term “grammar” in this chapter.

The “Context-Free Grammar”, CFG for short, is the kind of grammar we will
be concerned with most of the time. The CFG dates back to Chomsky (1956),
independently discovered by Backus (1959).

It is based on the idea of “constituency”, which states that a group of words
may behave as a single unit or phrase, called a “constituent”.

(3.1) The big ugly dog bit the boy.

26
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In example 3.1 the phrase big ugly dog might be a constituent. Grammatically
it behaves just like a single word, which is suggested by the fact that we could
freely exchange it.

(3.2) The goldfish bit the boy.

In example 3.2 big ugly dog has been replaced by goldfish, and it’s still gram-
matical. It doesn’t make sense perhaps, but it is grammatical.

The idea of “replacement” is quite central to the formalism of the CFG.
What we have just observed could be expressed as a CFG as:

S ← The ANIMAL bit the boy

ANIMAL ← big ugly dog

ANIMAL ← goldfish

A CFG is defined as G = (V N , V T , P, S). V N is a set of so-called non-
terminal symbols. In our example we have two non-terminal symbols, namely S

and ANIMAL. V T is the set of terminal symbols. These are usually words, or
whatever data-structure we get from the morphological analyzer. P is a set of
reduction-rules like the ones given above, and S is the start-symbol, that is the
symbol we ultimately want to describe the whole sentence with.

The first rule in the above example makes use of a symbolic expression,
ANIMAL. The other rules give information about what exactly an ANIMAL

is. One states that the symbol could be rewritten as big ugly dog and the other
one lets the interpreter rewrite it as goldfish.

Therefore the interpretation of the above grammar would generate examples
3.1 and 3.2.

3.2 A Linguistic Perspective to Sentence-Structure

Now that we know what syntax is all about, and how we can talk about syn-
tax using the notion of grammar, especially the formalism of the CFG, we can
go deeper into English sentence structure, introducing the reader to the prob-
lems and requirements English sentence-structure confronts a symbolic theory of
syntax with.

3.2.1 Parts of Speech

Noun, verb, pronoun, preposition, adverb, conjunction, participle and article:
This pretty much summarizes the concept behind the term “Parts of Speech”,
POS for short.

The above collection of parts of speech goes back to ancient Greece, yet seems
surprisingly accurate. This is due to the fact that it became the basis for most
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subsequent POS-descriptions, which are considerably larger today. The Penn
Treebank Marcus et al. (1993) enlists 45 parts of speech.

The central role of the parts of speech in each grammar is due to the significant
amount of information the POS gives us about the word, and its surrounding.

It is important to understand that the parts of speech are defined through
functions or classes of functions in the grammar. Traditional definitions of parts of
speech tend to use a semantic approach rather than a functional/grammatical one:
“A noun is the name of a person, place or thing”. Although these definitions head
us in the right direction they are too imprecise for our formal theory. Fortunately
there are other techniques for grammatical categorization.

A noun, like dog, for example, can appear after determiners like the; dog is a
noun because the dog is grammatical; identify is not a noun, because *the identify
is ungrammatical. How do we know that the is a determiner? Because it can
appear before a noun like dog ; the is a determiner because the dog is grammatical;
easily is not a determiner because *easily dog is ungrammatical.

Note that the definitions are circular, yet the circularity isn’t in any way
problematic for the system.

Let’s consider an example: We know about the following facts:

a. the dog is grammatical

b. easily identify is grammatical

c. *easily dog is ungrammarical

d. *the identify is ungrammatical

e. Verbs can appear after adverbs.

f . Nouns can appear after determiners.

Given these facts, our task is now to find the parts of speech of the words the,
easily, dog and identify.

Let’s assume that the was a determiner. From facts a and f we can now
conclude that dog is a noun. From facts d and f we can conclude that identify
is not a noun and considering e and f (words appearing second in a clause must
be either a verb or a noun) we know that it is a verb. Given that identify is a
verb, we can now conclude that easily is an adverb, from b and e.

Let’s assume that the was an adverb. From facts a and e we could now
conclude that dog is a verb. From d and e we can conclude that identify is not a
verb and, just as we did before, considering e and f , we know that identify is a
noun. Given that, we can conclude that easily is a determiner, from b and f .

Circularity made it possible to conclude that dog is a verb, and identify is a
noun, which is, according to what we learned in school, simply wrong, but why
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is that completely irrelevant to our computational model of syntax? Let’s try to
formalize what we’ve just observed in the CFG-formalism.

The first possiblity (the “correct” one), would be something like

N → dog

V → identify

Det→ the

Adv → easily

S → Det N

S → Adv V

The second possibility (the “incorrect” one), would then be

V → dog

N → identify

Adv → the

Det→ easily

S → Adv V

S → Det N

What is the difference between these two CFGs? We simply exchanged the
names of the parts of speech. Now we call nouns verbs, and we call adverbs
determiners, and vice versa, but the names of the parts of speech are as abstract
as can be. Recall that parts of speech are defined in terms of functions or classes
of functions in the grammar, and these functions would stay exactly the same.
The grammar would match exactly the same strings and put them exactly into
the same relations regardless of what symbol we assign to what POS.

One might also use morphological criteria, for assigning words to their POS.
If, for example,determine has a past-tense form like determined it must be a verb.
dog is not a verb, since a form like *dogged does not exist.

Note that the same circularity we just showed arises when defining POS in
terms of functions in their grammar (at the interface between grammar and word),
arises when defining POS in terms of morphology (at the interface between word
and morpheme), since a morphological analyzer would have to know about the
part of speech, to decide whether rules like that appending the affix -ed are
appliable in the first place.
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3.2.2 A Simple Grammar

Proposing Some Rules to Get Started

We have introduced the concept of a CFG, we have established some equivalence-
classes that anchor our analysis, why not start and write a grammar for English.

(3.3) Steve played the guitar brilliantly.

(3.4) Old Bebe played.

(3.5) The guitarist on the left is the best.

Now let’s transform these example-sentences into a syntactically correct CFG.

S → Steve played the guitar brilliantly

S → Old Bebe played

S → The guitarist on the left is the best

We have just created a CFG successfully matching all of our example sen-
tences, producing all grammatical and no ungrammatical forms. A perfect gram-
mar, yet completely pointless. Didn’t we want to put the words into some kind
of relationship?

S → N V Det N Adv (4)

S → Adj N V

S → Det N P Det N V Det N

We have built a grammar that is a lot more general, by simply introducing
non-terminals for each part of speech, and replacing every word by its POS-
symbol. Rule 4 from the above grammar doesn’t only take care of Steve played the
guitar brilliantly, it also matches Matt screwed the solo completely or Brad ruined
the guitar entirely, suggesting some kind of syntactic and semantic isomorphy
between these sentences (up to the point where one would have to “fill in” the
words for the parts of speech).

The Noun-Phrase

But still we haven’t made use of the notion of constituency yet, so we simply
introduce the first class of constituents, which we call “noun-phrase”. Steve, the
guitar, I, old Bebe, the guitarist on the left are all examples of noun-phrases.
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S → NP V NP Adv (7)

S → NP V

S → NP V NP

NP → N (10)

NP → Det NP (11)

NP → Adj NP (12)

NP → NP P NP (13)

This introduces the first non-terminal symbol that is not the start symbol,
NP (except, of course, for our POS-symbols).

Rule 10 says that any noun can be interpreted as a noun-phrase. That rule
would take care of Steve, or guitar.

Rule 11 states that any determiner followed by a noun-phrase makes up a
noun-phrase. This would match for example the guitar, the guitarist, the left, etc.

Rule 12 states that any adjective followed by a noun-phrase makes up a noun-
phrase, such as big red guitar, etc.

And finally Rule 13 makes it possible to view any two noun-phrases as a single
noun-phrase, when they are concatenated by a preposition, such as guitarist on
the left.

Our grammar is a lot more general now. Rule 7, matches all sentences rule
4 matched, because we got rule 7 by replacing N and Det N by NP , and since
NP ← Det N and NP ← N it must match everything it matched before, but
now it allows to freely exchange noun-phrases, for example instead of Steve played
the guitar brilliantly, The guitarist on the left played the guitar brilliantly.

Note that our grammar “overgenerates” the noun-phrase a bit. For example
if NP ← Adj NP and NP ← Det NP , then *big black the guitar would be a
valid noun-phrase. Therefore we introduce a new symbol called N ′, and redefine
rules 10 to 13 that describe the NP by the following ones:

NP → N ′

NP → Det N ′

N ′
→ N ′ P NP

N ′
→ Adj N ′

N ′
→ N
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The Verb-Phrase

A closer look at the rules that define the sentence S in our grammar makes another
redundancy obvious. It’s the pattern V NP , that we’ll call the Verb-Phrase, or
V P .

Constituents like played the guitar brilliantly, played, is the best are all VPs.

S → NP V P

NP → N ′

NP → Det N ′

N ′
→ N ′ P NP

N ′
→ Adj N ′

N ′
→ N

V P → V

V P → V NP

V P → V P Adv (22)

Again our initial approach overgenerates the V P a little. Recursive appli-
cation of rule 22 would allow us to stack up adverbs at the end of a VP, as in
*[[[[[[played] the guitar] brilliantly] incredibly] suddenly], therefore, just as we did
with the NP, we redefine the VP using a new non-terminal V ′.

V P → V ′

V P → V ′ Adv

V ′
→ V NP

V ′
→ V

3.2.3 Representations for Sentence Structure

When talking about syntactic structures it is convenient to use a representation
for the structural aspects of a string of words.

If we have a constituent like the boy we might want to express that the boy is
an NP consisting of a Det and an N, the Det being the, the N being boy. We might
represent that like [NP [Det the][N boy]], using brackets, or using the graphical
representation, referred to as “syntax tree” that we’ll be introducing in the rest
of this section.
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Figure 3.1: Some grammar rules in tree-notation
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Figure 3.2: Syntax trees

A node in a syntax tree represents a nonterminal symbol, a leaf represents a
terminal. A set of symbols connected to the same parent-symbol could be viewed
as an alternative representation of a grammar rule. Here the parent node can be
seen as the left-hand side of a CFG-rule, and the child nodes are the right-hand
side symbols in a left-to-right order.

Figure 3.1 gives some examples. Figure 3.1(a) shows the (rather boring) rule
Det → the, and figure 3.1(b) the rule N → boy. Rule NP → Det N can be
represented as in figure 3.1(c).

To turn this graphical representation of grammar rules into a tree representing
sentence structure we simply make use of recursion in the CFG-formalism, by
integrating the subtrees of the used rules. We can for example integrate the rules
depicted in figure 3.1 as shown in figure 3.2(a) in order to express something like
“The whole thing is an NP. The Det is resolved using the Det→ the-rule, the N
is resolved using the N → boy-rule.”.

We can use that approach to further extend our syntax tree to represent the
VP bit the boy, as shown in figure 3.2(b).
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Figure 3.3: A syntax tree for example 3.6

3.2.4 Ambiguity

In the previous sections we have developed a grammar that is far from exhaustive,
yet generates a basic portion of the English language.

(3.6) Steve created that sound on the computer.

Considering example 3.6, we find another grammatical phenomenon our gram-
mar doesn’t handle. Figure 3.3 shows a syntax tree as a native speaker would
draw it. Here created that sound is one constituent and on is used to further
specify it, in our case, to give information about the instrument he used, intro-
ducing the NP the computer. That constituent could be freely exchanged to give
on his guitar or on the piano.

So far our grammar doesn’t allow that, which is why we redefine the VP a
little:

V P → V ′

V P → V ′ Adv

V P → V ′ P NP (27)
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Figure 3.4: Another syntax tree for example 3.6

Rule 27 is new. It allows the grammar to use the subtree of figure 3.3 that
handles our new constituent.

After redefining our grammar in such a way our grammar is said to be “am-
biguous”. This is due to the fact that several parse trees for example 3.6 are
derivable from it.

Figure 3.4 gives another, equally possible, parse-tree that can be applied to
our example. In this case that sound on the computer is one constituent, so on
the computer doesn’t modify created, but rather that sound, giving information
about which sound we are talking about. The phrase the computer could in this
case be exchanged by other places, where sound can be found, as in that sound
on his new CD or that sound on the tape.
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S → NP V P

NP → N ′

NP → Det N ′

N ′
→ N ′ P NP

N ′
→ Adj N ′

N ′
→ N

V P → V ′

V P → V ′ Adv

V P → V ′ P NP

V ′
→ V NP

V ′
→ V

Figure 3.5: Our complete sample-grammar

3.2.5 Specifiers

Although this grammar has the ability to relate the words in accordance with their
parts of speech quite well, it completely fails to handle other kinds of features such
as number, person, tense, transitivity, etc. It, for example, accepts constituents
like *two dog, *a dogs, *the dogs die yesterday, *the dog walk into the room, etc.

