
LISA: A Linguistic Information System

Richard Bergmair

Keplerstrasse 3

A-4061 Pasching

rbergmair@acm.org

Aug-02 - May-03

Final Draft, printed September 14, 2004

Abstract

The prototype-part of this paper describes a system enabling computing machin-

ery to understand a problem stated in everyday English and to solve it.

A complex problem is stated purely in natural language, as if it was intended

to be read by a human. The system uses linguistic knowledge of English words

and the English grammar as well as semantic knowledge of the problem domain

it operates in to understand it.

By “understanding the problem”, we mean any kind of processing that can be

applied to the natural-language problem-representation, which equips the system

with the knowledge needed to actually solve it. Such an “understander” must

not use any problem-specific knowledge explicitly stated by the programmer in a

machine-readable form, knowledge about the problem is supposed to be inferred

solely from its natural-language representation.

This requires analyzing each word that appears in the input, a task known

as “morphological analysis” in Natural Language Processing, which is related to

that of “lexical analysis” or “lexing” in compiler-construction. It is carried out

in our prototype by machine-code which is generated by a special compiler.

After words are morphologically analyzed, they are translated into a struc-

tured representation that deals with the English language’s grammar. Building

up such a representation is a parser’s job. Our parser is a highly performance-

optimized implementation of the algorithm suggested by Earley (1970). It uses

dynamic programming to parse its input in polynomial time, regardless of ambi-

1

2

guity or left-recursion in its grammar. In addition to the parser our implemen-

tation features an event-based traverser for this data-structure, so a third-party

programmer can easily reuse and extend the parser.

Our parser is also capable of creating a representation that can be loaded

into a Prolog-interpreter. Knowledge about the English language as well as

knowledge about the problem domain is also provided to the interpreter, so it

can execute a query that solves the problem, leaving semantic reasoning mainly

up to Prolog.

The theoretical part of this paper aims to introduce the reader to the field of

Natural Language Processing (NLP for short). As it is targeted towards readers

from a technical or Computer Science-background, surveys of many introductory-

level concepts from the field of Linguistics are given. It also contains summaries

of much of the scientific work that became the basis for our prototype, and many

other NLP-systems. The most important concepts introduced to the reader are

finite state automata and finite state transducers as well as their application

to morphological analysis, context-free grammars, including their augmentations

with feature-structures and semantic attachments and how to use them for pars-

ing. Furthermore the most important symbolic approaches to semantics including

lexical semantics and general-purpose problem-solving are introduced.

Preface

Looking at science-fiction literature it can clearly be seen, that one idea has been

on people’s minds, ever since computing machinery entered the scene: communi-

cating with a machine in natural language. Because of the continuing evolvement

of this field, much of that is now rather science than fiction. But still: There

was no HAL-9000 computer available in 2001, as Stanley Kubrick imagined, and

building one confronts Computer Sciences with a great challenge that has yet to

be taken.

The first part of this paper aims to take the fictional idea of interfacing an

information system as a social entity to a scientific level. It introduces many of

the problems researchers in the field of Computational Linguistics have to deal

with, and the techniques these problems are traditionally addressed by.

The second part describes the most interesting parts of a prototype actually

solving a problem stated in English. The overall structure and the problem

domain this prototype was built for is introduced, and the two parts of the

program that were most challenging, from a programmer’s point of view are

documented with sourcecode in full detail.

3

Contents

I NLP: A Summary of Traditional Approaches 8

1 Introduction 9

1.1 Overview . 9

1.2 Ambiguity . 14

1.3 Knowledge . 15

2 Morphology 16

2.1 Overview . 17

2.2 A Linguistic Perspective to Morphology 19

2.2.1 Derivational Morphology 19

2.2.2 Inflectional Morphology 21

2.3 A Naive Approach to Model Morphological Knowledge 23

2.4 Finite State Automata . 30

2.5 Finite State Morphological Parsing 35

3 Syntax 39

3.1 Overview . 39

3.2 A Linguistic Perspective to Sentence-Structure 41

3.2.1 Parts of Speech . 41

3.2.2 A Simple Grammar . 44

3.2.3 Representations for Sentence Structure 48

3.2.4 Ambiguity . 49

4

CONTENTS 5

3.2.5 Specifiers . 51

3.3 Parsing . 54

3.3.1 Excursion: Backtracking through State-spaces 55

3.3.2 Basic Parsing Strategies 58

3.3.3 Parsing by Problem-Solving 59

3.3.4 The Earley Algorithm . 61

3.4 Feature Structures . 71

3.4.1 Unification . 74

3.4.2 Parsing with Feature Structures 76

4 Semantics 80

4.1 Overview . 80

4.1.1 Ambiguity . 82

4.1.2 Knowledge . 84

4.2 A Linguistic Perspective to Meaning 86

4.2.1 Sense . 87

4.2.2 Reference . 89

4.2.3 Lexical Semantics . 91

4.3 A Formal Perspective to Meaning 97

4.3.1 Representing Lexemes . 97

4.3.2 Knowledge-Representation in Natural Language Processing 99

4.3.3 Lambda-Expressions . 102

4.3.4 Representing Grammar-Rules 105

4.4 Augmenting a Parser with a Semantic Analyzer 109

II LISA: A Prototype 115

5 Introduction 116

5.1 What we want our Prototype to do 116

CONTENTS 6

5.1.1 The Kommissar Klug Problem 118

5.1.2 Some DOs and DON’Ts 119

5.2 Modules and how they Interact 121

5.3 The Kommissar Klug Problem Domain 123

5.3.1 Knowledge from the Text 123

5.3.2 Knowledge about the Problem Domain 124

5.3.3 Further Considerations . 125

6 FST-Tools 127

6.1 An Environment for Handling FSTs 128

6.1.1 Representing an FST . 129

6.2 Design of the Toolkit . 135

6.3 The Compiler . 138

6.3.1 Initializing the FST . 140

6.3.2 Collecting Data About the State 141

6.3.3 Assembling States . 142

6.3.4 Examining the Signal . 143

6.3.5 Handling Transistions . 148

6.3.6 Finalizing the Transducer 150

6.4 The XML-Loader . 152

6.4.1 Initializing the Transducer 154

6.4.2 Handling States . 154

6.4.3 Handling Transitions and Transductions 155

6.4.4 Putting Together the Transducer 156

6.5 The TXT-Loader . 158

6.5.1 Adding a String . 160

6.5.2 Output . 164

6.6 FST-Operations . 167

6.6.1 Appending an FST . 168

CONTENTS 7

6.6.2 Joining an FST . 169

6.7 The Optimizer . 172

6.7.1 Joining nodes . 173

6.7.2 Concatenating Linear Paths 176

6.7.3 Removing Orphaned States 178

6.8 Future Directions of this Toolkit 180

6.8.1 Probabilistic Data . 180

6.8.2 Optimizations . 180

6.8.3 External FSTs . 181

6.8.4 Dirty States . 181

6.8.5 Parameterizability . 181

7 Parser 182

7.1 General Considerations . 182

7.1.1 Representing the Text . 183

7.1.2 Representing the Grammar 183

7.2 A Simple Earley-Recognizer . 191

7.2.1 Basic data-structure . 193

7.2.2 The Agenda . 196

7.2.3 Enqueuing and Indexing 201

7.2.4 The Predictor . 206

7.2.5 The Scanner . 209

7.2.6 The Completer . 210

7.2.7 User-Output . 213

7.3 Building a Parse-Forest . 220

7.3.1 Backpointers . 221

7.3.2 Providing Backpointers during Completion 222

7.3.3 Member-Span . 223

7.3.4 Providing Member-Span-Data during Completion 226

Part I

NLP: A Summary of Traditional

Approaches

8

Chapter 1

Introduction

HAL: Hey, Dave, what are you doing?

Bowman works swiftly.

HAL: Hey, Dave. I’ve got ten years of service experience and an

irreplaceable amount of time and effort has gone into making me

what I am.

Stanley Kubrick and Arthur C. Clarke

2001: A Space Odyssey

This chapter aims to give a rough introduction to the field of computational

linguistics. Is it really possible to create an artificial agent, capable of such ad-

vanced language-capabilities as speaking English? What would it take to build a

computer like HAL? These are the questions we will be addressing in the subse-

quent sections.

1.1 Overview

Let’s first consider an example. Suppose we confront HAL with the following

sentence:

9

CHAPTER 1. INTRODUCTION 10

Figure 1.1: An oscillogram of the utterance Joe taught steve to play the guitar

(1.1) Joe taught Steve to play the guitar.

First of all it is important to understand the different representations the

information from example 1.1 goes through, beginning with a sound-wave and

ending in a semantic representation of the concepts behind the utterance.

Sound is what figure 1.1 shows. It is an oscillogram1 of the utterance from

example 1.1. It is a graphical representation of the input a sound-device gets

when recording voice with a microphone.