What we need is a way to constrain the application of rules based on features
of the terminal-symbols that get abstracted by the non-terminals. The model
needs the ability to transitively pass that information and to augment rules with
constraints controlling their appliability.

In order to prevent overgeneration of, for example, the NP *a dogs, we would
have to view the form dogs as an instance of the class of word-forms for dog,
distinguished from the singular form dog by its number, the form dog having
the feature num=singular, the form dogs having the feature num=plural.
Then we could augment our grammar with constraints doing simple operations
like equality checks. We would, therefore, rewrite a rule like NP → Det N to
something like

NP → Det N

Apply this rule only if the Det’s num-feature is equal to the N’s num-feature

the resulting NP would have the same value for num as the Det and the N

Such a rule would only match noun-phrases if the Det and the N agree in
number, and it would produce an NP that also has a num-feature that can be
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used in further processing. For example, a rule like

S → NP V P

Apply this rule only if the NP’s num-feature is equal to the VP’s num-feature

would only match the dog enters the room, and the dogs enter the room, and not
*the dogs enters the room or *the dog enter the room, given that the NP the dog
has the feature num=singular, and the VP enters the room has the feature
num=singular, while the dogs has the feature num=plural and enter the
room num=plural, which is exactly what we wanted to achieve.

3.3 Parsing

Thanks to the CFG, it is possible for linguists to provide computer scientists
with a detailed description of language and its underlying syntactic structures,
in a form adequate for symbolic computation. It serves as a basis for computer-
understanding of natural language structure, but makes no statements on what
to do with it. It still needs to be interpreted. A computer-program could apply
the knowledge it gained from interpreting the CFG to a given input-sentence, and
come up with a representation accounting for sentence structure. In this section
we will be concerned with this kind of interpretation of a CFG.

It is, of course, possible to directly view a CFG-description of a language as
a rule-based program. All one would have to do is rewrite the CFG-rules to a
form that is syntactically acceptable for a logic programming language such as
Prolog, and provide some underlying logic to the idea of the CFG to get a
program capable of interpreting a CFG. A system like Prolog would usually
use search-trees and unification-based algorithms to handle this, but there are
strategies specific to CFGs that are a lot more efficient. We will discuss some of
these parsing strategies and their underlying ideas in this section.

3.3.1 Excursion: Backtracking through State-spaces

One of the most basic and most generally appliable algorithms in artificial intel-
ligence is that of backtracking. Backtracking is a search-strategy based on the
formalism of the state-space, and it is so generally appliable, because most of
the problems that arise in artificial intelligence can easily be formalized in the
state-space-paradigm.

A state-space is formalized as (S, F, G) representing a set of possible starting-
states S, a set of operations appliable to the states F and a set of desired states,
or goals G.

We can make things clearer by considering the example of the three coins
problem Jackson (1985) uses to illustrate the state-space formalism. Figure 3.6
depicts the start-state: three coins, arranged in such a way, that the first one
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Figure 3.6: A tree showing the derivation of undrinkable

a b c

HHT

a b c

TTT

a b c

THH

a b c

THT

a b c

TTT

a b c

HHT

. . .

HTH

a b c

HTT

. . .

HHH

a b c

HHT

Figure 3.7: A search-tree through the state-space of the three coins problem

shows the head, the second one shows the head and the third one shows the tail.
We could simplify things by using a special representation for these configurations
of coins. The start-state could, for example, be represented as HHT (indicating
head-head-tail).

There are three possible actions we can apply to this state:

a. Flip the first coin

b. Flip the second coin

c. Flip the third coin

The problem is this: What do we have to do to make all the coins show the
same side? This gives us the desired state, the goal, which is either TTT, or
HHH.

Figure 3.7 depicts the state-space graphically. It shows some of the possible
states, for example, the start-state in the top node. Each of the arcs connecting
this node with its child-nodes represents one action. Each action leads to a new
state, a child-node, which can itself be the base for subsequent applications of
actions. Note that state-spaces don’t neccessarily have to take the form of a tree,
but we will consider only this class of state-spaces.

Therefore figure 3.7 is also a graphical representation of the search-tree itself.
There can be three procedures involved in finding a solution. One takes care of
generating the state-space, one checks the state-space for a solution. A procedure
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doing both is called a “search procedure”. Usually a computer has to be somewhat
selective in generating a state-space, because state-spaces can get very large. This
is where a third procedure comes in. It evaluates actions, giving information
about their likelihood of containing a solution. A search-procedure making use
of such an evaluator, to selectively generate only the most promising parts of a
state-space is said to be a “heuristic search”.

This is mentioned only for the sake of completeness. We won’t make use of
any heuristics here, but simply look at the most prominent search-procedure,
which is known as backtracking.

Backtracking is simply the depth-first-traversion of a search-tree. Putting it
strongly simplified, we can think of backtracking as doing the following:

• Generate the state S1 the first action (a1) leads to.

• Is it impossible to create S1? Then we know that a1 doesn’t lead to a
solution.

• Is the S1 the desired state? Then we know that a1 leads to a solution.

• Is S1 not the desired state? Use this algorithm recursively to find out
whether S1 is the top of a subtree that does contain the solution, which
would imply that a1 leads to a solution.

• Does a1 lead to a solution? Then we can terminate.

• Otherwise: Generate the state S2 the second action (a2) leads to.

• Is it impossible to create S2? . . .

Keep in mind that backtracking is one of the simplest, but most prominent,
and most widely used search-strategies, but a great variety of other search-
strategies have evolved from artificial-intelligence-research. Some are, for exam-
ple, based on a breadth-first-traversion of a search-tree. It is possible to traverse
the tree from the top down or from the bottom up, which is widely known as
goal-directed respectively data-directed search. It is even possible to traverse
the tree in both directions at the same time. Traversal can be done in parallel,
for example by forking a process, or pseudo-parallely, by maintaining a stack,
representing a TODO-List containing “states still to be examined”, and so on.

Note that the three-coins-problem would turn out to be rather problematic,
when solved using backtracking, since it contains “left recursion”. It would start
by applying a to HHT, generating THT. Since THT is not the desired state
it would recursively apply itself to THT, which means that it, again, starts by
applying a to this newly created state, leading to HHT. It would then recursively
apply itself to HHT, again applying action a, and would therefore never terminate.
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3.3.2 Basic Parsing Strategies

We have already pointed out the parallelity between the runtime-structure of a
system of logical inference and a parser. Just like a rule-based program, a gram-
mar is a system containing rules and facts (terminal-symbols), and the interpreter
is supposed to process a query (start symbol), by systematically applying rules to
each other, until a rule matching the query is deduced from the system. (Which
is, again, closely related to state-spaces. Just think of the application of a rule as
being an action, and the resulting rule with terminals/facts filled in as a state.)

Thinking of parsing, as solving the problem of assigning the correct parse-tree
to a given input, there are two ways of formalizing this problem. One could either
think of parsing as the problem of expanding a given top-node (usually S) in such
a way that it matches the input (then the inital state would be the top-node S,
and the goal would be a state, where the terminals match the input), or one
could think of parsing as the problem of relating a given input in such a way that
it can be shown to be an S (then the initial state would be the input, and the
goal would be any state with the top-node S). These two ways of formalizing the
problem of parsing give rise to the basic parsing-strategies, known as “top-down”
and “bottom-up”.

A “top-down”-parser would work its way from the top of the syntax-tree,
down, until it discovers a terminal-symbol, either backtracking if the symbol
doesn’t match, or continuing if it does match the given input-symbol.

The “bottom-up”-strategy would, in contrast, start by examining the input-
symbol, and work its way up the syntax-tree, until it finds the start-symbol.

While a top-down parser doesn’t waste time in examining structures that will
never lead to the start-symbol, the bottom-up-parser doesn’t look at structures
that will never match the input, which is why the size of the grammar and the
length of the input are important considerations in deciding which strategy is
best.

3.3.3 Parsing by Problem-Solving

(3.7) Steve plays chess.

A problem-solver can directly be used as a parser. What we have is a state
space (S, F, G). States are partial parse-trees. We could represent the initial
state by something like [S], when we do a top-down parse. Each of the rules in
the grammar is then an action.

We will consider example 3.7, using the grammar given in figure 3.5.
Figure 3.8 shows a state-space (which is, again, also a search-tree). The first

nodes are depicted in full detail, the others are left out, due to limitations in
space, but the principle should get clear anyway.

Each of the rules in the sample-grammar is an action. There is one action,
appliable to the state [S], which is the rule S → NP V P , because it is the only
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success

[NP [N ′[N ]]][V P [V ′[V ][NP [N ′[N ]]]]]

18

[NP [N ′[N ]]][V P [V ′[V ][NP [N ′]]]]

14

[NP [N ′[N ]]][V P [V ′[V ][NP ]]]

25

[NP [N ′[N ]]][V P [V ′]]

23

[NP [N ′[N ]]][V P ]. . . . . . . . .

18 16 17 . . .

[NP [N ′]][V P ] . . . . . . . . . . . .

14 15 23 24 27

[NP ][V P ]

19

[S]

S → NP V P

NP → N ′

NP → Det N ′

N ′
→ N ′ P NP

N ′
→ Adj N ′

N ′
→ N

V P → V ′

V P → V ′ Adv

V P → V ′ P NP

V ′
→ V NP

V ′
→ V

Figure 3.8: A search-tree through the state-space of a parsing-problem
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one expanding the symbol we are looking for. By applying this action, we deduce
the new state [NP ][V P ]. Now we can apply all the actions expanding either
NP or V P , namely rules 14, 15, 23, 24 and 27. In the figure only the path
to the goal is shown, but our parser usually has no way of telling which one is
“right”. It might as well try, for example, rule 15 first. Applying rule 14, which
is NP → N ′ to the state [NP ][V P ] creates the state [NP [N ′]][V P ]. This time
all rules expanding either N ′ or V P are appliable, and so fort. We can go on like
this till we discover a state consisting only of terminals. If these terminals match
the input, the state is a goal-state, if not, we use backtracking to try out another
path through the state-space that might lead to the goal-state.

The backtracking-approach, in general, suffers from vast ineffectivity in pars-
ing because it runs in exponential-time, spending most of it examining fruitless
subtrees and reexamining the same fruitless subtrees over and over. Although
it is possible to improve these algorithms somewhat by adding “bottom-up-
filtering” to a top-down parser respectively “top-down-filtering” to a “bottom-
up-parser” or heuristic methods, the major disadvantage of ineffectivity, when
using exponential-time problem-solvers like backtracking, remains the same.

3.3.4 The Earley Algorithm

A great way to improve efficiency of exponential-time algorithms comes from
a framework called “dynamic programming”, and is sometimes referred to as
“memoization”.

If we apply this technique to the basic idea of a top-down parser with bottom-
up filtering, we get an algorithm similar to that of Earley (1970), which we’ll
describe in greater detail in this section.

The Earley-Algorithm avoids reexecuting computations done in the course
of parsing an input, by “remembering” subproblems and their solutions in the
so-called “chart”. That’s why approaches similar to Earley’s are often referred
to as “chart-parsers”.

The chart can be seen as the algorithm’s “agenda”. While executing it, it
appends new items to this “agenda”, therefore dynamically manipulating its
runtime-structure. When finished, the chart contains all subproblems and their
solutions, and the solution to the whole problem. Figure 3.9 shows such a chart.