Speech recognition is what HAL would have to be doing to convert this rep-

resentation of a sound-wave into a “written” representation, or, putting it more

accurately, a string of morphemes, which could be called the “nuclear” unit of

speech and language, that can be matched against a dictionary in order to ob-

tain a written representation. Today powerful speech-recognition-systems, which

1In our case: graph of pressure fluctuation versus time.

CHAPTER 1. INTRODUCTION 11

perform exactly that task, are available commercially at a broad range, han-

dling many different languages, specialized vocabularies and difficult recording-

situations. This is why we will not deal with speech-related issues in this paper,

but rather start with a string-representation of written language.

An ASCII-coded string is therefore the first representation our system would

be confronted with.

Morphological analysis is what the next step is sometimes referred to. Now

that a string of words making up a sentence is available, each word being a string

of characters, we can go about analyzing the words. In this step the system would

have to find out that “taught” is a past-tense form of the verb “teach”, etc.

An intermediate representation could be used to pass data from the mor-

phological analysis to the syntactic one. Usually this isn’t neccessary because,

in practice, morphological and syntactic analysis are often handled in a highly

integrated way.

Syntactic analysis is the process of putting the words into a more structured

form, taking into account the grammar of the language.

A syntax-tree could be a way to represent output from the syntactic analysis.

Such a tree could make statements like, “This sentence consists of a subject in

nominative singular S, a predicate P and two accusative-objects O1 and O2, S

being Joe, P being taught, O1 being Steve, and O2 consisting of the function word

to, the verb V , the function word the, and a noun N , V being play and N being

guitar”.

It is important to keep in mind that this is only one possibility. The output

of a syntactic analysis could instead make statements like, “This sentence is an

CHAPTER 1. INTRODUCTION 12

joe

STEM

N

NP

taught

V

Steve

STEM

N

NP

VP

S

to

P-S

play

STEM

V

the

Det

guitar

STEM

N

NP

VP

PP-S

S

Figure 1.2: A syntax tree based on the ERG

CHAPTER 1. INTRODUCTION 13

active-voice sentence, the agent being Joe, the experiencer being Steve, the action

being teach, etc.”.

What exactly such an output looks like is highly dependent on the gram-

matical framework of choice. Figure 1.2 shows an output based on a syntactic

analysis carried out using the ERG (English Resource Grammar: as distributed

by Stanford’s LinGO-initiative).

Semantic analysis is a more accurate term of what is commonly seen as the

“understanding”-part of NLU (Natural Language Understanding). Whether a

computer will ever be able to truly “understand” a meaningful sentence is subject

to broad discussions in the field of AI-research and philosophy. For now, let’s just

settle with the rather pragmatic approach to semantics Winograd (1971, p281)

used.

A semantic theory must describe the relationship between the words

and syntactic structures of natural language and the postulated for-

malism of concepts and operations on concepts.

Semantic representation If we chose, for example, First Order Predicate-

Calculus (FOPC, for short) as a semantic representation, the output of the se-

mantic analysis could be something like

∀g∃e, pIsa(e, T eaching) ∧ Teacher(e, Joe) ∧ Student(e, Steve) ∧ Subject(e, p)∧

Isa(p, P layInstrument) ∧ Instrument(p, g) ∧ Isa(g, Guitar)

This notation could be read like “for every g there exists an e and a p, such

that e is the event of teaching, the teacher participating in e being Joe, the

student participating in e being Steve the subject being taught in e being p, p

being the event of playing an instrument, the instrument in p being g, and g

being any Guitar”.

CHAPTER 1. INTRODUCTION 14

Again FOPC is only one way of representing semantic data and the actual

semantic representation is dependent on the semantic model of choice. Some

semantic models don’t even require a semantic representation at all.

1.2 Ambiguity

One of the most difficult tasks in discovering the meaning of a sentence is to

choose between the meanings it could possibly have. Usually in a given situation

a sentence can only be assigned one meaning that is plausible, but how is an

artificial agent to decide upon the “plausibility” of an interpretation of a sentence?

Consider the following sentence from Schank (1971)

We saw the Grand Canyon flying to Chicago.

There are many interpretations that could be assigned to this sentence. Here

are some of them:

• While we were flapping our wings, flying to Chicago, we saw the Grand

Canyon.

• We saw the Grand Canyon, which was travelling in an airplane to Chicago.

• When travelling to Chicago in an airplane, we saw the Grand Canyon.

That there are multiple interpretations for this single sentence is due to am-

biguities on almost every level of language processing: sense-ambiguity, for ex-

ample. The word fly can be used in the sense of travel by airplane as in We flew

to Chicago, or in the sense of flying as in Birds fly.

Another example for ambiguity is structural ambiguity. In order to under-

stand the above sentence, HAL will have to decide where the gerundive phrase

flying to Chicago should be attached. It can either be part of a gerundive sen-

tence, whose subject is the Grand Canyon, or it can be an adjunct modifying the

CHAPTER 1. INTRODUCTION 15

phrase headed by saw, leaving either We as the ones who perform the action of

flying, or the Grand Canyon, that does the flying.

This task of choosing the right interpretation is called “disambiguation”, and

many of the problems researchers in the field of NLP are concerned with are

instances of disambiguation-problems.

1.3 Knowledge

Disambiguation often requires the machine to have knowledge about the “world”

it operates in. A machine operating in a so called “real-world-environment”, like

HAL, would therefore need substantial knowledge of the real world. HAL has to

be aware of facts such as, that people have no wings, and can only fly by plane,

or that the Grand Canyon cannot fly, neither by plane, nor by flapping its wings.

Giving HAL such knowledge is probably one of the most difficult tasks AI-

research has to face. John McCarthy, one of the big names in AI, has done

remarkable research in that area. The reader is referred to his book McCarthy

(1990) and especially to some of his papers McCarthy (1958), McCarthy & Hayes

(1969), McCarthy (1977, 1989) and the paper about his 1971 lecture, for which

he was awarded the Turing Award McCarthy (1987).

Chapter 2

Morphology

The major problem [in time travel] is quite simply one of grammar,

and the main work to consult in this matter is Dr Dan Streetmen-

tioner’s Time Traveller’s Handbook of 1001 Tense Formations. It will

tell you for instance how to describe something that was about to hap-

pen to you in the past before you avoided it by time-jumping forward

two days in order to avoid it. The event will be described differently

according to whether you are talking about it from the standpoint of

your own natural time, from a time in the further future, or a time

in the further past and is further complicated by the possibility of

conducting conversations whilst you are actually travelling from one

time to another with the intention of becoming your own mother or

father.

Most readers get as far as the Future Semi-Conditionally Modified

Subinverted Plagal Past Subjunctive Intentional before giving up:

[. . .]

Douglas Adams

The Restaurant at the End of the Universe

16

CHAPTER 2. MORPHOLOGY 17

2.1 Overview

(2.1) After playing for hours the guitarists recharged their tuner’s batteries.

Example 2.1 aims to introduce the reader to the most important scenarios in

morphological processing.

A computer-program attempting to understand this sentence would have to

know each word in the sentence, but how is a computer supposed to understand

the word, or rather, the substring recharged from the above string? It certainly

wouldn’t find it in any dictionary (in the sense of a string-array listing word-

forms). It would be nonsensical to build up a dictionary containing all thinkable

forms of a free morpheme like charge, since it would have to list

• (a) charge

• (more) charges

• (to) charge

• (He) charges

• (It is) charging

• (Yesterday I) charged

• (to) recharge

• (He) recharges

• (It is) recharging

• (Yesterday I) recharged

• (it is) charged

• (it is) uncharged

CHAPTER 2. MORPHOLOGY 18

• (it is) unchargeable

• . . .

Such a dictionary wouldn’t only use up masses of memory, it would also be

completely unmaintainable.

It would be desirable to have a dictionary list only-so called “root forms”, like

charge, and equip the system with rules like

1. It can be used as a verb

2. It can be used as a noun

3. It can be used as an adjective

4. The past-tense form of the verb can be derived by attaching the suffix -ed

5. The third-person-singular form of the verb can be derived by attaching the

suffix -es

6. The progressive form of the verb can be derived by attaching the suffix -ing

7. The prefix re- can be attached to the verb

8. The plural form of the noun can be derived by attaching the suffix -es.

9. The prefix un- can be attached to the adjective

10. The suffix -able can be attached to the adjective

Rule 4 applies to almost every verb in the dictionary. (We will use the term “in

the dictionary” to actually describe the concept of “either listed in the dictionary

or derivable from a form in the dictionary”.) Therefore the possibility of storing

such rules centrally eliminates a considerable amount of redundancy from the

system.

CHAPTER 2. MORPHOLOGY 19

This doesn’t only save physical storage-capacity, it also leaves the system of

morphological rules and their applications as an independent module, which has

many advantages. One of them is giving the system the ability to apply known

rules to new words. If a human listener is confronted with new words he has

never heard before, say a great gardel and a big red tarivar he can assume that

I gardelized my tarivar could possibly mean “I turned my tarivar into a gardel”,

regardless of what the words are supposed to mean.