This data-structure contains a set of states. A state represents a rule applied
for a particular set of symbols at a specific point in the progress of proving it to
be appliable to these input symbols. This can be achieved by simply inserting a
symbolic “•” at some position in the rule, indicating that everything to the left
of the • has already been read, and everything to the right still has to be read,
and remembering two positions in the input, one giving information about where
the state begins, and one giving information about where the • from this rule,
can be found.
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chart[0]
[0] λ → •S [0, 0, 0]
[1] S → •NP V P [0, 0, 0]
[2] NP → •N′ [0, 0, 0]
[3] NP → •Det N′ [0, 0, 0]
[4] N′

→ •N′ P NP [0, 0, 0]
[5] N′

→ •Adj N′ [0, 0, 0]
[6] N′

→ •N [0, 0, 0]

chart[1]
[0] N → steve• [0, 1, 1]
[1] N′

→ N• [0, 1, 1]
[2] NP → N′

• [0, 1, 1]
[3] N′

→ N′
• P NP [0, 1, 1]

[4] S → NP • V P [0, 1, 1]
[5] V P → •V ′ [1, 1, 0]
[6] V P → •V ′ Adv [1, 1, 0]
[7] V P → •V ′ P NP [1, 1, 0]
[8] V ′

→ •V [1, 1, 0]
[9] V ′

→ •V NP [1, 1, 0]

chart[2]
[0] V → created• [1, 2, 1]
[1] V ′

→ V • [1, 2, 1]
[2] V ′

→ V • NP [1, 2, 1]
[3] V P → V ′

• [1, 2, 1]
[4] V P → V ′

• Adv [1, 2, 1]
[5] V P → V ′

• P NP [1, 2, 1]
[6] NP → •N′ [2, 2, 0]
[7] NP → •Det N′ [2, 2, 0]
[8] S → NP V P• [0, 2, 2]
[9] N′

→ •N′ P NP [2, 2, 0]
[10] N′

→ •Adj N′ [2, 2, 0]
[11] N′

→ •N [2, 2, 0]
[12] λ → S• [0, 2, 1]

chart[3]
[0] Det → that• [2, 3, 1]
[1] NP → Det N′

• [2, 3, 1]
[2] N′

→ •N′ P NP [3, 3, 0]
[3] N′

→ •Adj N′ [3, 3, 0]
[4] N′

→ •N [3, 3, 0]

chart[4]
[0] N → sound• [3, 4, 1]
[1] N′

→ N• [3, 4, 1]
[2] NP → Det N′

• [2, 4, 2]
[3] N′

→ N′
• P NP [3, 4, 1]

[4] V ′
→ V NP• [1, 4, 2]

[5] V P → V ′
• [1, 4, 1]

[6] V P → V ′
• Adv [1, 4, 1]

[7] V P → V ′
• P NP [1, 4, 1]

[8] S → NP V P• [0, 4, 2]
[9] λ → S• [0, 4, 1]

chart[5]
[0] P → on• [4, 5, 1]
[1] N′

→ N′ P • NP [3, 5, 2]
[2] V P → V ′ P • NP [1, 5, 2]
[3] NP → •N′ [5, 5, 0]
[4] NP → •Det N′ [5, 5, 0]
[5] N′

→ •N′ P NP [5, 5, 0]
[6] N′

→ •Adj N′ [5, 5, 0]
[7] N′

→ •N [5, 5, 0]

chart[6]
[0] Det → the• [5, 6, 1]
[1] NP → Det • N′ [5, 6, 1]
[2] N′

→ •N′ P NP [6, 6, 0]
[3] N′

→ •Adj N′ [6, 6, 0]
[4] N′

→ •N [6, 6, 0]

chart[7]
[0] N → computer• [6, 7, 1]
[1] N′

→ N• [6, 7, 1]
[2] NP → Det N′

• [5, 7, 2]
[3] N′

→ N′
• P NP [6, 7, 1]

[4] N′
→ N′ P NP• [3, 7, 3]

[5] V P → V ′ P NP• [1, 7, 3]
[6] NP → Det N′

• [2, 7, 2]
[7] N′

→ N′
• P NP [3, 7, 1]

[8] S → NP V P• [0, 7, 2]
[9] V ′

→ V NP• [1, 7, 2]
[10] λ → S• [0, 7, 1]
[11] V P → V ′

• [1, 7, 1]
[12] V P → V ′

• Adv [1, 7, 1]
[13] V P → V ′

• P NP [1, 7, 1]

Figure 3.9: A chart for a run of our Earley parser against example 3.6
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Let’s have a look at some examples. Figure 3.9 was created by an Earley-
Parser using our sample-grammar, and parsing example 3.6, that is repeated here
as example 3.8, with a numbered set of bullets added.

(3.8) •0 Steve •1 created •2 that •3 sound •4 on •5 the •6 computer •7

Let’s have a closer look at the state from figure 3.9, with the number [1] in
chart[5], repeated here.

N ′
→ N ′ P •NP [3, 5]

In this state the parser tries to prove the rule N ′
→ N ′ P NP to be appliable

to the input, beginning at •3. The • can be found in the input-stream as •5, and
given that it’s right of N ′ P , and left of NP , it means that an N ′ and the P have
already been recognized, and the NP still has to be read.

For each state in the chart, the Earley-Algorithm applies one of three opera-
tions known as Predictor, Scanner and Completer, each of which add new
states to the current or next chart. A state that is already in the chart is never
added a second time, even if the operation would normally do so. This is how
data- and runtime-structure effectively avoid redundancy.

The Predictor is applied to each rule that still has non-terminals immediately
to the right of the •, that is, to each state that still has to prove a new non-
terminal to appear next. In order to do so the Predictor adds new states to
the chart, “expanding” the non-terminal-symbol in question by the rules replacing
this particular symbol, therefore running in a “top-down”-manner.

Let’s again consider an example. The initial state of the parser is the “artifi-
cial” state

λ→ •S[0, 0]

the chart is initialized with. When the algorithm comes across this state it
finds the non-terminal S to the right of the dot. There is one rule expanding
S, namely S → NP V P , therefore the Predictor would add the new state
S → •NP V P [0, 0] to the chart. Next the Predictor comes across this newly
created state, finding the non-terminal NP to the right of the •. There are two
rules that expand the NP , namely NP → N ′ and NP → Det N ′, therefore the
Predictor creates two new states, NP → •N ′[0, 0] and NP → •Det N ′[0, 0],
and so on.

The Scanner is, as the name suggests, used to advance a state by scanning
the input. Let’s look at the operation of the Scanner, by considering the state

N ′
→ N ′

• P NP [3, 4]
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that can be found in the figure 3.9 in chart[4] at position [3]. In this state the
• is to the left of the P , therefore the parser has to prove a symbol of category P

to appear next in the input. Now it’s the Scanner’s job to look at the input, and
verify whether the next input-symbol is a P or not. In the input, the signal to the
right of •4 is “on”, so the Scanner adds the new rule P → on • [4, 5] to the next
chart. When the parser proceeds to the next word, the Completer takes care
of proceeding the • in state N ′

→ N ′
•P NP [3, 4] to give N ′

→ N ′ P •NP [3, 5].

The Completer is called for a state which is “complete”. A state is considered
complete, when the • is at the far right of the rule. In the last paragraph we
added the state P → on • [4, 5]. Therefore, any state “looking” for a P in the
input at •4, can be advanced, which means the • can be moved from the left of
a P to the right.

The Completer, coming across P → on • [4, 5] in chart[5] would, therefore,
look through all the states in chart[4]. When it finds, for example, N ′

→ N ′
•

P NP [3, 4] in chart[4], it advances the •, and adds the new state N ′
→ N ′ P •

NP [3, 5] to chart[5].

An Example-Run

Because a fundamental understanding of the Earley-algorithm is vital to this
project, we will not introduce any new concepts in this section, but dedicate it
to revise what we’ve heard about the Earley-algorithm so far, by following an
Earley-parser all the way through a parse.

(3.9) Steve plays chess.

The chart in figure 3.10 represents a run of an Earley-parser, parsing example
3.9 with a simplified version of our grammar.

The first state (λ→ •S[0, 0]) is added as an initialization-value for the chart,
and is handled just like any other state. Since it has a non-terminal to the right of
the •, the Predictor is called to handle that state. The Predictor finds the
symbol S to the right of the •, and looks up all the rules in the grammar that have
the form S → . . . and adds them to the current chart (which is chart[0]). In this
case, there is only one rule of that form in the grammar, which is S → NP V P .
Therefore the state S → •NP V P [0, 0] is added to the chart. Whenever a
grammar-rule is newly added to the chart by the Predictor its • is on the far
left (since we haven’t read any symbols for this rule so far), which is why its
rule-position must match its global position. The global position itself is always
carried over from the original state the Predictor was called for (which is
λ → •S[0, 0] in our case), to ensure that when “working off” the new state, the
parser looks for the symbols at the same position in the input where the original
state would have expected them.
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chart[0]

[0] λ→ •S [0, 0, 0]
[1] S → •NP V P [0, 0, 0]
[2] NP → •Det N [0, 0, 0]
[3] NP → •N [0, 0, 0]

chart[1]

[0] N → steve• [0, 1, 1]
[1] NP → N• [0, 1, 1]
[2] S → NP • V P [0, 1, 1]
[3] V P → •V NP [1, 1, 0]

chart[2]

[0] V → plays• [1, 2, 1]
[1] V P → V •NP [1, 2, 1]
[2] NP → •Det N [2, 2, 0]
[3] NP → •N [2, 2, 0]

chart[3]

[0] N → chess• [2, 3, 1]
[1] NP → N• [2, 3, 1]
[2] V P → V NP• [1, 3, 2]
[3] S → NP V P• [0, 3, 2]
[4] λ→ S• [0, 3, 1]

Figure 3.10: A chart for a run of our Earley parser on example 3.9
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Working off the agenda, our parser now finds the state S → •NP V P [0, 0] we
just added and interprets it in exactly the same way by calling the Predictor,
since the symbol to the right of the • is NP , which is a non-terminal. The
Predictor looks up all the rules in the grammar that have the form NP → . . ..
In our grammar there are two such rules: NP → Det N and NP → N , which is
why the two states NP → •Det N [0, 0] and NP → •N [0, 0] are added.

Now the parser finds the state NP → •Det N [0, 0] that was just added. This
time the symbol to the right of the bullet is Det, which is a terminal. That’s
why we call the Scanner now, instead of the Predictor. Instead of looking
up a rule in the grammar, the Scanner looks up the word in the input. In our
case it would look for a Det appearing in the input to the right of •0 (or, to
put it simply, the first word). The first word is Steve, and Steve can under no
circumstances be a Det. That’s why the Scanner doesn’t add any states.

The next state the parser considers is NP → •N [0, 0]. Again, the Scanner

is called, but this time the input (Steve) does match the terminal to the right of
the • (N), which is why the state N → steve • [0, 1] gets added to the next chart
(which is chart[1]). The rule-position is still 0, because we, or merely the rule in
the state, are still talking about the first word in the input. The rule N → steve

has been proven to be appliable for the first word in the input. The • is now to
the right of steve, since we have already read steve. Of course, this increases the
global position, since the • from the state N → steve • [0, 1] now corresponds to
•1 from the input, and not to •0.

Since there is no further rule in the current chart (chart[0]), the parser can
now move on to the next chart (chart[1]). The first state it finds there is the state
N → steve • [0, 1], that was just added by the Scanner. This state is said to be
complete, since there is no further symbol to the right of the •, which is why the
Completer is called to handle this state. The Completer now does the job
of looking through the old states to see if any of the states were looking for the
symbol we just found in the input, so it looks through the states in chart[0]. The
symbol we just found in the input is the lefthand-side of the state we were called
for (N → steve • [0, 1]) which is N , so it is interested in all the states of the form
? → . . . • N . . . in that chart the rule-position of the complete state points to.
(In our case the rule-position is 0, so it looks in chart[0].) There is only one such
state in chart[0], which is NP → •N [0, 0]. This state is now “advanced”, which is
simply the process of moving the • from the lefthand-side of the symbol over to the
righthand-side, therefore our Completer would use the state NP → •N [0, 0]
from chart[0], and advance it by adding the state NP → N • [0, 1] to chart[1]
according to the state it was called for (N → steve • [0, 1]).

Again, the parser can move on in the agenda. This time it finds the state
NP → N • [0, 1] we just added. This is, again, a complete state (there is no
further symbol to the right of the •), which is why the Completer is called to
handle this state, which goes through the same procedure of searching chart[0]
for states looking for an NP to be advanced. There is one such state, which is
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S → •NP V P [0, 0], so the Completer adds the state S → NP • V P [0, 1].
Now our parser is confronted with the state S → NP • V P [0, 1], which has

a non-terminal (V P ) to the right of the •, so the Predictor is called, to add
states from the grammar, that have the form V P → . . .. In the grammar there
is one such rule, namely V P → V NP , so the rule V P → •V NP [1, 1] is added
(recall that the bullet for predicted states is always at the far left, and the rule-
position as well as the global position are initialized to the original state’s global
position).

When handling state V P → •V NP [1, 1], the parser calls the Scanner

to scan for a V , appearing in the input at •1. The Scanner is, in this case,
successful in doing so, since the second word is plays. Therefore it adds a new
complete state, regarding that V , so the Completer takes care of advancing
V P → •V NP [1, 1] to give V P → V •NP [1, 2].

This state is then handled by the Predictor which adds the states NP →

•Det N [2, 2] and NP → •N [2, 2], both of which are handled by the Scanner,
which fails for the first one, and succeeds for the second one, because the word it
finds at •2, chess is a N , and can’t be a Det. That’s how state N → chess• [2, 3]
enters chart[3]. It’s used by the Completer to advance state NP → •N [2, 2],
which is why it adds state NP → N • [2, 3]. This state itself is complete and
therefore, once again, the Completer is called, this time to advance state V P →

V • NP [1, 2] to give V P → V NP • [1, 3], again a complete state, used by the
Completer to advance state S → NP • V P [0, 1] to give S → NP V P • [0, 3].

This can then be used to complete the initial state λ → •S[0, 0] to give
λ→ S • [0, 3], which is the end of our odyssee through the chart shown in figure
3.10.

Building the Parse-Forest

Actually, the algorithm we just showed is not a parser, but rather, a recognizer.
It is a way of telling whether a given input is grammatical, but there’s no way
to retrieve a parse-tree from the chart, shown in figure 3.9. When the algorithm
terminates, it can search the last chart for a state like λ → S•. If there is no
such state, the input does not match, if there is one, it does match the input.

In figure 3.11 we showed how a chart of an Earley-parser could look, in contrast
to the chart of an Earley-recognizer. We have added a column containing the
pointers that make up the so-called parse-forest. Recalling that natural-language
grammars are ambiguous, we need a representation dealing with a whole set
of possible parse-trees, rather than a single one. Such a set of parse-trees is
sometimes referred to as a parse-forest.

Let’s start our examination of these pointers with the state λ → S•, that
represents the successfully parsed input. The pointer we added, (7, 8), points to
the state numbered [8] in chart[7], which is S → NP V P•. This could be read
as, “This S was successfully parsed because S → NP V P•”. This state, again,
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chart[0]
[0] λ → •S [0, 0, 0] []
[1] S → •NP V P [0, 0, 0] []
[2] NP → •N′ [0, 0, 0] []
[3] NP → •Det N′ [0, 0, 0] []
[4] N′

→ •N′ P NP [0, 0, 0] []
[5] N′

→ •Adj N′ [0, 0, 0] []
[6] N′

→ •N [0, 0, 0] []

chart[1]
[0] N → steve• [0, 1, 1] []
[1] N′

→ N• [0, 1, 1] [[(1, 0)]]
[2] NP → N′

• [0, 1, 1] [[(1, 1)]]
[3] N′

→ N′
• P NP [0, 1, 1] [[(1, 1)]]

[4] S → NP • V P [0, 1, 1] [[(1, 2)]]
[5] V P → •V ′ [1, 1, 0] []
[6] V P → •V ′ Adv [1, 1, 0] []
[7] V P → •V ′ P NP [1, 1, 0] []
[8] V ′

→ •V [1, 1, 0] []
[9] V ′

→ •V NP [1, 1, 0] []

chart[2]
[0] V → created• [1, 2, 1] []
[1] V ′

→ V • [1, 2, 1] [[(2, 0)]]
[2] V ′

→ V • NP [1, 2, 1] [[(2, 0)]]
[3] V P → V ′

• [1, 2, 1] [[(2, 1)]]
[4] V P → V ′

• Adv [1, 2, 1] [[(2, 1)]]
[5] V P → V ′

• P NP [1, 2, 1] [[(2, 1)]]
[6] NP → •N′ [2, 2, 0] []
[7] NP → •Det N′ [2, 2, 0] []
[8] S → NP V P• [0, 2, 2] [[(1, 2)], [(2, 3)]]
[9] N′

→ •N′ P NP [2, 2, 0] []
[10] N′

→ •Adj N′ [2, 2, 0] []
[11] N′

→ •N [2, 2, 0] []
[12] λ → S• [0, 2, 1] [[(2, 8)]]

chart[3]
[0] Det → that• [2, 3, 1] []
[1] NP → Det N′

• [2, 3, 1] [[(3, 0)]]
[2] N′

→ •N′ P NP [3, 3, 0] []
[3] N′

→ •Adj N′ [3, 3, 0] []
[4] N′

→ •N [3, 3, 0] []

chart[4]
[0] N → sound• [3, 4, 1] []
[1] N′

→ N• [3, 4, 1] [[(4, 0)]]
[2] NP → Det N′

• [2, 4, 2] [[(3, 0)], [(4, 1)]]
[3] N′

→ N′
• P NP [3, 4, 1] [[(4, 1)]]

[4] V ′
→ V NP• [1, 4, 2] [[(2, 0)], [(4, 2)]]

[5] V P → V ′
• [1, 4, 1] [[(4, 4)]]

[6] V P → V ′
• Adv [1, 4, 1] [[(4, 4)]]

[7] V P → V ′
• P NP [1, 4, 1] [[(4, 4)]]

[8] S → NP V P• [0, 4, 2] [[(1, 2)], [(4, 5)]]
[9] λ → S• [0, 4, 1] [[(4, 8)]]

chart[5]
[0] P → on• [4, 5, 1] []
[1] N′

→ N′ P • NP [3, 5, 2] [[(4, 1)], [(5, 0)]]
[2] V P → V ′ P • NP [1, 5, 2] [[(4, 4)], [(5, 0)]]
[3] NP → •N′ [5, 5, 0] []
[4] NP → •Det N′ [5, 5, 0] []
[5] N′

→ •N′ P NP [5, 5, 0] []
[6] N′

→ •Adj N′ [5, 5, 0] []
[7] N′

→ •N [5, 5, 0] []

chart[6]
[0] Det → the• [5, 6, 1] []
[1] NP → Det • N′ [5, 6, 1] [[(6, 0)]]
[2] N′

→ •N′ P NP [6, 6, 0] []
[3] N′

→ •Adj N′ [6, 6, 0] []
[4] N′

→ •N [6, 6, 0] []

chart[7]
[0] N → computer• [6, 7, 1] []
[1] N′

→ N• [6, 7, 1] [[(7, 0)]]
[2] NP → Det N′

• [5, 7, 2] [[(6, 0)], [(7, 1)]]
[3] N′

→ N′
• P NP [6, 7, 1] [[(7, 1)]]

[4] N′
→ N′ P NP• [3, 7, 3] [[(4, 1)], [(5, 0)], [(7, 2)]]

[5] V P → V ′ P NP• [1, 7, 3] [[(4, 4)], [(5, 0)], [(7, 2)]]
[6] NP → Det N′

• [2, 7, 2] [[(3, 0)], [(7, 4)]]
[7] N′

→ N′
• P NP [3, 7, 1] [[(7, 4)]]

[8] S → NP V P• [0, 7, 2] [[(1, 2)], [(7, 5), (7, 11)]]
[9] V ′

→ V NP• [1, 7, 2] [[(2, 0)], [(7, 6)]]
[10] λ → S• [0, 7, 1] [[(7, 8)]]
[11] V P → V ′

• [1, 7, 1] [[(7, 9)]]
[12] V P → V ′

• Adv [1, 7, 1] [[(7, 9)]]
[13] V P → V ′

• P NP [1, 7, 1] [[(7, 9)]]

Figure 3.11: A chart for a run of our Earley parser against example 3.6, this time
with the parse-forest
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is augmented with the pointer

[[(1, 2)], [(7, 5), (7, 11)]]

which demonstrates the full complexity of this data-structure. The array of
arrays has to be read in the same order as the rule. Therefore [(1, 2)] is related
to the NP , and [(7, 5), (7, 11)] is related to the V P , meaning the NP is the one
expanded in state [2] in chart[1], and the V P could either be the one from state
[5] or [11] in chart[7].

This parse-forest can be easily built by augmenting the Completer a bit.
Every time the Completer advances a rule by “applying” a complete state, it
adds a pointer to the “applying” state (the incomplete one, the one that needs to
be advanced), pointing to the “applied” one (the complete state), corresponding
to the position of the • in the rule. This would leave the chart with pointers that
can easily be traversed using standard tree-handling algorithms.

A more detailled description of an actual implementaion of an Earley-parser
is presented in the second part of this paper.

3.4 Feature Structures

In the previous section we already mentioned specifiers from a linguistic point
of view. Feature structures are a computational model linguistic specifiers are
traditionally implemented with.

We mentioned that terminal-symbols, in our case morphological items, have
a set of specifiers associated with them, and that it should be possible that these
specifiers constrain the appliability of certain rules.

In the first chapter we showed how a word-form like “doggies” goes through
the morphological analyzer, that sets some “global flags”, as we called them,
like, rootform=dog, num=plural, babytalk=true. Such a morphologi-
cal item could be returned by the morphological analyzer using a feature-structure
that, when denoted as an attribute-value matrix, AVM for short, looks like

doggies









categ N

rootform dog

num plural

babytalk true









This is simply a way of encoding a set of feature-value pairs. The value of
each feature can either be atomic or another feature structure. Let’s consider an
example that is a little bit more complex.

swims















categ V

rootform swim

trans intrans

agreement

[

number SG

person 3

]














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This example shows the feature agreement that takes another feature struc-
ture as its value. This hierachical organization of feature structures doesn’t only
allow to logically group subsets of related features together, and easily access
them, it also makes it possible to build more complex data-structures like lists or
trees, to encode not only lexical items, but all data-structures that arise in NLP,
including rules and complete parse-forests.

Although practical systems are often built in a way, that the only data-
structure they need to deal with is the feature-structure, encoding rules and
even complete parse-forests as feature structures, we will describe the basic idea
using the simplified approach given in Jurafsky & Martin (2000), to avoid going
into too much detail. The interested reader is referred to Copestake (2002) for a
description of implementing so-called “typed feature structure grammars”. This
book also puts a strong emphasis on how they are used in the LKB-system (the
system for grammar-engineering distributed by Stanford’s LinGO-initiative).

In our simplified approach we will augment a “normal” CFG with a feature
structure, that constrains its use. The rule NP → Det N serves as a good
example. Say we wanted to augment this rule, so it accepts this dog, and it
rejects *these dog.

Let’s first consider the feature structures for these words.

dog





categ N

rootform dog

num SG





these





categ Det

rootform this

num PL





this





categ Det

rootform this

num SG





We could use a rule like:

NP → Det N







num SG

Det
[

num SG
]

N
[

num SG
]







Such a rule reads “Replace a Det and an N by an NP , if, and only if, the
Det has the feature num=SG and the N has the feature num=SG. The resulting
NP should then also get the feature num=SG.

Feature-structures can use so-called “reentrant” structures. The above feature-
structure could be rewritten as follows, using reentrancy.







num 1

Det
[

num 1
]

N
[

num 1 SG
]







In this case the features “refer” to each other’s value, which wouldn’t change
anything in this example, since all the num-features would still be bound to SG.
The advantage of such a notation comes in, when considering feature-structures
like the following one, that don’t give a feature an actual value, yet still require
it to be equal.
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





num 1

Det
[

num 1
]

N
[

num 1
]







This would enable us to use one augmented rule, to handle both singular and
plural NPs, rather than using two distinct rules, the only difference being num’s
value.

Therefore our complete rule, accepting NPs like this dog, and rejecting *these
dog would look like:

NP → Det N







num 1

Det
[

num 1
]

N
[

num 1
]







3.4.1 Unification

In this section we will introduce one of the mightiest operators in computer-
science, called “unification” and how it is applied to feature structures, in order
to equip them with a limited degree of “intelligent” behavior. The unification-
operator is simple, yet so powerful, that it suffices to give programming-languages
(like Prolog) the ability to read and write simple and complex data-structures,
to perform logical and therefore numerical operations and to control its program’s
runtime-flow (usually in combination with a search-strategy like backtracking).

This section will only give the basic ideas of unification by showing a few ex-
amples. The reader is again referred to Jurafsky & Martin (2000) and Copestake
(2002) for a detailled description of unification and its applications to language-
processing, and to Sterling & Shapiro (1994) which gives the details on how
unification is used in logic programming languages.

Let’s start by considering the most basic example of the unification operator
(written t in the following).

[

number SG
]

t
[

number SG
]

=
[

number SG
]

[

number SG
]

t
[

number PL
]

Fails!

This illustrates how unification can be used for simple equality checks. Unifi-
cation succeeds, if two completely specified feature-structures are actually equal,
returning that feature structure, and failing otherwise.