2.2 A Linguistic Perspective to Morphology

So far we have seen the need for a dictionary listing root-forms and morphological

rules, and a system capable of applying the rules to words in the dictionary. In

this section we will have a closer look at some examples of morphological rules in

order to give the reader a rough idea of English morphology and the difficulties

it confronts a non-human understander with. A more detailled description can

be found in Weisler & Milekic (2000, pp79ff).

2.2.1 Derivational Morphology

Rules of derivational morphology are simply rules “deriving” more complex word-

forms from simpler ones, often altering their meaning or syntactic category.

One of the most prominent rules of derivational morphology is probably the

appending of the suffix -ly to derive an adverb from an adjective. This rule can

be applied to almost any adjective, with three consequences:

• the substring ly is appended to the word-form

• the word-form is now an adverb, rather than an adjective

• the meaning of the word changes to “in an X manner”

CHAPTER 2. MORPHOLOGY 20

un-

AFFIX

drink

FORM

-able

AFFIX

FORM

FORM

Figure 2.1: A tree showing the derivation of undrinkable

Another rule of derivational morphology uses the suffix -er, to derive painter

from (to) paint. It alters the meaning to “someone who Xs”.

In the case of -ist, it gets obvious, that not every rule can be applied to every

word form. A guitarist is someone who plays the guitar, a violinist is someone

who plays the violin, but no one has ever heard of a *drumist.

Considering the suffix -able, turning a verb into an adjective, leaving the

meaning as “it is possible to X it.”, and the prefix un-, altering the meaning of

an adjective to “not X” makes clear that it is also possible to subsequently apply

rules to forms that are already morphologically derived from a root form. The

form undrinkable can only be derived by first deriving drinkable from drink. The

un--rule can then be applied to the new form drinkable to produce undrinkable.

Figure 2.1 shows a tree-representation of this concept.

Some more complications can be seen when, for example, considering the de-

prefix, altering the meaning of a verb to “to reverse the action of Xing”. Words

like deflate suggest that not all root-forms actually exist, given a derived form

that exists. *flate is obviously not an English word, although the de- prefix

seems to exactly behave like a morphological rule. That the morpheme *flate

might actually exist is further suggested by the evidence that forms like inflate

CHAPTER 2. MORPHOLOGY 21

and inflation can be derived from it.

The word deodorize seems to be of similar nature, but this time the unbound

morpheme odor does exist as a root form, while the derivation *odorize does not

exist as a word-form. Yet it is still possible to do further derivations, like applying

the de--rule, leaving the form as deodorize, which is again an existent word-form.

delete and depress are similar cases. While delete does not seem to have

anything to do with a morphological derivation, but only happens to start with

de “by chance”, the form press does exist, yet the application of the de--rule

doesn’t derive that meaning of depress.

2.2.2 Inflectional Morphology

While the manifestation of derivational morphology is usually limited to a change

in its written form (usually an affix), a change of syntactic category and a change

in meaning, inflectional morphology serves a rather different purpose. Rules of

inflectional morphology produce an extremely regular semantic effect by modu-

lating certain grammatical aspects of meaning, such as person, number, tense,

case, etc. They are usually more regular than rules of derivational morphology

and they never change syntactic category.

Nominative Sg. filia (daughter)

Nominative Pl. filiae (daughters)

Genetive Sg. filiae (daughter’s)

Genetive Pl. filiarum (daughters’)

Dative Sg. filiae (I told my daughter something)

Dative Pl. filiis (I told my daughters something)

Accusative Sg. filiam (I love my daughter)

Accusative Pl. filias (I love my daughters)

Vocative Sg. filia (‘Daughter, I love you!’)

Vocative Pl. filiae (‘Daughters, I love you both!’)

CHAPTER 2. MORPHOLOGY 22

Ablative Sg. filia (N/A)

Ablative Pl. filiis (N/A)

Table 2.1: Inflectional table of the latin word “filia”

Generally nouns inflect for case and number, but case is usually neglected

because it doesn’t alter the appearence of a word-form in English. Table 2.1 is an

inflectional table of the latin word filia, -ae. In Latin the word form depends on

its case, that means it depends on how and where the form is used in a sentence.

Therefore daughter as in I love my daughter is a different word-form as in I’ve

told my daughter a thousand times not to do that.

While case is widely irrelevant for English morphology, number isn’t. The plu-

ral form of dog, dogs can be derived by applying a rule of inflectional morphology,

in this case the suffix -s. Again exceptions like foot/feet, goose/geese or fish/fish

complicate things. Plural-nouns are another exception. These are nouns that are

understood to only make sense in a plural form like jeans, and mass-nouns, that

are understood to describe an uncountable amount of something, and are only

valid in their singular forms, like money.

The inflectional system of verbs is a lot more complex, because verbs inflect

for person, number, tense and in many languages for features like whether it is

used in a conjunctive construction. The German language for example has an

indicative and two different conjunctive forms of a verb and six tenses, leaving

each word form with 3 ∗ 2 ∗ 6 ∗ 3 = 108 possible inflections. Fortunately they are

highly redundant.

A typical example of verbal inflection is the rule appending -ed to a verb,

in order to derive a past-tense word-form. Again exceptions are present like

teach/taught, catch/caught or take/took and numerous other irregular forms.

CHAPTER 2. MORPHOLOGY 23

2.3 A Naive Approach to Model Morphological

Knowledge

The reader should by now have a picture of what morphology is all about and

what kind of data is needed to do morphological analysis, but how is it mod-

eled? How do we get a computer to recognize a word like undrinkable, given a

dictionary-entry drink, a rule for -able and a rule for un-? How do we store such

data physically?

Let’s start with some morphological data for a parser in a simple problem-

domain, say animals.

What we need is a dictionary listing root-forms:

• bird

• cat

• dog

• fish

• frog

In order to inflect the words for number we need rule R1

1. Rule R1 can be applied to any form in the dictionary but ‘fish’

2. When applied, R1

(a) appends the string s to the root-form

(b) changes the number to PLURAL.

And in order to handle the word fish we need another rule R2

1. Rule R2 can be applied only to the form fish.

CHAPTER 2. MORPHOLOGY 24

2. When applied, R2

(a) changes the number to PLURAL.

Then we want to model some derivational morphology, let’s call it “babytalk”,

producing forms like doggie, fishie or froggie.

1. Rule R3 can be applied to the forms bird and fish

2. When applied, R3

(a) appends the string -ie to the root-form

(b) sets the “babytalk-mark” to TRUE.

1. Rule R4 can be applied to the forms dog and frog

2. When applied, R4

(a) appends the string -gie to the root-form

(b) sets the “babytalk-mark” to TRUE.

1. Rule R5 can be applied to the form cat

2. When applied, R5

(a) changes the form to kittie

(b) sets the “babytalk-mark” to TRUE.

A model like this might already be directly implementable using a rule-based

inference-system like Prolog, but in order to achieve better performance, let’s

“precompute” some values, and put our morphological model in a procedural

terminology, defining the functions as shown in table 2.2.

P 1 num=plural

P 2 num=plural

CHAPTER 2. MORPHOLOGY 25

P 3 babytalk=true

P 4 babytalk=true

P 5 babytalk=true

Table 2.2: Function-definitions of the procedures P 1

through P 5

In table 2.2 we simply turned the rules into procedures. Instead of rule R1

which requires the grammatical numerus (num) to be plural, we now have a

procedure P 1, which carries out this action, namely assign a global-flag (which

we’ll call num) the value plural.

Given these function-definitions we can show the return-values of the possible

function-calls to be:

bird

cat

dog

fish

frog

birdie← P 3(bird)

fishie← P 3(fish)

doggie← P 4(dog)

froggie← P 4(frog)

kittie← P 5(cat)

birds← P 1(bird)

dogs← P 1(dog)

frogs← P 1(frog)

cats← P 1(cat)

CHAPTER 2. MORPHOLOGY 26

fish← P 2(fish)

birdies← P 1(birdie)← P 1(P 3(bird))

fishies← P 1(fishie)← P 1(P 3(fish))

doggies← P 1(doggie)← P 1(P 4(dog))

froggies← P 1(froggie)← P 1(P 4(frog))

kitties← P 1(kittie)← P 1(P 5(cat))

While bird is itself a word-form, P 3 derives birdie← P 3(bird), and P 1 derives

birds ← R1(bird). The new form birdie can again be used as an argument to

P 1, this time deriving birdies← P 1(birdie), or, putting it differently, birdies←

P 1(P 3(bird))

If we group the above list by procedures, listing only arguments and return-

values, we get table 2.3.