[

number SG
]

t
[

number []
]

=
[

number SG
]

[

number SG
]

t
[

person 3
]

=

[

number SG

person 3

]
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In these cases the feature-structures are “compatible”. Values that are left
unspecified can be matched against any value. This is how unification “merges”
compatible feature-structures.







num 1

Det
[

num 1
]

N
[

num 1
]






t

[

Det

[

rootform this

num PL

]

]

=











num 1

Det

[

rootform this

num 1 PL

]

N
[

num 1
]











This shows how unification works for reentrant data-structures. While reen-
trancy from the first argument is preserved, the data from the second argument
can be successfully “merged in”. This has the consequence, that the value for the
Det ’s num-feature gets bound to PL, and so do the other num-feature’s values,
that are required to be equal to it.

From a linguistic point of view this behavior comes very handy. Consider a
morphological analyzer confronted with the word-form fish. The morphological
analyzer has no way of telling whether it is singular or plural. However a human
understander would have no problem telling that fish in this fish is singular, and
fish in these fish is plural.

This can be easily implemented using unification. A morphological analyzer
would return a feature-structure that doesn’t specify the num-feature for fish.
When unifying that item in the course of parsing the NP these fish, unification
would automatically bind the fish’s num-feature to PL.











num 1

Det

[

rootform this

num 1 PL

]

N
[

num 1
]











t

[

N
[

rootform fish
]

]

=















num 1

Det

[

rootform this

num 1 PL

]

N

[

rootform fish

num 1

]















3.4.2 Parsing with Feature Structures

In this chapter we will refine our Earley-Parser with two goals in mind: blocking
constituents violating unification-constraints, and providing a richer representa-
tion for constituents using our framework based on feature-structures.

This can be done with two slight modifications to the Earley-Parser presented
earlier. The first one concerns the representation of a state in the chart. A state
like N ′

→ N ′ P •NP [3, 5] would now be represented like

N ′
→ N ′ P •NP [3, 5]











N’

[

N

[

rootform sound

num SG

]

]

P
[

rootform on
]

NP []










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This new representation simply adds a new field to the state, carrying the
feature-structure. A machine might represent it as a directed acyclic graph, DAG
for short, which is basically the data-structure behind our feature-structures.

The second change affects the algorithm itself, the Completer to be precise.
Recall that the Completer is that part of the Earley-algorithm that takes care of
advancing every state that “is looking for” a symbol that has just been completed.
In our revised Earley-Completer, we can now try to unify the feature-structure
of the state that is to be advanced with the feature-structure of the state that
is already complete. The result of this unification is stored as the new feature-
structure associated with this state. If the unification fails, the state is not
advanced at all, therefore blocking a constituent violating a unification-constraint
from “taking part” in the parse.

Although we will not give a full Earley-chart for a parse (which is left as an
exercise for a reader with a really long sheet of paper), we will try to give an
example.

(3.10) Thick strings are better than thin ones.

(3.11) Thick strings is better than thin ones.

In the course of parsing example 3.10 the Completer will come across a
state

N ′
→ Adj N ′

• [0, 2]











Adj

[

rootform thick

num 1

]

N’

[

N

[

rootform string

num 1 PL

]

]











This state represents the complete constituent Thick strings as an N ′. The
Completer can now use this state to complete the state

NP → •N ′[0, 0]

[

num 1

N’
[

num 1
]

]

This can be done by unifying the complete state with the fs4.n′-part of the
one that is to be completed, to give

NP → N ′
• [0, 2]

















num 1

N’











Adj

[

rootform thick

num 1

]

N’

[

N

[

rootform string

num 1 PL

]

]



























What we have parsed so far is the NP thick strings, and we have found out
that it is plural. Now we can advance the S rule using our completed NP .
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S → NP • V P [0, 2]





















NP

















num 1

N’











Adj

[

rootform thick

num 1

]

N’

[

N

[

rootform string

num 1 PL

]

]



























VP
[

num 1
]





















After a while the parser will also have the V P , that is in question accessible.
The V P from example 3.10 would give a state like

V P → V ′
• [2, 7]











V’











num 1

V

[

rootform be

num 1 PL

]

. . .





















while the V P from example 3.11 would look like

V P → V ′
• [2, 7]











V’











num 1

V

[

rootform be

num 1 SG

]

. . .





















(the only difference being num’s value). When the completer tries to advance
the S-rule by unifying this V P with the state for the S, unification succeeds in
example 3.10, to give

S → NP V P • [0, 7]



































NP

















num 1

N’











Adj

[

rootform thick

num 1

]

N’

[

N

[

rootform string

num 1 PL

]

]



























VP











V’











num 1

V

[

rootform be

num 1

]

. . .























































In example 3.11 such a unification would fail, and therefore the S-state would
not be completed by applying this state.



Chapter 4

Semantics

McCarthy (1989) makes a statement about his notion of “common-sense knowl-
edge”, that fits perfectly into our idea of semantics.

Common-sense knowledge includes the basic facts about events (in-
cluding actions) and their effects, facts about knowledge and how it
is obtained, facts about beliefs and desires.

We already pointed out that FOPC and other equivalent first-order logic lan-
guages are commonly used to describe these facts about events, actions and so
on, which is why, in this section, we will mainly be concerned with the problem
of providing an interface between what syntactic analysis left us with (let’s say
a parse forest, to keep it simple), and an FOPC-representation of the underlying
meaning. Such a representation would enable a computer-system to draw con-
clusions from it, which shall suffice as evidence that the computer understood
the sentence, in our rather pragmatic approach to the “myths and magics” of the
true nature of intelligence and understanding.

4.1 Overview

(4.1) Steve plays the guitar.

In order to give the reader a rough overview of semantic analysis, in this
section we will consider example 4.1 and try to develop an adequate meaning
representation by composing simpler meaning representations of the constituents,
based on the syntax-tree given in figure 4.1.

Let’s first try to capture the meaning of the word guitar in this sentence,
which turns out to be rather trivial: The term guitar can be used “for every g

such that g is a guitar”.
∀gIsA(g, Guitar)

56
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Steve

N

NP

plays

V

the

Det

guitar

N

NP

VP

S

Figure 4.1: A parse-tree for example 4.1

Neglecting the meaning of the determiner the, we can move on to the verb
heading the V P containing this phrase, namely plays.

In example 4.1, we can say that play means that someone (p) is capable of
playing something (i), which could be captured by

∃p∀iP lays(p, i)

The NP the guitar can be viewed as a parameter that is passed as an i to
this fact.

∃p∀iP lays(p, i) ∧ IsA(i, Guitar)

If we move up another level to the S headed by the NP Steve with a semantic
representation

∃pHasName(p, Steve)

we can do the same thing again, to get

∃p∀iP lays(p, i) ∧ IsA(i, Guitar) ∧HasName(p, Steve)

What our system just did was successfully understand that Steve plays the
guitar, describes a relation P lays that holds between a p and every i such that
another relation IsA holds between i and some constant Guitar and yet another
relation HasName between p and some constant Steve.

Note that terms like Guitar and Steve are simple constants bearing no mean-
ing as such. They have to be defined in the semantic framework. If, for example,
there is a rule IsA(Evo, Guitar), we can deduce that Steve is capable of playing
Evo, which could be the name of Steve’s favourite guitar.
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4.1.1 Ambiguity

Note that a computer trying to do what we just did would, of course, be con-
fronted with ambiguity. The word play can have several meanings, some of which
are given in M1-M5.

∃p∀iIsCapableOfP layingInstrument(p, i)

as in Steve plays the guitar, or

∃p, gIsCapableOfP layingGame(p, g)

as in Steve plays chess, or

∃p, tUsuallyP laysWithToy(p, t)

as in Steve plays with dolls,
or

∃p, mP laysInABandTogetherWith(p, m)

as in Steve plays with Joe etc.
Differences can only be observed in predicate names and quantifiers, which is

another piece of evidence that we’ve successfully singled out semantic problems,
since disambiguation can only be done on a semantic basis (it requires knowledge
of the problem-domain, and logical inference to disambiguate, for example, that
if the guitar is an instrument and not a game, the meaning of play is M1, rather
than M2).

Syntactic ambiguities, such as deciding in the sentence We bought the dog
whether bought is transitive or ditransitive as in We bought the dog a nice toy
would never “make it that far” in our analysis, since a rule like V P → V NPNP, cns1
and another one like V P → V NP, cns2 would already have distinguished be-
tween the two lexemes, and we can freely provide them with different semantic
representations, given

cns1

[

V
[

trans ditrans
]

]

cns2

[

V
[

trans trans
]

]

The problem we are facing when we have to choose the “correct” meaning
from M1-M5, is often referred to as “sense-ambiguity”.
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4.1.2 Knowledge

One might easily be misled into thinking that ambiguity in the above example
was created quite artificially by introducing so many predicates for play, and that
the problem could easily be circumvented by proposing only a single predicate
P lays as in the previous section.

The point that is crucial to the understanding of FOPC and its use as a
“meaning representation” is that, by themselves, predicates and symbols do not
carry meaning. They rather introduce it indirectly by establishing equivalence
classes between equal (or rather unifiable) symbols.

Ambiguity arises as soon as semantic knowledge, that is modelled neither
in a unique “dictionary definition” of the lexeme or grammar rule, nor in the
specification of the problem domain (the machine’s knowledge of the world it
operates in), is neccessary to successfully create a unique meaning representation.
In a way it could be viewed as the consequences of incompleteness in modelling
the neccessary knowledge.

Say we wanted our system to tell whether somebody is intelligent, and whether
somebody is musically talented, and we equip our system with a few facts about
its problem-domain:

IsDifficult(Chess)

IsDifficult(Mastermind)

∀x, gIntelligent(x)⇐ IsCapableOfP layingGame(x, g) ∧ IsDifficult(g)

IsDifficult(V iolin)

IsDifficult(Clarinet)

∀x, iTalented(x) ⇐ IsCapableOfP layingInstrument(x, i) ∧ IsDifficult(i)

Given this scenario it would, of course, be possible to use a single predicate
like P lays, but this would require us to rewrite these rules as:

IsDifficult(Chess)

IsDifficult(Mastermind)

IsA(Chess, Game)

IsA(Mastermind, Game)

∀x, gIntelligent(x)⇐ P lays(x, g) ∧ IsA(x, Game) ∧ IsDifficult(g)

IsDifficult(V iolin)

IsDifficult(Clarinet)

IsA(V iolin, Instrument)

IsA(Clarinet, Instrument)

∀x, iTalented(x)⇐ P lays(x, i) ∧ IsA(i, Instrument) ∧ IsDifficult(i)
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By doing so we actually disambiguated the input by providing the system
with information about what is an instrument and what is a game. This new
information, that is additionally (to the model of the problem domain) required
for disambiguation could be formalized as follows:

IsA(Chess, Game)

IsA(Mastermind, Game)

IsA(V iolin, Instrument)

IsA(Clarinet, Instrument)

∀x, oIsCapableOfP layingGame(x, o)⇐ P lays(x, o) ∧ IsA(o, Game)

∀x, oIsCapableOfP layingInstrument(x, o)⇐ P lays(x, o)∧IsA(x, Instrument)

A human understander takes this knowledge required for semantic disam-
biguation of natural language from a knowledge-repository known as “common
sense”. Making it accessible to machines is a rather difficult task and one of the
most central problems for symbolic artificial intelligence. Maybe efforts like Cyc

Lenat (1995) will make “common sense” possible for machines one day, but this
is certainly not within the scope of this paper.

4.2 A Linguistic Perspective to Meaning

In the above section it got obvious that meaning is a rather difficult concept
to formalize. What is meaning? Is it possible to capture meaning in a formal
system? Does a single word have meaning? Is it possible to tell how many
meanings a single word has? Does a sentence have meaning? Can the meaning
of a sentence be composed by combining “smaller meanings” of the words and
grammatical rules that make up the sentence?

These are questions we are facing here, and the answer to most of them might
be “no”, possibly uttered by an “old-school”-philosopher, followed by a big “but”
uttered by someone following the more recent tradition of analytic philosophy:
No, but if we make the right presumptions, accept little weaknesses and apply a
certain degree of pragmatism, we can have considerable success when measured
in terms of practical application of our theory.

We might easily agree that language is, at its core, a symbolic system, and
any symbolic system can be viewed as a language. This is why the process of
“understanding” language is sometimes viewed as the process of “translating”
from one language, such as English, into another language, such as FOPC.

Note that this step might be seen as illegal, because such a view would put
the semantic level into the interface between one language and another. Let’s
consider the example of a human trying to translate an English sentence into
the German language. The translator would have to “understand” the English
sentence - something we tried to deal with using the notion of capturing the



CHAPTER 4. SEMANTICS 61

meaning of a sentence in a “semantic representation”. This “understanding”
would then be used by a human translator to form a German sentence. Now, if
we wanted a computer to translate an English sentence into FOPC, and it would
first have to capture the meaning in a “semantic representation”, what would
this representation be? Certainly not FOPC.

In a way, we completely skip the idea of meaning. What we want to develop
here could be viewed as a model of translating from one language into another
without having to really understand. Such a model is backed by presumptions
which have turned out to be fruitful in their application rather than the meta-
physical truth behind the concept of meaning.

4.2.1 Sense

A tool that’s very useful for translating from one language into another is a
dictionary - a dataset associating a set of words in one language with a set of
words in the other language making statements about their interchangability. If
I didn’t know the German word for guitar and I looked it up in a dictionary it
would give me Gitarre, suggesting that guitar is a linguistic symbol used by the
English language to refer to the same sense as Gitarre in German.

Note that sense is, in our theory, a purely virtual level. This can be seen,
when we consider ambiguity. The example we just gave was very simple: guitar
refers to exactly one sense, the same and the only sense that Gitarre refers to.
Let’s consider an example that involves ambiguity. If we looked up bass in a
dictionary it would give us two German words: Bass and Barsch. The first one
is a musical instrument, the second one is a kind of fish. A good dictionary helps
in doing this kind of disambiguation by giving a glossary describing the terms.

Note the parallelity between this concept, and the exemplaric formalization
of an English sentence in FOPC we just did. The glossary is exactly the same
“information that is additionally (to the model of the problem domain) required
for disambiguation”, we were using in the previous section.

What does this mean for the concept of sense? Our dictionary, disambiguating
its entries by giving glossaries, is now using a semantic level to anchor the process
of associating English and German words. And again we run into the same
limitation we were just talking about. What semantic level can be used by a
computer translating English into FOPC?

We can get around that problem by sticking with our view of understanding
by translating and viewing the semantic level in between as a black-box. There is
no problem in modelling a data-structure that is aware of one sense described by
the tuple [bass,Barsch] and one sense by [bass,Bass]. We can view “true mean-
ing” as attached to this data-structure like [bass,Bass] is a musical instrument
and [bass,Barsch] is a kind of fish, yet when modelling language for use by an
automaton we simply leave out this attachment.

Putting it simply: A traditional English-German-dictionary makes statements
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(a) (b)

Figure 4.2: A black-box-view of sense

like “You can use the word Bass for bass if you are talking about a musical
instrument” and “You can use the word Barsch for bass if you are talking about
fish”. In our analytic dictionary we cannot make these statements, because we
can’t model the “if ...”-part of that statement, but we can make statements like
“There exists a sense that is the intersection of the meanings of Bass and bass”
and “There exists another sense that is the intersection of the meanings of Barsch
and bass”. If we do that we establish a so called differential theory of semantics.

We developed this idea by following an example of translating from English to
German, which is why we came up with English/German-tuples like [bass,Barsch]
to account for our black-box-notion of sense, but it is important to note that this
is not the only way one could go about this. The only thing that really matters
is to capture meaning by some sort of unambiguous data-structure mapping to
linguistic symbols.

The creators of WordNet1, who emphasized the importance of synonymy in
capturing meaning did something similar. In WordNet so-called synsets are used
to account for sense. These synsets aren’t tuples as in our example, but rather
sets of English words that can be used interchangably in some sense. For example
(night,nighttime,dark) is one synset. The words could be used interchangably in
a sentence like She walked home alone in the night, but not in others like She
wants to go out Saturday night.

The parallelity between our approach, and that of WordNet can also be de-
picted graphically as in figure 4.2. Figure 4.2(a) shows how sense is created in our
example as an intersection of the meanings of an English and a German word, and
figure 4.2(b) accounts for WordNet’s idea of synsets. Figure 4.3 shows how dif-
ferent words contribute to two distinct senses of the same word, dark. One sense
is created by the synset (night,nighttime,dark) and one by (black,sinister,dark).

1see Miller et al. (1993), Miller (1993), Fellbaum et al. (1993), Fellbaum (n.d.) and Beckwith
et al. (n.d.) for details on WordNet
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Figure 4.3: Two senses of dark

The examples chosen here shouldn’t mislead the reader into thinking that a synset
always consists of three words. There can, of course, be more or less than three
words contributing to a synset, the example was chosen for the sake of readability
of the diagram.

4.2.2 Reference

Although sense is a very important theoretic aspect in describing meaning it is
still somewhat abstract. If Steve’s son asked him what a guitar was, he proba-
bly wouldn’t come up with something like “The concept behind what could be
described by the English word guitar and the German word Gitarre”, he would
merely grab Evo, his favourite guitar, and say, “This is a guitar”, making use of
the concept of reference, which could be viewed as the ultimate goal of language.
The symbols used in language are ultimately used to refer to concrete or abstract
entities we have in mind.

While Steve might think of Evo, a white electric guitar with steel-strings,
when he hears the word guitar, Jack might think of his favourite guitar, Liz, a
wooden acoustic guitar with nylon-strings.

This suggests a kind of referential ambiguity that arises when mapping from
a sense to its referent, analogously to sense-ambiguity that arises when mapping
from a word to its sense.

Not only is it possible that one sense might be associated with different ref-
erents, it is also possible that distinct senses resolve to the same referent. For
example, the capital of Norway and Oslo refer to the same place, somewhere
in Scandinavia. Does this mean that the capital of Norway and Oslo have the
same sense - are synonyms? Certainly not, because if the Norwegian government
decides to declare Nuuk the new capital, Oslo would still be Oslo.
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4.2.3 Lexical Semantics

Now that we know how a word is related to its sense, which is again related to its
referent, we can have a more detailled look at how words and their senses relate to
each other, a study widely known as lexical semantics. This field has seen a lot of
research in the recent past. WordNet was definitely one of the more ambitioned
projects, with its attempt to actually build a dictionary organizing words and
their senses and providing valuable information about how they relate to each
other. These are sometimes referred to as lexical databases. In this section we
will have a closer look at those relations WordNet attempts to cover.

Synonymy

The most important relation in WordNet is synonymy, because it is the synonymy-
relation that enables WordNet to capture meaning. It is usually viewed to hold
between two expressions, if the substitution of one for the other never changes
the truth-value of the sentence the substitution is made in. This is where the
concept of meaning comes in. If two expressions are substitutable, then they
could be said to mean the same. Miller et al. (1993) point out a problem with
this definition of synonymy, and offer a solution.

By that definition, true synonyms are rare, if they exist at all. A
weakened version of this definition would make synonymy relative to
a context: two expressions are synonyms in a linguistic context C if
the substitution of one for the other in C does not alter the truth
value.

This is why, in WordNet, words are considered synonyms, if there is a linguistic
context where the words are synonymous.

The use of substitutability to define synonymy has two important conse-
quences: First, two words can only be synonymous if they belong to the same
POS. A verb and a noun, for example, are never substitutable. Secondly syn-
onymy is symmetric: if x is synonymous to y, then y is synonymous to x.

Lexical Relations

Lexical relations are relations that hold between word-forms, and not neccessarily
between their senses. We will give a brief overview of the most commonly used
lexical relations.

Polysemy/Homonymy Although polysemy is a relation that appears in Word-
Net only implicitly, it is of central importance, for example, for sense-disambiguation.
Two words are polysemous if their word-forms are the same, but their senses
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aren’t. In a way polysemy is closely related to synonymy. Both arise from ambi-
guity in the mapping between word-form and word-sense. While when we’re map-
ping from a sense to its word-forms we are dealing with synonymy, we are dealing
with polysemy when we’re mapping from a word-form to its sense. Homonymy
is very similar to polysemy. Homonymy is usually viewed to hold between word-
forms whose senses are completely unrelated, while two words can be polysemous
also when their senses are somehow related, as long as they aren’t equal. This
was mentioned only for preventing confusion, because homonymy and polysemy
are widely used in that way. For our differential theory of sense, this is somewhat
awkward, because here sense can never be related yet unequal, which is why we
will use the terms polysemy and homonymy interchangably in the rest of this
paper.

Antonymy is, although speakers of English have little difficulty recognizing it,
rather difficult to formalize. It could be thought of as the opposite of polysemy.
Sometimes the antonym of x is not-x, but not always. Miller et al. (1993) use the
example of rich and poor. These words are antonymous, but if someone is not
rich, it doesn’t neccessarily mean that he is poor. It is interesting to mention, that
antonymy, besides synonymy, is the only relation that is maintained in WordNet
for all parts of speech.

Semantic Relations

Semantic relations are relations that hold between senses, in contrast to the lexical
relations we mentioned in the previous section, which hold between word-forms.

Hyponymy and Hypernymy are also called subordination and superordina-
tion. They are used to organize the lexical database hierachically (for example,
to set up an inheritance system, a concept we will deal with in greater detail
later). For example guitar is a hyponym of stringed instrument which is again
a hyponym of instrument. Generally one can say, that x is a hyponym of y if a
native speaker accepts sentences like x is a kind of y. Hyponymy is transitive,
therefore if x is a hyponym of y and y is a hyponym of z, then x is a hyponym
of z. Unlike synonymy, hyponymy is asymmetrical. If x is a hyponym of y, y is
not a hyponym of x, but rather a hypernym. WordNet maintains hyponymy and
hypernymy for nouns and verbs.

Meronymy and Holonymy can also be used to organize a database hierachi-
cally, with some reservations. For example neck is a meronym of guitar. Generally
one can say that x is a meronym of y if a native speaker accepts sentences like
an x is a part of a y. This relation is also transitive and asymmetrical. Again
if x is a meronym of y and y is a meronym of z, then x is a meronym of z and
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F 1 F 2 F 3 . . . F n

M1 E1,1 E1,2

M2 E2,2

M3 E3,3

. . . . . .
Mm Em,n

Figure 4.4: A Lexical Matrix

if x is a meronym of y, then y is a holonym of x. Sometimes additional classifi-
cation of meronymy is done. WordNet uses three kinds of meronymy/holonymy:
member-, substance- and part-meronymy, which are maintained only for nouns
(which doesn’t come as a surprise, but was mentioned for completeness).

Entailment is used in WordNet to organize verbs. For example snore entails
sleep. The term entailment is defined in logic (where it is also known as strict
implication) as follows: A proposition P entails a proposition Q if it is under
no circumstances possible to make P true and Q false. In lexical semantics a
verb p entails a verb q if the statement Someone p logically entails the statement
Someone q. Lexical entailment is a unilateral relation: If q entails p, then p
cannot entail q. See Fellbaum (n.d.) for the details on entailment in WordNet.

The lexical matrix

Figure 4.4 shows a matrix, that could be thought of as a datastructure for map-
ping words to their senses, and senses to their words. This table, taken from
Miller et al. (1993), could be thought of as another way of depicting the same
concept as figure 4.2(b), namely formalizing sense in a differential approach to
meaning. We could view F 1..F n as symbols representing all possible word-forms,
and M1..Mn as representing all possible meanings. An entry like E1,1 would be
read The word-form F 1 can be used to express the meaning M 1.

This simple data-structure deals elegantly with the two most important rela-
tions of lexical semantics: synonymy and polysemy. If we wanted to look up the
meaning of a word-form F 2, we would simply have to look at column F 2 to find
two appropriate meanings: M 1 and M2, which confronts us with polysemy. If
we wanted to look up a word-form for a meaning we have in mind, say M 1, we
would have a look at the row M 1, discovering two possible word-forms, namely
F 1 and F 2, which confronts us with synonymy.

The lexical matrix also helps to visualize the layer in between word-form and
word-meaning, namely the data-cells denoted Ej,i. In our simple approach this
would be a truth-value, saying “this association is valid” or “this association is
invalid”, but in a more sophisticated approach to lexical semantics it might be
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entity

objectthing cause substance location

animate o. whole artefact natural o.wall

goods material ... surfacetoy

music-box celesta wind i.calliopestringed i.

instrument

banjo koto pianopsalteryguitar

acoustic g. steel g.electric g.

Figure 4.5: A sample of WordNet’s hyponymy-structure

desireable to use a numeric value, for example saying “this association is true at
a probability of 0.67”, or signals helping with disambiguation, etc.

The Lexical Inheritance System

A lexical inheritance system is used, for example, in WordNet to organize nouns
and equip them with a limited degree of semantic information. How do conven-
tional dictionaries get semantic information across? If we looked up the word
guitar in a dictionary, it would give us a glossary like a stringed instrument that
is small, light, made of wood, and has six strings usually plucked by hand or a
pick. Now what is a stringed instrument? If we looked that word up in the
dictionary, we would get something like a musical instrument producing sound
through vibrating strings. What does that tell us about guitars? Obviously, that
a guitar is a musical instrument producing sound through vibrating strings, that
is small, light, made of wood, and has six strings usually plucked by hand or a
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pick.
What we just did was, we resolved the lexical inheritance system of our dictio-

nary. We could go on like this for quite a while, looking up guitar, then stringed
instrument, then instrument until we end up at a word, that stands for itself, like
entity.