P 1 NUM = PLURAL

birds← bird

cats← cat

dogs← dog

frogs← frog

birdies← birdie

fishies← fishie

doggies← doggie

froggies← froggie

kitties← kittie

P 2 NUM = PLURAL fish← fish

P 3 BABY TALK = TRUE
birdie← bird

fishie← fish

P 4 BABY TALK = TRUE
doggie← dog

froggie← frog

P 5 BABY TALK = TRUE kittie← cat

CHAPTER 2. MORPHOLOGY 27

P1

frog
cat

bird

dog

+s

froggie
kittie

birdie

doggie

fishie

(a)

P2

fish

(b)

Figure 2.2: The subsystem handling plural-inflection

P3

bird fish

+ie

(a)

P4

dog frog

+gie

(b)

P5

cat

kittie

(c)

Figure 2.3: The subsystem handling babytalk-derivation

The graphical representations from figures 2.2 and 2.3 show the same data

from table 2.3, namely functions and their input and output-values.

Figures 2.2 through 2.8 make use of the convention that unlabelled arcs pass

whatever they received as an input to the called function. This value can also be

referenced explicitly with the symbol “+”, so the appending of an affix can be

effectively depicted.

Figure 2.2 shows the functions needed for inflectional, figure 2.3 the ones

needed for derivational morphology.

CHAPTER 2. MORPHOLOGY 28

P1

frog
cat

bird

dog

+s

kittie

P2

fish
P3

bird

fish+ie

P4

dog
frog

+gie

P5

cat

Figure 2.4: A more detailled version of figures 2.2 and 2.3

The next question we ask ourselves, or rather the model, is: Where does the

data come from? Where does it go to? If we compose figures 2.2 and 2.3 into

figure 2.4, we get a model capable of answering that. Note that so far we have

never added any data to the model, we have simply rearranged it. In figure 2.4

it is still possible to make out each “subdiagram” as shown in figure 2.2 or 2.3.

Next we need a final shift in perspectives:

We propose the function q0 that “produces” all of the input to our system,

and some functions fish, bird, cat, . . . each of which gets as input the atomic

values. ’fish’, ‘cat’, ‘frog’, . . . This is shown in figure 2.5. The new functions are

depicted using a double circle because they do not neccessarily have to do any

output. They could simply “swallow” their input.

Next we have to account for plural inflection. This can be done by simply

copying the plural-inflection-related parts of the diagrams from figure 2.2 into

figure 2.5. The outcome is shown in figure 2.6. Again arcs depict function calls

and they are labeled corresponding to the data they pass. We insert the new

procedure q1, which “is interested” in all plural-forms.

Since we also want to cope with babytalk-derivation we do the same for the

procedures P 3, P 4 and P 5, in other words copy figure 2.3 into figure 2.5, to get

figure 2.7, proposing a function q2 getting the babytalk forms.

CHAPTER 2. MORPHOLOGY 29

q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

Figure 2.5: A model for basic input

q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

q1

P1 +s

P2

Figure 2.6: A model for basic and plural-inflected input

CHAPTER 2. MORPHOLOGY 30

q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

P3

P5

+gie

+ie

kittie

P4

q2

Figure 2.7: A model for basic input and derived babytalk-forms

Figures 2.6 and 2.7 can be easily integrated into figure 2.8, to give a system

handling both plural-inflection and babytalk-derivation.

Still we haven’t added any information to the model, that couldn’t be found

in our initial rule-based system described by R1 through R5. We have step by

step transformed our rule-based approach to a procedural one, and finally into

an automaton, as described in the next section.

2.4 Finite State Automata

Although it’s syntactically not quite correct, conceptually figure 2.8 can already

be interpreted as what is called a “Finite State Automaton”, FSA for short.

This section will give the reader a rough introduction to FSAs. More detailled

information on FSAs and their applications in Speech and Language Processing

can be found in Jurafsky & Martin (2000). Readers already familiar with FSAs

might want to skip it.

The first approach to FSAs might come to our minds, when trying to build

an effective model for accessing a simple list of words. Think of how one usually

looks up a word in the dictionary, say we are trying to look up dictionary in our

CHAPTER 2. MORPHOLOGY 31

q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

q1

P1 +s

P2

P3

P5

+gie

+ie

kittie

P4

q2

Figure 2.8: A model for the whole system

dictionary.

1. For all items in the dictionary:

2. Find an item that begins with d.

3. If there is no item that begins with d, dictionary can’t be in the dictionary.

4. For all items that begin with d

(a) Find an item that begins with di.

(b) If there is no item that begins with di, dictionary can’t be in the

dictionary.

(c) For all items that begin with di :

i. Find an item that begins with dic

ii. . . .

iii. If there is no item that is dictionary, dictionary can’t be in the

dictionary.

iv. If there is an item that is dictionary, dictionary is in the dictionary.

CHAPTER 2. MORPHOLOGY 32

The recursive nature already gets obvious here.

Now think of a dictionary containing some root-forms and for each one a

unique root-form-ID, that identifies the root-form in further processing, as shown

in table 2.3.

xabcde 1001

xabfgh 1002

nnki 1003

aabcde 1004

aabfgh 1005

xarki 1006

Table 2.3: A sample dictionary

Figure 2.9 shows a tree-representation of the same table, that fits the above

algorithm much better. Now what makes this tree-representation of the above

recursive-algorithm and FSA? The interpretation does. One starts at node q0.

Nodes depict the model’s idea of “states”, so we say, “The automaton IS in state

q0”. If the word to be looked up begins with x, one simply follows the arc to

q6, or putting it in a more professional terminology; “The automaton takes the

transition to q6” because arcs depict possible transitions. If the next character is

an a, the automaton takes the transition from state q6 to q5, etc.

Note that this tree representation is already an “FST”, not just an FSA. FST

is short for “Finite State Transducer”, and it is similar to the idea of an FSA.

The only difference is that the transducer has the ability, not just to match a

given input-stream, but also to recode it to an output-stream. In our example

this can be seen for example at the transition between states q5 and q26. This

transition is the first one, where it is completely determined, that if the input

should match an entry in the transducer the output is going to be 1006, the

xarki -entry’s root-form-ID. The new syntax is this: When a transition is labelled

CHAPTER 2. MORPHOLOGY 33

i:o, then the transition is taken as soon as the input-signal i is read from the

input-stream, and whenever that transition is taken the signal o is sent to the

output-stream.

Note that this paper doesn’t follow the normal convention in that respect.

Usually an FST is understood to recode an input-stream to a similar but slightly

modified output-stream, which is why the convention that a transition labelled i,

means i:i is widely used. Since the FSTs we are handling aren’t slightly recoding

an input-signal, but rather mapping two sets of values to each other it is more

practical to follow the convention that i actually means i:ε, which leads us to a

new syntactic element of FSTs and FSAs: The ε-signal.

ε matching an input-stream means “don’t read any signals from the input-

stream, simply follow the transition”, ε feeding an output-stream means “don’t

do any output”. Its meaning is roughly related to the concept of the “empty

string”, which might be more accessible to readers from a technical background.

In figure 2.9 it is apparent that the subtrees headed by q3 and q17 are com-

pletely redundant, as well as the ones headed by q9 and q23, and the ones headed

by q26 and q12. q1, q7, q24, q10, q15 and q21 are also completely equal. These

redundant nodes or subtrees can now be removed by showing them only once in

the diagram, and referencing them in all “situations” needed. The outcome of

such a proceeding is shown in figure 2.10.

Figure 2.10 shows us the power of the FST. What we have created is a compact

data-structure, highly optimized towards performant lookup. A system checking

whether xabcde is in the FST would simply traverse it. As soon as it gets to a

final state (q10 in our example), the string is matched. By the time it’s matched,

the output will already be ready in the output-stream, and the time used to do

the traversal is quite short: It can be expressed as shown in Equation 2.1.

T (L) ' L ∗
num(states)

num(transitions)
+ O + F (2.1)

CHAPTER 2. MORPHOLOGY 34

q0

q6

q5

q4
q3 q2

x

a

b

dc:1001 q1
e

-1
&

q9 q8
g

f:1002

q7
h

-1
&

q26

r:1006

q24
i

-1
&

q25
k

q13 q10
i

-1
&

q11
k

q14
n:1003 n

q12
k

q18
q17 q16

dc:1004 q15
e

-1
&

q23 q22
g

f:1005

q21
h

-1
&

q20

a

q19
a b

Figure 2.9: A dictionary as a tree

q0 q4 q3 q2
dc:1001 e

q9 q8
g

f:1002

h

q13

q10
i

-1
&

q11
k

q14
n

q12k

q18
c:1004

f:1005

n:1003

q6

q20

x
q5

a b

r

a
q19

a b

Figure 2.10: The same dictionary as FST

CHAPTER 2. MORPHOLOGY 35

The average time taken to match a string that is in the FST is directly pro-

portional to the product of its length L, and the branching factor B, because the

time taken to match a whole string is directly proportional to the time it takes

to process a single state and to the number of states that are to be processed.

The average time taken to process a single state is directly proportional to the

branching factor B, that is the average count of transitions leaving a single node,

therefore B is the count of states in the FST divided by the count of transitions.

Of course the actual branching-factor along that arc is dependent on the string

itself. The number of states to be processed is usually (in the simplified frame-

work presented here) the number of characters in the string. The variable O

is symbolic for a constant summand, accounting for the time it takes to do the

output. F accounts for the constant amount of time it takes the framework to

enter and leave the FST.