That we already mentioned the sequence guitar-stringed instrument-instrument
in this paper is not a coincidence: We mentioned it as an example for hyponymy,
which is the basic building-block organizing the nouns in our dictionary into a
hierachical system as depicted in figure 4.5. In WordNet the top of this tree-
structure is the synset for the word entity which is the most abstract “thing” a
noun can be. Then WordNet tells us about different kinds of “entities”, including
objects, places, agents etc. When we go a step down this hierachy towards, say,
object the concept of inheritance allows us to view an object as an entity. This
implies that an object has all attributes, parts and functions, that an entity has.
If we go down another step in this hierachy, say to the synset for artifact we
are again allowed to view an artifact as an object. Therefore artifact inherits
all attributes, parts and functions from object, and implicitly also from entity,
because object, as we just mentioned, inherits all attributes, parts and functions
from entity. If we keep on doing this, going down the hierachy, until we arrive
at guitar we know that a guitar is something “which is perceived or known or
inferred to have its own physical existence”, although this can not be found in
the definition of a guitar, because this fact was inherited all the way down from
entity to guitar. The application of this concept of inheritance to our hierachical
system, created by the hyponymy-relations, is what makes this hierachy an in-
heritance system. The details on lexical inheritance and its use in WordNet can
be found in Miller (1993).

4.3 A Formal Perspective to Meaning

Now that we know how to capture the meaning of a single word we can go on to
develop a formal approach to meaning and its representation in FOPC.

4.3.1 Representing Lexemes

(4.2) Steve plays the guitar.

When developing a meaning representation for example 4.1, repeated here as
example 4.2, in section 4.1 we started out by representing the meaning of the
word play as the following FOPC-expression:

∃p∀iP lays(p, i)
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Mapping words to this kind of expression is the dictionary’s job, since both
words and expressions like the above one could, in their language, somehow be
viewed as the nuclear meaning-carrying unit.

First of all, it is important to recognize the need for the consistent use of pred-
icates and predicate-structures in dictionary definitions. FOPC doesn’t as such
provide data-structures for handling knowledge or common-sense, it’s just a for-
malism for describing relations among symbolic expressions. The way a problem-
domain is actually modelled in FOPC places some restrictions on what dictionary-
definitions of words might look like. These restrictions could be thought of as an
interface between the “natural-language-part” (dictionary, grammar, etc.) and
the “processing-part” (the formalization of the problem domain) of our natural-
language-processor.

Let’s return to the example from section 4.1.2: We had a problem domain for
a system telling whether someone is intelligent and whether someone is talented,
that looked like:

IsDifficult(Chess)

IsDifficult(Mastermind)

∀x, gIntelligent(x)⇐ IsCapableOfP layingGame(x, g) ∧ IsDifficult(g)

IsDifficult(V iolin)

IsDifficult(Clarinet)

∀x, iTalented(x) ⇐ IsCapableOfP layingInstrument(x, i) ∧ IsDifficult(i)

Given this problem domain it would not make sense for the dictionary to map
the word play to ∃p∀iP lays(p, i), because given P lays(Steve, V iolin) our pro-
gram cannot deduce Talented(Steve). This is how the definition of the problem-
domain implicitly creates an interface that the dictionary has to implement if
the whole system is to be operational. This interface would make statements
like “For expressing meaning the dictionary can use the predicates IsDifficult,
IsCapableOfP layingGame and IsCapableOfP layingInstrument”.

This interface is rather problematic since it gives rise to ambiguity and knowledge-
problems. How should the dictionary know the difference between IsCapableOfP layingGame

and IsCapableOfP layingInstrument when deciding how to translate the word
plays? It is clearly not the dictionary’s job to find out (at least in our ap-
proach), because it would require further knowlege about the problem domain
to do so, and therefore we have to redefine the problem domain, just as we did
in section 4.1.2, so that the interface reads “For expressing meaning the dictio-
nary can use the predicates IsDifficult and P lays as well as IsA(X, Game)
and IsA(X, Instrument)”. This eliminated ambiguity, because every symbolic
expression in the English language, e.g. plays has exactly one corresponding
symbolic expression in the FOPC-modelled problem-domain, ∃p∀iP lays(p, i) for
instance.
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4.3.2 Knowledge-Representation in Natural Language Pro-
cessing

To maintain a certain degree of generality in their problem-domains linguists usu-
ally use models from artificial intelligence which were originally targeted towards
accounting for true “common-sense” or “knowledge” or whatever term you prefer
for McCarthy’s level-4-use of logic (McCarthy 1989, p9), but never really reached
that goal, yet turned out to be very useful for modelling natural language, which
is a symbolic system that operates exactly at that level.

In such a formalism you wouldn’t find a predicate like P lays(p, i) to account
for the meaning of the verb play, but rather a notion of events that can sometimes
seem somewhat artificial. Such a formalism would also make use of some very
important predicates like IsA or AM to represent certain aspects of modelling
nouns, referents and their properties.

Before we will have a look at these conventions in this section, recall that
according to McCarthy (1989), common-sense knowledge includes facts about

• events (including actions) and their effects

• knowledge and how it is obtained

• beliefs and desires

• objects and their properties

Verbs: Events and Actions

Therefore to formalize a verb like play we would introduce an event to account
for the action of playing. The action of playing involves two so-called “semantic
roles”, that of the agent, and that of the experiencer. The agent is that object,
which causes the action to happen, the player, in our example. The experiencer
is that object which experiences the action, in our case, that “which gets played”,
the “playee” so-to-speak. (Although words like playee are somewhat awkward,
they are commonly used to emphasize the semantic-role-concept, showing the
analogy of the playee in a playing-event, the employee in an employing-event, the
trustee in a trusting-event and so on.)

Given that, we can define the verb play by the playing-event it describes as:

∃p, s, gIsA(p, P laying) ∧ P layer(p, s) ∧ P layee(p, g)

Therefore the word play indicates that “there exists a p, such that p is the
event of playing something, the player taking part in p is s and the playee taking
part in p is g”.
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Nouns: Objects ...

The meaning of nouns is widely covered by the IsA-relation we’ve been using all
the time. We can simply describe nouns by atomic symbols. A guitar would then
be Guitar, as bass a Bass and so on. The Isa-relation associates noun-senses
like Guitar and possible referents like Evo. (Evo is, as we’ve mentioned earlier,
Steve’s favourite guitar.) Making assertions like Isa(Evo, Guitar).

Distinguishing sense and reference is sometimes a pitfall: Steve plays the guitar
in its Steve is capable to play the guitar -sense cannot be formalized as

∃pIsA(p, P laying) ∧ P layer(p, Steve) ∧ P layee(p, Guitar)

Given that we use the IsA relation to account for reference (and the HasName

relation to account for names) the above statement would not imply

∃pIsA(p, P laying) ∧ P layer(p, Steve) ∧ P layee(p, Evo)

Once we decide we want to use the IsA-relation, we have to capture a noun
like guitar by ∀xIsa(x, Guitar) or ∃xIsa(x, Guitar) whenever we are actually
talking about the class of all guitars or a specific guitar.

We would therefore have to formalize Steve plays the guitar as

∃p∀s, gIsA(p, P laying) ∧ P layer(p, s)

∧HasName(s, Steve) ∧ P layee(p, g) ∧ IsA(g, Guitar)

Because given that Isa(Evo, Guitar) and HasName(Steve, Steve) this does
entail

∃pIsA(p, P laying) ∧ P layer(p, Steve)

∧HasName(Steve, Steve) ∧ P layee(p, Evo) ∧ Isa(Evo, Guitar)

which is exactly what we wanted to achieve.
Relations like HasName(Steve, Steve) might seem awkward, but this is due

to this example. Weisler & Milekic (2000) show why naming can be dealt with
on a separate “linguistic level”.

Adjectives: ... and their Properties

In a framework called “intersective semantics” the noun-phrase a great guitar
would be formalized in the following way:

∃xIsa(x, Guitar) ∧ Isa(x, Great)

The meaning of a great guitar is, in this framework, viewed as the intersection
of the set containing all guitars and the set containing all great things.

Jurafsky & Martin (2000) use three examples for showing why this approach
is a bit peculiar.



CHAPTER 4. SEMANTICS 72

(4.3) small elephant

(4.4) former friend

(4.5) fake gun

that would be formalized as

∃xIsa(x, Elephant) ∧ Isa(x, Small)

∃xIsa(x, Friend) ∧ Isa(x, Former)

∃xIsa(x, Gun) ∧ Isa(x, Fake)

This would state that a small elephant is a member of the set of small things,
that a former friend is a member of the set of friends, which is simply false, and
a member of the set of former things, which is somewhat unreasonable, similarly
to a fake gun, which is, in this model, considered a gun.

Unfortunately there is no easy way out of this problem, as long as we stick
with the principle of compositionality, but we might at least distinguish the IsA

relation from the AM -relation, just like Jurafsky & Martin (2000) did, and leave
further processing to the problem-domain, defining a great guitar as

∃xIsa(x, Guitar) ∧ AM(x, Great)

4.3.3 Lambda-Expressions

Before we can move on to account for the semantic representation of grammar-
rules we first have to provide a means to represent meanings that are “not yet
finished”. The dictionary definition of a single word or a phrase of a sentence
cannot usually stand for itself, it is rather a partial meaning, a subgoal on our
way to the complete meaning-representation of a sentence. This gives rise to the
need for an intermediate meaning-representation that accounts for these partial
meanings.

The approach is simple: a partial meaning can be viewed as a template, like
a form that has to be filled out before it carries any relevant meaning. Repre-
senting this can be easily achieved, using the FOPC-formalism, if we make one
fundamental extension: the Lambda-symbol, which acts similarly to a quanti-
fier, and states “this is a form-variable that has to be specified in detail in later
processing”.

(4.6) I play no instrument

(4.7) Nobody plays the piano

Turning back to our example of ∃p∀iP lays(p, i), one might criticize the use of
the quantifiers ∃ and ∀. Does the word play really imply that there exists some
p, such that p plays i, and that p can really play every i? Examples 4.6 and 4.7
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provide enough evidence, that another formalism is needed to account for the
“missing parts” in meaning: The lambda-expression.

Using a lambda-expression we could formalize the maining of play as

λp, iP lays(p, i)

which roughly reads “there is a p and an i, that still have to be specified in detail,
but we already know that there is a relation P lays that holds between them”.

Let’s consider an example that’s a bit more interesting. In section 4.1 we
represented the VP plays the guitar as

∃p∀iP lays(p, i) ∧ Isa(i, Guitar)

Of course this VP doesn’t yet “know” who will be the agent, therefore we
would have to use the following lambda-expression

sampleV P = λp∀iP lays(p, i) ∧ Isa(i, Guitar)

This time we also gave the lambda-expression a name, because we want to
introduce the following notation, which creates an expression where the variable
marked by λ in sampleV P gets replaced by the expression Steve:

sampleV P (Steve)

This would be the same as writing

∀iP lays(Steve, i) ∧ Isa(i, Guitar)

This can also be done with complex-terms, like

sampleV P (∃eHasName(e, Steve))

In general complex-terms take the form

< quantifier variable body >

Our example would, in the first place, resolve to something like

∀iP lays( < ∃eHasName(e, Steve) > , i) ∧ Isa(i, Guitar)

which isn’t really syntactically correct FOPC, but it is possible to convert it back
to syntactically correct FOPC by rewriting the predicate, that uses the complex-
term

P ( < quantifier variable body > )

as
quantifier variable body connective P (variable)

The connective depends on the quantifier. Variables that are quantified with
∃ are connected with ∧, variables that are quantified with ∀ are connected with
⇒.

Therefore our sample-expression would be rewritten as

∀i∃eHasName(e, Steve) ∧ P lays(e, i) ∧ Isa(i, Guitar)

Such a proceeding is called lambda-reduction.
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4.3.4 Representing Grammar-Rules

We might easily agree that the way a sentence is put together, the syntax, the
grammar-rules putting together the words in order to make up a meaningful
sentence, do themselves carry meaning.

A question that is a bit more tricky is what a grammar carrying out semantic
analysis should look like. We will use a quite simplistic approach called syntax-
driven semantic analysis, based on the presumption that semantic analysis can
be carried out in exactly the same structure as syntactic analysis.