The reader interested in a more detailed and technically sophisticated descrip-

tion of FST-processing is referred to the sourcecode-documentation of LISA’s

FST-toolkit, presented in the second part.

2.5 Finite State Morphological Parsing

In the previous section we saw how to model a simple dictionary using an FST. It

has already been mentioned that figure 2.8 can already be viewed as an automa-

ton. Although it is syntactically not quite correct, conceptually it can be inter-

preted just like an automaton, given that the unlabelled arcs are ε-transitions.

Say we wanted to do morphological analysis of the string birdies: The au-

tomaton would start in state q0, then read the substring bird, then take the

ε-transitions to P 3, then read the substring ie, take the transition to q2, then

take the ε-transition to P 1, read the last substring s, and get to the final state q1.

If we give procedures bird, P 1 and P 3 the ability to set the global flags root-

form=bird, num=plural and babytalk=true (as defined in table 2.2) a

CHAPTER 2. MORPHOLOGY 36

complete morphological analysis will be available.

The concept of ambiguity enters the scene as soon as we have a more de-

tailled look at the word fish. After reading the substring fish and doing a

transition to the state fish, the system has no way to determine whether to

take that state as a final state, leaving rootform=fish, num=singular and

babytalk=false (given that the default-value of num is singular, and the

default-value of babytalk is false), or to do the ε-transitions to P 2 and q1

leaving num=plural. This is completely intuitive. Not even a human reader

has the ability of telling whether the word-form fish is singular or plural, when

confronted only with the string fish. We have to give our system the ability to let

the ambiguity arise at this stage of processing, leaving the disambiguation for the

syntactic or semantic analysis. This will not be handled in greater detail here, we

will only give two key concepts of handling nondeterministic FSAs: The problem

could be handled by parallel processing for example by forking the interpreter-

process traversing the FSA, leaving one process for each possibility. One might

also use backtracking for example by maintaining a stack of return-states to try

after processing of one possibility is finished.

The big syntactic flaw of figure 2.8 is that it completely fails to match kittie,

when interpreted as an FSA, since the substring ‘cat’ would have to be matched

to get to state cat. This syntactic error comes from composing the procedure’s

I/O-diagrams into figure 2.8, but there’s nothing simpler than correcting that, as

figure 2.11 shows. All that’s needed is a new state, let’s call it kit, that is reached

after reading ‘kittie’, setting both root=cat and babytalk=true.

But still figure 2.11 isn’t a very elegant way to do finite state morphological

parsing. One of the main problems with figure 2.11 is the great degree of in-

determinisms that arise from the ε-transitions that were carried over from the

conceptual I/O-diagrams.

In order to get rid of these indeterminisms we need to finally get rid of our

artificial procedures P 1 and P 5, transferring the program-logic into the transitions

CHAPTER 2. MORPHOLOGY 37

q0 cat

bird

fish

dog

frog

fish

bird

cat

frog

dog

q1

P1 s

P2

P3

gie

ie

P4

q2

kit
kittie

Figure 2.11: A syntactically correct FSA derived from figure 2.8

q0 q5

q4

q3

q7

q6

fish

bird

cat

frog

dog

q1s
gie

ie

q2

q8
kittie

ie

gie

s

s

s

s

Figure 2.12: Getting rid of the indeterminisms from figure 2.11

CHAPTER 2. MORPHOLOGY 38

q0 q5

q4

q3

q7

q6

fish:ROOT=FISH

bird:ROOT=BIRD

cat:ROOT=CAT

frog:ROOT=FROG

dog:ROOT=DOG

q1s:NUM=PL
gie:MIN=TRUE

ie:MIN=TRUE

q2

q8kittie:ROOT=CAT

ie:MIN=TRUE

gie:MIN=TRUE

s:NUM=PL

s:NUM=PL

s:NUM=PL

s:NUM=PL

:MIN=TRUE

Figure 2.13: A more accurate version of figure 2.12

rather than the states. The idea is depicted in figures 2.12 and 2.13.

The FSA in figure 2.12 has only two kinds of indeterminisms involved. The

first one arises from the ambiguity of the interpretation of the word-form fish, the

other one is deciding whether to stay in a final state if one is reached or trying to

do a transition. We can get rid of that kind of indeterminism by proposing a signal

that terminates each word. We can then propose a new state qF , and instead of

making all of the other states final ones, we equip them with a transition to this

final state qF that is taken if, and only if, the end-of-word-signal is read.

Of course it is possible to augment an FST representing a dictionary and

an FST representing the morphological system around it into a single one. The

dictionary-FST would in our example replace states q3 through q8, and the transi-

tions leading to them. Such an FST would match single input characters instead

of substrings, and it would be possible to directly compile such an FST, to achieve

optimal performance.

Chapter 3

Syntax

3.1 Overview

In order to gain a deeper understanding of syntax, it is important to understand

the role of syntax in the overall process of “understanding” a meaningful sentence,

which turns out to be a rather difficult task. This is also the reason why so many

syntactic theories have been developed, and why some of them hardly seem to

have anything in common.

Instead of going into a detailed discussion about this, we will only give an

overview of the traditional approaches to “sentence-structure”.

The word sentence-structure already points us in the right direction of the

linguistic approach to syntax. The purpose of syntax is to put a string of symbols

in relation to each other. Linguistics is the study of language, and therefore the

role of syntax in linguistics is to put words in relation to each other, which is

widely related to the idea known as “grammar”.

Weisler & Milekic (2000, p124) define this term as follows:

A grammar - a theory of linguistic knowledge - must characterize

what we know about the physical signals on one end of the lingusitic

equation, and what we know about meaning on the other. [. . .]

39

CHAPTER 3. SYNTAX 40

This already confronts us with semantics, which we want to leave for the next

chapter. That’s why we actually talk about the syntactic aspects of grammar

only, whenever we use the term “grammar” in this chapter.

The “Context-Free Grammar”, CFG for short, is the kind of grammar we will

be concerned with most of the time. The CFG dates back to Chomsky (1956),

independently discovered by Backus (1959).

It is based on the idea of “constituency”, which states that a group of words

may behave as a single unit or phrase, called a “constituent”.

(3.1) The big ugly dog bit the boy.

In example 3.1 the phrase big ugly dog might be a constituent. Grammatically

it behaves just like a single word, which is suggested by the fact that we could

freely exchange it.

(3.2) The goldfish bit the boy.

In example 3.2 big ugly dog has been replaced by goldfish, and it’s still gram-

matical. It doesn’t make sense perhaps, but it is grammatical.

The idea of “replacement” is quite central to the formalism of the CFG.

What we have just observed could be expressed as a CFG as:

S ← The ANIMAL bit the boy

ANIMAL ← big ugly dog

ANIMAL ← goldfish

A CFG is defined as G = (V N , V T , P, S). V N is a set of so-called non-

terminal symbols. In our example we have two non-terminal symbols, namely S

and ANIMAL. V T is the set of terminal symbols. These are usually words, or

whatever data-structure we get from the morphological analyzer. P is a set of

reduction-rules like the ones given above, and S is the start-symbol, that is the

symbol we ultimately want to describe the whole sentence with.

CHAPTER 3. SYNTAX 41

The first rule in the above example makes use of a symbolic expression,

ANIMAL. The other rules give information about what exactly an ANIMAL

is. One states that the symbol could be rewritten as big ugly dog and the other

one lets the interpreter rewrite it as goldfish.

Therefore the interpretation of the above grammar would generate examples

3.1 and 3.2.

3.2 A Linguistic Perspective to Sentence-Structure

Now that we know what syntax is all about, and how we can talk about syn-

tax using the notion of grammar, especially the formalism of the CFG, we can

go deeper into English sentence structure, introducing the reader to the prob-

lems and requirements English sentence-structure confronts a symbolic theory of

syntax with.

3.2.1 Parts of Speech

Noun, verb, pronoun, preposition, adverb, conjunction, participle and article:

This pretty much summarizes the concept behind the term “Parts of Speech”,

POS for short.

The above collection of parts of speech goes back to ancient Greece, yet seems

surprisingly accurate. This is due to the fact that it became the basis for most

subsequent POS-descriptions, which are considerably larger today. The Penn

Treebank Marcus et al. (1993) enlists 45 parts of speech.

The central role of the parts of speech in each grammar is due to the significant

amount of information the POS gives us about the word, and its surrounding.

It is important to understand that the parts of speech are defined through

functions or classes of functions in the grammar. Traditional definitions of parts of

speech tend to use a semantic approach rather than a functional/grammatical one:

CHAPTER 3. SYNTAX 42

“A noun is the name of a person, place or thing”. Although these definitions head

us in the right direction they are too imprecise for our formal theory. Fortunately

there are other techniques for grammatical categorization.

A noun, like dog, for example, can appear after determiners like the; dog is a

noun because the dog is grammatical; identify is not a noun, because *the identify

is ungrammatical. How do we know that the is a determiner? Because it can

appear before a noun like dog ; the is a determiner because the dog is grammatical;

easily is not a determiner because *easily dog is ungrammatical.