To be more specific, this means, that if it is, on a syntactic level, possible to
deduce the syntax of a V P like

[V P [V plays ][NP [Det the ][N guitar ]]]

from its parts, namely the V

[V plays ]

the NP

[NP [Det the ][N guitar ]]

and the rule putting them together

V P → V NP

then it is also possible, on a semantic level, to deduce the semantics of the corre-
sponding V P

λs∃p, gIsA(p, P laying)∧ P layer(p, s)

∧P layee(p, g) ∧ IsA(g, Guitar)

from the same parts, namely the V

V = λg, s∃pIsA(p, P laying)∧ P layer(p, s) ∧ P layee(p, g)

the NP

NP = ∃gIsA(g, Guitar)

and the rule putting them together, which is

V (NP )

Figure 4.6 depicts the same idea graphically in greater detail. Figure 4.3.4
is basically a syntax tree of example 4.1, this time in its There is a guitar that
is currently played by Steve-sense. The presumption of syntax-driven semantic
analysis allows us to use this syntax-tree not only as the structure building up
the whole syntax from its parts but also for building up the whole semantics
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Steve

N (1)

NP (2)

plays

V (3)

the

Det (4)

guitar

N (5)

NP (6)

VP (7)

S (8)

Figure 4.6: Compositional structure

syntax semantics
(1) [N Steve] ∃sHasName(s, Steve)
(2) [NP [N Steve]] ∃sHasName(s, Steve)
(3) [V plays] λg, s∃pIsA(p, P laying) ∧ P layer(p, s) ∧ P layee(p, g)
(4) [Det the] nil
(5) [N guitar] ∃gIsA(g,Guitar)
(6) [NP [Det the][N guitar]] ∃gIsA(g,Guitar)
(7) [V P [V plays][NP [Det the] λs∃p, gIsA(p, P laying) ∧ P layer(p, s)

[N guitar]]] ∧P layee(p, g) ∧ Isa(g,Guitar)
(8) [S [N Steve][V P [V plays] ∃s, p, gIsA(p, P laying) ∧ P layer(p, s)

[NP [Det the][N guitar]]]] ∧HasName(s, Steve) ∧ P layee(p, g) ∧ Isa(g,Guitar)

Figure 4.7: Tree-nodes and their syntactic and semantic content

syntactic rule semantic attachment
(2) NP → N N
(6) NP → Det N N
(7) V P → V NP V (NP )
(8) S → NP V P V P (NP )

Figure 4.8: grammatical production of the analysis-tree
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from its parts. Figure 4.7 shows what these nodes would in detail look like on a
semantic and on a syntactic level. Figure 4.8 shows the grammatical rules that
made the derivation of nodes (2),(6),(7) and (8) possible, again on a semantic and on
a syntactic level. (The derivation of the other nodes isn’t particularly interesting,
since they are based on simple dictionary look-ups.)

The semantic rules are, of course, lambda-reductions. The reader is invited
to use the process of lambda-reduction, introduced in the previous section, to
see that it is in fact possible to derive the meaning-representation of the whole
sentence, given in node (8) in figure 4.7 from the “semantic grammar” given in
figure 4.8, and the “semantic dictionary”, given in nodes (1), (3), (4) and (5) of figure
4.7, and that this derivation really has the same structure as the syntax-tree given
in figure 4.3.4.

As we’ve just shown, the principle of syntax-driven-semantic analysis allows
us to guide the semantic derivation along the lines of the parsing-tree. This allows
us to handle semantics by simply adding a new field to the sample-grammar we’ve
been using all the time, just as we did, when we augmented the CFG-rules with
constraints based on feature-structures.

The S-rule, we’ve been using so far would have looked like:

S → NP V P







num 1

NP
[

num 1
]

VP
[

num 1
]







Remember that it consists of a CFG-rule saying that an NP and V can be
replaced by an S, if it is possible to unify both the feature-structure S.NP with
the NP ’s feature structure and the feature-structure S.V P with the V P ’s feature-
structure, and the feature-structure in this case enforcing number-agreement.

In order to handle semantic processing we would now add another data-
structure to our grammar rule, leaving the S-rule as something like:

S → NP V P







num 1

NP
[

num 1
]

VP
[

num 1
]






V P (NP )

Of course the implementation of such complex grammars isn’t usually done
in this datastructure, containing a CFG-rule, a FS-constraint and a semantic
attachment, but rather, in an integrated way. The ERG, for example, is based
solely on feature-structures, because semantic attachments, as well as CFG-rules,
can all be integrated into one powerful feature structure. This formalism was
chosen simply for the sake of readability.
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Steve

N

NP

plays

V

chess

N

NP

VP

S

Figure 4.9: A parse-tree for example 4.8

4.4 Augmenting a Parser with a Semantic An-

alyzer

Now we know what a semantic dictionary could look like, how a grammar can be
augmented with semantic attachments, and how these partial meanings coming
from the dictionary and the grammar can be combined based on the presumptions
of syntax-driven semantic analysis using lambda-reductions.

What we want to do in this section is try to get our parser to do this
combination-task. Given that we’ve made the semantic dictionary and the se-
mantic grammar available to our parser, we want it to be able to come up with
a complete meaning-representation of a natural-language sentence it parses.

(4.8) Steve plays chess.

We will, therefore, turn to example 4.8 (repeated from example 3.9). Its
syntax-tree is given in figure 4.9. This time we’ll follow an Earley-parser on its
way through the chart, and show how it does semantic analysis.

Figure 4.10 shows the chart created by a simple Earley-parser, when pars-
ing example 4.8 using the simplified grammar from the “syntactic production”-
column of figure 4.8.

Very similarly to what we did to the Earley-parser, when we extended it to
handle feature structures in section 3.4.2 we have to make two changes to the
parser: The first one concerns the representation of states. Additionally to the
normal fields of the state, and the associated feature structure we need a field
carrying the current semantic content of that state. Therefore a state like

NP → N • [2, 3]
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chart[0]

[0] λ→ •S [0, 0, 0] []
[1] S → •NP V P [0, 0, 0] []
[2] NP → •Det N [0, 0, 0] []
[3] NP → •N [0, 0, 0] []

chart[1]

[0] N → steve• [0, 1, 1] []
[1] NP → N• [0, 1, 1] [[(1, 0)]]
[2] S → NP • V P [0, 1, 1] [[(1, 1)]]
[3] V P → V •NP [1, 1, 0] []

chart[2]

[0] V → plays• [1, 2, 1] []
[1] V P → V •NP [1, 2, 1] [[(2, 0)]]
[2] NP → •Det N [2, 2, 0] []
[3] NP → •N [2, 2, 0] []

chart[3]

[0] N → chess• [2, 3, 1] []
[1] NP → N• [2, 3, 1] [[(3, 0)]]
[2] V P → V NP• [1, 3, 2] [[(2, 0)], [(3, 1)]]
[3] S → NP V P• [0, 3, 2] [[(1, 1)], [(3, 2)]]
[4] λ→ S• [0, 3, 1] [[(3, 3)]]

Figure 4.10: A chart for a run of our Earley parser on example 4.8 (Same as
figure with backpointers added)
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which can be found in entry [1] of chart[3] would now be

NP → N • [2, 3], ∃gIsA(g, Chess)

Feature-structures and backpointers for are left out for readability.
The second change concerns the Completer. Recall that the Completer

is that part of the Earley-algorithm that takes care of advancing every state
that “is looking for” a symbol that has just been completed, and that a state is
considered complete if its • is at the far right of the rule in the state, for example
as a result of the Scanner having successfully read an input-token that matches
the POS we are looking for. The Completer would, therefore, be the part of
the program responsibe for carrying out the lambda-reduction indicated in the
grammar-rule of the state that was just completed, carrying over the result of
this lambda reduction to the state “looking for” the constituent that was just
completed and, by the lambda-reduction, semantically analyzed.

In our example, the first time the Completer is called is for the complete
state [0] in chart[1]

N → steve • [0, 1], ∃sHasName(s, Steve)

(the value of the semantic attachment was provided by the Scanner, which
simply did a dictionary-lookup in the semantic dictionary, after having recognized
the word steve).

The completer then finds a state that can be advanced because of this newly
completed N -constituent: state [3] in chart[0], which is

NP → •N [0, 0], nil

Because advancing the • over the N in this state would create a complete
state, the completer can now carry out semantic analysis. Note that it is usually
necessary to wait for all constituents used by the current state to be completely
parsed and analyzed, before analysis of the current state can be done. In this case,
we have all constituents used by the NP → N -state, namely the N available, so
we can do the lambda-reduction which isn’t particularly exciting, given that the
semantic attachment to the NP → N -rule is simply N , (as can be seen in figure
4.8), ordering the parser to simply carry over the meaning from the N . Therefore
the Completer creates state [1] from chart[1]

NP → N • [0, 1], ∃sHasName(s, Steve)

And because this state the Completer just created is itself complete, the
Completer would now be called for that state. Looking for states in need of
an NP , the Completer would now find state [1] from chart[0]

S → •NP V P [0, 0], nil



CHAPTER 4. SEMANTICS 80

The • in this state can now be advanced over the NP . In this case the Com-

pleter doesn’t carry out any semantic action, because the new state wouldn’t
be complete, therefore creating state [2] in chart[1] as

S → NP • V P [0, 1], nil

The Predictor, finding the non-terminal-symbol V P in this state to the left
of the •, would now take care of adding state [3] to chart[1], and we can move
on to the next chart.

The Scanner would now find the token plays in the input, and, after looking
the word up in the semantic dictionary create state [0] in chart[2] as

V → plays • [1, 2], λg, s∃pIsA(p, P laying)∧ P layer(p, s) ∧ P layee(p, g)

This state is complete, and therefore it’s now the Completer’s turn again,
adding state [1] to chart[2] without doing semantic analysis, because, as we’ve
just mentioned, this would require all constituents to be completed. In our case
it is the NP that we lack information about. The Predictor would then create
states [2] and [3] in chart[2], and we could again go on to the next chart.

In chart[3] the Scanner would find the token chess in the input and therefore
create state [0] in chart[3] as

N → chess • [2, 3], ∃gIsA(g, Chess)

Using this state the Completer can now complete state [3] in chart[2]. In
this case the resulting state would again be a complete one, therefore semantic
analysis is carried out in this case, doing the lambda-reduction from the NP →

N -rule which is simply N , therefore carrying over the semantic attachment from
the N to the new state for the NP which is added as state [1] to chart[3] as

NP → N • [2, 3], ∃gIsA(g, Chess)

This state is exactly what state [3] in chart[1] “has been looking for”. The
Completer when called for the state we just created, would, therefore, try to
advance state [3] in chart[1], using state [1] in chart[3]. Because advancing the •
in V P → V •NP over the NP would create a completed state, the Completer

has to do semantic analysis, which is in this case a bit more interesting, because
the semantic attachment to the V P → V NP -rule is V (NP ). The NP is what
we just completed, and the V can be found by the lambda-reducer using the
backpointers. The new semantic attachment must be the result of the lambda-
reduction V (NP ), which, fully written, looks like

λg, s∃p IsA(p, P laying) ∧ P layer(p, s)

∧P layee(p, g) ( < ∃gIsA(g, Chess) > )
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A technique called currying allows us to handle lambda-expressions like this
one, where there are two variables marked with lambda, but only one is to be
reduced. It simply states, that in such a case the lambda-variable at the left end of
the quantification-block is reduced, and the result is itself a lambda-expression,
containing the lambda-variables that were not reduced. In our case we would
reduce g, and leave s a lambda-variable. This lambda-reduction would therefore
evaluate to

λs∃g, p IsA(p, P laying) ∧ P layer(p, s)

∧P layee(p, g) ∧ IsA(g, Chess)

Now the completer can add the new state [2] to chart[3]

V P → V NP•[1, 3], λs∃g, p IsA(p, P laying)∧P layer(p, s)∧P layee(p, g)∧IsA(g, Chess)

This state can now be used by the Completer to complete state [2] in
chart[1]. This time the state we want to complete comes from the rule S →

NP V P which has the semantic attachment V P (NP ). In our case that resolves
to sem9(sem3) which is

λs∃g, p IsA(p, P laying) ∧ P layer(p, s)

∧P layee(p, g) ∧ IsA(g, Chess) ( < ∃sHasName(s, Steve) > )

that evaluates to

∃s, g, p IsA(p, P laying) ∧ P layer(p, s) ∧HasName(s, Steve)

∧P layee(p, g) ∧ IsA(g, Chess)

QED.
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