Note that the definitions are circular, yet the circularity isn’t in any way

problematic for the system.

Let’s consider an example: We know about the following facts:

a. the dog is grammatical

b. easily identify is grammatical

c. *easily dog is ungrammarical

d. *the identify is ungrammatical

e. Verbs can appear after adverbs.

f . Nouns can appear after determiners.

Given these facts, our task is now to find the parts of speech of the words the,

easily, dog and identify.

Let’s assume that the was a determiner. From facts a and f we can now

conclude that dog is a noun. From facts d and f we can conclude that identify

is not a noun and considering e and f (words appearing second in a clause must

be either a verb or a noun) we know that it is a verb. Given that identify is a

verb, we can now conclude that easily is an adverb, from b and e.

Let’s assume that the was an adverb. From facts a and e we could now

conclude that dog is a verb. From d and e we can conclude that identify is not a

CHAPTER 3. SYNTAX 43

verb and, just as we did before, considering e and f , we know that identify is a

noun. Given that, we can conclude that easily is a determiner, from b and f .

Circularity made it possible to conclude that dog is a verb, and identify is a

noun, which is, according to what we learned in school, simply wrong, but why

is that completely irrelevant to our computational model of syntax? Let’s try to

formalize what we’ve just observed in the CFG-formalism.

The first possiblity (the “correct” one), would be something like

N → dog

V → identify

Det→ the

Adv → easily

S → Det N

S → Adv V

The second possibility (the “incorrect” one), would then be

V → dog

N → identify

Adv → the

Det→ easily

S → Adv V

S → Det N

What is the difference between these two CFGs? We simply exchanged the

names of the parts of speech. Now we call nouns verbs, and we call adverbs

determiners, and vice versa, but the names of the parts of speech are as abstract

CHAPTER 3. SYNTAX 44

as can be. Recall that parts of speech are defined in terms of functions or classes

of functions in the grammar, and these functions would stay exactly the same.

The grammar would match exactly the same strings and put them exactly into

the same relations regardless of what symbol we assign to what POS.

One might also use morphological criteria, for assigning words to their POS.

If, for example,determine has a past-tense form like determined it must be a verb.

dog is not a verb, since a form like *dogged does not exist.

Note that the same circularity we just showed arises when defining POS in

terms of functions in their grammar (at the interface between grammar and word),

arises when defining POS in terms of morphology (at the interface between word

and morpheme), since a morphological analyzer would have to know about the

part of speech, to decide whether rules like that appending the affix -ed are

appliable in the first place.

3.2.2 A Simple Grammar

Proposing Some Rules to Get Started

We have introduced the concept of a CFG, we have established some equivalence-

classes that anchor our analysis, why not start and write a grammar for English.

(3.3) Steve played the guitar brilliantly.

(3.4) Old Bebe played.

(3.5) The guitarist on the left is the best.

Now let’s transform these example-sentences into a syntactically correct CFG.

S → Steve played the guitar brilliantly

S → Old Bebe played

S → The guitarist on the left is the best

CHAPTER 3. SYNTAX 45

We have just created a CFG successfully matching all of our example sen-

tences, producing all grammatical and no ungrammatical forms. A perfect gram-

mar, yet completely pointless. Didn’t we want to put the words into some kind

of relationship?

S → N V Det N Adv (4)

S → Adj N V

S → Det N P Det N V Det N

We have built a grammar that is a lot more general, by simply introducing

non-terminals for each part of speech, and replacing every word by its POS-

symbol. Rule 4 from the above grammar doesn’t only take care of Steve played the

guitar brilliantly, it also matches Matt screwed the solo completely or Brad ruined

the guitar entirely, suggesting some kind of syntactic and semantic isomorphy

between these sentences (up to the point where one would have to “fill in” the

words for the parts of speech).

The Noun-Phrase

But still we haven’t made use of the notion of constituency yet, so we simply

introduce the first class of constituents, which we call “noun-phrase”. Steve, the

guitar, I, old Bebe, the guitarist on the left are all examples of noun-phrases.

S → NP V NP Adv (7)

S → NP V

S → NP V NP

NP → N (10)

CHAPTER 3. SYNTAX 46

NP → Det NP (11)

NP → Adj NP (12)

NP → NP P NP (13)

This introduces the first non-terminal symbol that is not the start symbol,

NP (except, of course, for our POS-symbols).

Rule 10 says that any noun can be interpreted as a noun-phrase. That rule

would take care of Steve, or guitar.

Rule 11 states that any determiner followed by a noun-phrase makes up a

noun-phrase. This would match for example the guitar, the guitarist, the left, etc.

Rule 12 states that any adjective followed by a noun-phrase makes up a noun-

phrase, such as big red guitar, etc.

And finally Rule 13 makes it possible to view any two noun-phrases as a single

noun-phrase, when they are concatenated by a preposition, such as guitarist on

the left.

Our grammar is a lot more general now. Rule 7, matches all sentences rule

4 matched, because we got rule 7 by replacing N and Det N by NP , and since

NP ← Det N and NP ← N it must match everything it matched before, but

now it allows to freely exchange noun-phrases, for example instead of Steve played

the guitar brilliantly, The guitarist on the left played the guitar brilliantly.

Note that our grammar “overgenerates” the noun-phrase a bit. For example

if NP ← Adj NP and NP ← Det NP , then *big black the guitar would be a

valid noun-phrase. Therefore we introduce a new symbol called N ′, and redefine

rules 10 to 13 that describe the NP by the following ones:

NP → N ′

NP → Det N ′

CHAPTER 3. SYNTAX 47

N ′ → N ′ P NP

N ′ → Adj N ′

N ′ → N

The Verb-Phrase

A closer look at the rules that define the sentence S in our grammar makes another

redundancy obvious. It’s the pattern V NP , that we’ll call the Verb-Phrase, or

V P .

Constituents like played the guitar brilliantly, played, is the best are all VPs.

S → NP V P

NP → N ′

NP → Det N ′

N ′ → N ′ P NP

N ′ → Adj N ′

N ′ → N

V P → V

V P → V NP

V P → V P Adv (22)

Again our initial approach overgenerates the V P a little. Recursive appli-

cation of rule 22 would allow us to stack up adverbs at the end of a VP, as in

*[[[[[[played] the guitar] brilliantly] incredibly] suddenly], therefore, just as we did

with the NP, we redefine the VP using a new non-terminal V ′.

CHAPTER 3. SYNTAX 48

V P → V ′

V P → V ′ Adv

V ′ → V NP

V ′ → V

3.2.3 Representations for Sentence Structure

When talking about syntactic structures it is convenient to use a representation

for the structural aspects of a string of words.

If we have a constituent like the boy we might want to express that the boy is

an NP consisting of a Det and an N, the Det being the, the N being boy. We might

represent that like [NP [Det the][N boy]], using brackets, or using the graphical

representation, referred to as “syntax tree” that we’ll be introducing in the rest

of this section.

A node in a syntax tree represents a nonterminal symbol, a leaf represents a

terminal. A set of symbols connected to the same parent-symbol could be viewed

as an alternative representation of a grammar rule. Here the parent node can be

seen as the left-hand side of a CFG-rule, and the child nodes are the right-hand

side symbols in a left-to-right order.

Figure 3.1 gives some examples. Figure 3.1(a) shows the (rather boring) rule

Det → the, and figure 3.1(b) the rule N → boy. Rule NP → Det N can be

represented as in figure 3.1(c).

To turn this graphical representation of grammar rules into a tree representing

sentence structure we simply make use of recursion in the CFG-formalism, by

integrating the subtrees of the used rules. We can for example integrate the rules

depicted in figure 3.1 as shown in figure 3.2(a) in order to express something like

CHAPTER 3. SYNTAX 49

the

Det

(a)

boy

N

(b)

Det N

NP

(c)

Figure 3.1: Some grammar rules in tree-notation

the

Det

boy

N

NP

(a)

bit

V

the

Det

boy

N

NP

VP

(b)

Figure 3.2: Syntax trees

“The whole thing is an NP. The Det is resolved using the Det→ the-rule, the N

is resolved using the N → boy-rule.”.

We can use that approach to further extend our syntax tree to represent the

VP bit the boy, as shown in figure 3.2(b).

3.2.4 Ambiguity

In the previous sections we have developed a grammar that is far from exhaustive,

yet generates a basic portion of the English language.

CHAPTER 3. SYNTAX 50

Steve

N

N’

NP

created

V

that

Det

sound

N

N’

NP

V’

on

P

the

Det

computer

N

N’

NP

VP

S

Figure 3.3: A syntax tree for example 3.6

(3.6) Steve created that sound on the computer.

Considering example 3.6, we find another grammatical phenomenon our gram-

mar doesn’t handle. Figure 3.3 shows a syntax tree as a native speaker would

draw it. Here created that sound is one constituent and on is used to further

specify it, in our case, to give information about the instrument he used, intro-

ducing the NP the computer. That constituent could be freely exchanged to give

on his guitar or on the piano.

So far our grammar doesn’t allow that, which is why we redefine the VP a

little:

V P → V ′

CHAPTER 3. SYNTAX 51

V P → V ′ Adv

V P → V ′ P NP (27)

Rule 27 is new. It allows the grammar to use the subtree of figure 3.3 that

handles our new constituent.

After redefining our grammar in such a way our grammar is said to be “am-

biguous”. This is due to the fact that several parse trees for example 3.6 are

derivable from it.

Figure 3.4 gives another, equally possible, parse-tree that can be applied to

our example. In this case that sound on the computer is one constituent, so on

the computer doesn’t modify created, but rather that sound, giving information

about which sound we are talking about. The phrase the computer could in this

case be exchanged by other places, where sound can be found, as in that sound

on his new CD or that sound on the tape.

3.2.5 Specifiers

Although this grammar has the ability to relate the words in accordance with their

parts of speech quite well, it completely fails to handle other kinds of features such

as number, person, tense, transitivity, etc. It, for example, accepts constituents

like *two dog, *a dogs, *the dogs die yesterday, *the dog walk into the room, etc.

What we need is a way to constrain the application of rules based on features

of the terminal-symbols that get abstracted by the non-terminals. The model

needs the ability to transitively pass that information and to augment rules with

constraints controlling their appliability.

In order to prevent overgeneration of, for example, the NP *a dogs, we would

have to view the form dogs as an instance of the class of word-forms for dog,

distinguished from the singular form dog by its number, the form dog having

the feature num=singular, the form dogs having the feature num=plural.

CHAPTER 3. SYNTAX 52

Steve

N

N’

NP

created

V

that

Det

sound

N

on

P

the

Det

computer

N

N’

NP

N’

NP

V’

VP

S

Figure 3.4: Another syntax tree for example 3.6

CHAPTER 3. SYNTAX 53

S → NP V P

NP → N ′

NP → Det N ′

N ′ → N ′ P NP

N ′ → Adj N ′

N ′ → N

V P → V ′

V P → V ′ Adv

V P → V ′ P NP

V ′ → V NP

V ′ → V

Figure 3.5: Our complete sample-grammar

CHAPTER 3. SYNTAX 54

Then we could augment our grammar with constraints doing simple operations

like equality checks. We would, therefore, rewrite a rule like NP → Det N to

something like

NP → Det N

Apply this rule only if the Det’s num-feature is equal to the N’s num-feature

the resulting NP would have the same value for num as the Det and the N

Such a rule would only match noun-phrases if the Det and the N agree in

number, and it would produce an NP that also has a num-feature that can be

used in further processing. For example, a rule like

S → NP V P

Apply this rule only if the NP’s num-feature is equal to the VP’s num-feature

would only match the dog enters the room, and the dogs enter the room, and not

*the dogs enters the room or *the dog enter the room, given that the NP the dog

has the feature num=singular, and the VP enters the room has the feature

num=singular, while the dogs has the feature num=plural and enter the

room num=plural, which is exactly what we wanted to achieve.

3.3 Parsing

Thanks to the CFG, it is possible for linguists to provide computer scientists

with a detailed description of language and its underlying syntactic structures,

in a form adequate for symbolic computation. It serves as a basis for computer-

understanding of natural language structure, but makes no statements on what

to do with it. It still needs to be interpreted. A computer-program could apply

the knowledge it gained from interpreting the CFG to a given input-sentence, and

come up with a representation accounting for sentence structure. In this section

we will be concerned with this kind of interpretation of a CFG.

CHAPTER 3. SYNTAX 55

Figure 3.6: A tree showing the derivation of undrinkable

It is, of course, possible to directly view a CFG-description of a language as

a rule-based program. All one would have to do is rewrite the CFG-rules to a

form that is syntactically acceptable for a logic programming language such as

Prolog, and provide some underlying logic to the idea of the CFG to get a

program capable of interpreting a CFG. A system like Prolog would usually

use search-trees and unification-based algorithms to handle this, but there are

strategies specific to CFGs that are a lot more efficient. We will discuss some of

these parsing strategies and their underlying ideas in this section.

3.3.1 Excursion: Backtracking through State-spaces

One of the most basic and most generally appliable algorithms in artificial intel-

ligence is that of backtracking. Backtracking is a search-strategy based on the

formalism of the state-space, and it is so generally appliable, because most of

the problems that arise in artificial intelligence can easily be formalized in the

state-space-paradigm.

A state-space is formalized as (S, F, G) representing a set of possible starting-

states S, a set of operations appliable to the states F and a set of desired states,

or goals G.

We can make things clearer by considering the example of the three coins

problem Jackson (1985) uses to illustrate the state-space formalism. Figure 3.6

depicts the start-state: three coins, arranged in such a way, that the first one

shows the head, the second one shows the head and the third one shows the tail.

CHAPTER 3. SYNTAX 56

a b c

HHT

a b c

TTT

a b c

THH

a b c

THT

a b c

TTT

a b c

HHT

. . .

HTH

a b c

HTT

. . .

HHH

a b c

HHT

Figure 3.7: A search-tree through the state-space of the three coins problem

We could simplify things by using a special representation for these configurations

of coins. The start-state could, for example, be represented as HHT (indicating

head-head-tail).

There are three possible actions we can apply to this state:

a. Flip the first coin

b. Flip the second coin

c. Flip the third coin

The problem is this: What do we have to do to make all the coins show the

same side? This gives us the desired state, the goal, which is either TTT, or

HHH.

Figure 3.7 depicts the state-space graphically. It shows some of the possible

states, for example, the start-state in the top node. Each of the arcs connecting

this node with its child-nodes represents one action. Each action leads to a new

state, a child-node, which can itself be the base for subsequent applications of

actions. Note that state-spaces don’t neccessarily have to take the form of a tree,

but we will consider only this class of state-spaces.

Therefore figure 3.7 is also a graphical representation of the search-tree itself.

CHAPTER 3. SYNTAX 57

There can be three procedures involved in finding a solution. One takes care of

generating the state-space, one checks the state-space for a solution. A procedure

doing both is called a “search procedure”. Usually a computer has to be somewhat

selective in generating a state-space, because state-spaces can get very large. This

is where a third procedure comes in. It evaluates actions, giving information

about their likelihood of containing a solution. A search-procedure making use

of such an evaluator, to selectively generate only the most promising parts of a

state-space is said to be a “heuristic search”.

This is mentioned only for the sake of completeness. We won’t make use of

any heuristics here, but simply look at the most prominent search-procedure,

which is known as backtracking.

Backtracking is simply the depth-first-traversion of a search-tree. Putting it

strongly simplified, we can think of backtracking as doing the following:

• Generate the state S1 the first action (a1) leads to.

• Is it impossible to create S1? Then we know that a1 doesn’t lead to a

solution.

• Is the S1 the desired state? Then we know that a1 leads to a solution.

• Is S1 not the desired state? Use this algorithm recursively to find out

whether S1 is the top of a subtree that does contain the solution, which

would imply that a1 leads to a solution.

• Does a1 lead to a solution? Then we can terminate.

• Otherwise: Generate the state S2 the second action (a2) leads to.

• Is it impossible to create S2? . . .

Keep in mind that backtracking is one of the simplest, but most prominent,

and most widely used search-strategies, but a great variety of other search-

CHAPTER 3. SYNTAX 58

strategies have evolved from artificial-intelligence-research. Some are, for exam-

ple, based on a breadth-first-traversion of a search-tree. It is possible to traverse

the tree from the top down or from the bottom up, which is widely known as

goal-directed respectively data-directed search. It is even possible to traverse

the tree in both directions at the same time. Traversal can be done in parallel,

for example by forking a process, or pseudo-parallely, by maintaining a stack,

representing a TODO-List containing “states still to be examined”, and so on.

Note that the three-coins-problem would turn out to be rather problematic,

when solved using backtracking, since it contains “left recursion”. It would start

by applying a to HHT, generating THT. Since THT is not the desired state

it would recursively apply itself to THT, which means that it, again, starts by

applying a to this newly created state, leading to HHT. It would then recursively

apply itself to HHT, again applying action a, and would therefore never terminate.

3.3.2 Basic Parsing Strategies

We have already pointed out the parallelity between the runtime-structure of a

system of logical inference and a parser. Just like a rule-based program, a gram-

mar is a system containing rules and facts (terminal-symbols), and the interpreter

is supposed to process a query (start symbol), by systematically applying rules to

each other, until a rule matching the query is deduced from the system. (Which

is, again, closely related to state-spaces. Just think of the application of a rule as

being an action, and the resulting rule with terminals/facts filled in as a state.)

Thinking of parsing, as solving the problem of assigning the correct parse-tree

to a given input, there are two ways of formalizing this problem. One could either

think of parsing as the problem of expanding a given top-node (usually S) in such

a way that it matches the input (then the inital state would be the top-node S,

and the goal would be a state, where the terminals match the input), or one

could think of parsing as the problem of relating a given input in such a way that

CHAPTER 3. SYNTAX 59

it can be shown to be an S (then the initial state would be the input, and the

goal would be any state with the top-node S). These two ways of formalizing the

problem of parsing give rise to the basic parsing-strategies, known as “top-down”

and “bottom-up”.

A “top-down”-parser would work its way from the top of the syntax-tree,

down, until it discovers a terminal-symbol, either backtracking if the symbol

doesn’t match, or continuing if it does match the given input-symbol.

The “bottom-up”-strategy would, in contrast, start by examining the input-

symbol, and work its way up the syntax-tree, until it finds the start-symbol.

While a top-down parser doesn’t waste time in examining structures that will

never lead to the start-symbol, the bottom-up-parser doesn’t look at structures

that will never match the input, which is why the size of the grammar and the

length of the input are important considerations in deciding which strategy is

best.

3.3.3 Parsing by Problem-Solving

(3.7) Steve plays chess.

A problem-solver can directly be used as a parser. What we have is a state

space (S, F, G). States are partial parse-trees. We could represent the initial

state by something like [S], when we do a top-down parse. Each of the rules in

the grammar is then an action.

We will consider example 3.7, using the grammar given in figure 3.5.

Figure 3.8 shows a state-space (which is, again, also a search-tree). The first

nodes are depicted in full detail, the others are left out, due to limitations in

space, but the principle should get clear anyway.

Each of the rules in the sample-grammar is an action. There is one action,

appliable to the state [S], which is the rule S → NP V P , because it is the only

one expanding the symbol we are looking for. By applying this action, we deduce

CHAPTER 3. SYNTAX 60

success

[NP [N ′[N]]][V P [V ′[V][NP [N ′[N]]]]]

18

[NP [N ′[N]]][V P [V ′[V][NP [N ′]]]]

14

[NP [N ′[N]]][V P [V ′[V][NP]]]

25

[NP [N ′[N]]][V P [V ′]]

23

[NP [N ′[N]]][V P].

18 16 17 . . .

[NP [N ′]][V P]

14 15 23 24 27

[NP][V P]

19

[S]

S → NP V P

NP → N ′

NP → Det N ′

N ′ → N ′ P NP

N ′ → Adj N ′

N ′ → N

V P → V ′

V P → V ′ Adv

V P → V ′ P NP

V ′ → V NP

V ′ → V

Figure 3.8: A search-tree through the state-space of a parsing-problem

CHAPTER 3. SYNTAX 61

the new state [NP][V P]. Now we can apply all the actions expanding either

NP or V P , namely rules 14, 15, 23, 24 and 27. In the figure only the path

to the goal is shown, but our parser usually has no way of telling which one is

“right”. It might as well try, for example, rule 15 first. Applying rule 14, which

is NP → N ′ to the state [NP][V P] creates the state [NP [N ′]][V P]. This time

all rules expanding either N ′ or V P are appliable, and so fort. We can go on like

this till we discover a state consisting only of terminals. If these terminals match

the input, the state is a goal-state, if not, we use backtracking to try out another

path through the state-space that might lead to the goal-state.

The backtracking-approach, in general, suffers from vast ineffectivity in pars-

ing because it runs in exponential-time, spending most of it examining fruitless

subtrees and reexamining the same fruitless subtrees over and over. Although

it is possible to improve these algorithms somewhat by adding “bottom-up-

filtering” to a top-down parser respectively “top-down-filtering” to a “bottom-

up-parser” or heuristic methods, the major disadvantage of ineffectivity, when

using exponential-time problem-solvers like backtracking, remains the same.

3.3.4 The Earley Algorithm

A great way to improve efficiency of exponential-time algorithms comes from

a framework called “dynamic programming”, and is sometimes referred to as

“memoization”.

If we apply this technique to the basic idea of a top-down parser with bottom-

up filtering, we get an algorithm similar to that of Earley (1970), which we’ll

describe in greater detail in this section.

The Earley-Algorithm avoids reexecuting computations done in the course

of parsing an input, by “remembering” subproblems and their solutions in the

so-called “chart”. That’s why approaches similar to Earley’s are often referred

to as “chart-parsers”.

CHAPTER 3. SYNTAX 62

chart[0]

[0] λ → •S [0, 0, 0]

[1] S → •NP V P [0, 0, 0]

[2] NP → •N′ [0, 0, 0]

[3] NP → •Det N′ [0, 0, 0]

[4] N′
→ •N′ P NP [0, 0, 0]

[5] N′
→ •Adj N′ [0, 0, 0]

[6] N′
→ •N [0, 0, 0]

chart[1]

[0] N → steve• [0, 1, 1]

[1] N′
→ N• [0, 1, 1]

[2] NP → N′
• [0, 1, 1]

[3] N′
→ N′

• P NP [0, 1, 1]

[4] S → NP • V P [0, 1, 1]

[5] V P → •V ′ [1, 1, 0]

[6] V P → •V ′ Adv [1, 1, 0]

[7] V P → •V ′ P NP [1, 1, 0]

[8] V ′
→ •V [1, 1, 0]

[9] V ′
→ •V NP [1, 1, 0]

chart[2]

[0] V → created• [1, 2, 1]

[1] V ′
→ V • [1, 2, 1]

[2] V ′
→ V • NP [1, 2, 1]

[3] V P → V ′
• [1, 2, 1]

[4] V P → V ′
• Adv [1, 2, 1]

[5] V P → V ′
• P NP [1, 2, 1]

[6] NP → •N′ [2, 2, 0]

[7] NP → •Det N′ [2, 2, 0]

[8] S → NP V P• [0, 2, 2]

[9] N′
→ •N′ P NP [2, 2, 0]

[10] N′
→ •Adj N′ [2, 2, 0]

[11] N′
→ •N [2, 2, 0]

[12] λ → S• [0, 2, 1]

chart[3]

[0] Det → that• [2, 3, 1]

[1] NP → Det N′
• [2, 3, 1]

[2] N′
→ •N′ P NP [3, 3, 0]

[3] N′
→ •Adj N′ [3, 3, 0]

[4] N′
→ •N [3, 3, 0]

chart[4]

[0] N → sound• [3, 4, 1]

[1] N′
→ N• [3, 4, 1]

[2] NP → Det N′
• [2, 4, 2]

[3] N′
→ N′

• P NP [3, 4, 1]

[4] V ′
→ V NP• [1, 4, 2]

[5] V P → V ′
• [1, 4, 1]

[6] V P → V ′
• Adv [1, 4, 1]

[7] V P → V ′
• P NP [1, 4, 1]

[8] S → NP V P• [0, 4, 2]

[9] λ → S• [0, 4, 1]

chart[5]

[0] P → on• [4, 5, 1]

[1] N′
→ N′ P • NP [3, 5, 2]

[2] V P → V ′ P • NP [1, 5, 2]

[3] NP → •N′ [5, 5, 0]

[4] NP → •Det N′ [5, 5, 0]

[5] N′
→ •N′ P NP [5, 5, 0]

[6] N′
→ •Adj N′ [5, 5, 0]

[7] N′
→ •N [5, 5, 0]

chart[6]

[0] Det → the• [5, 6, 1]

[1] NP → Det • N′ [5, 6, 1]

[2] N′
→ •N′ P NP [6, 6, 0]

[3] N′
→ •Adj N′ [6, 6, 0]

[4] N′
→ •N [6, 6, 0]

chart[7]

[0] N → computer• [6, 7, 1]

[1] N′
→ N• [6, 7, 1]

[2] NP → Det N′
• [5, 7, 2]

[3] N′
→ N′

• P NP [6, 7, 1]

[4] N′
→ N′ P NP• [3, 7, 3]

[5] V P → V ′ P NP• [1, 7, 3]

[6] NP → Det N′
• [2, 7, 2]

[7] N′
→ N′

• P NP [3, 7, 1]

[8] S → NP V P• [0, 7, 2]

[9] V ′
→ V NP• [1, 7, 2]

[10] λ → S• [0, 7, 1]

[11] V P → V ′
• [1, 7, 1]

[12] V P → V ′
• Adv [1, 7, 1]

[13] V P → V ′
• P NP [1, 7, 1]

Figure 3.9: A chart for a run of our Earley parser against example 3.6

CHAPTER 3. SYNTAX 63

The chart can be seen as the algorithm’s “agenda”. While executing it, it

appends new items to this “agenda”, therefore dynamically manipulating its

runtime-structure. When finished, the chart contains all subproblems and their

solutions, and the solution to the whole problem. Figure 3.9 shows such a chart.

This data-structure contains a set of states. A state represents a rule applied

for a particular set of symbols at a specific point in the progress of proving it to

be appliable to these input symbols. This can be achieved by simply inserting a

symbolic “•” at some position in the rule, indicating that everything to the left

of the • has already been read, and everything to the right still has to be read,

and remembering two positions in the input, one giving information about where

the state begins, and one giving information about where the • from this rule,

can be found.

Let’s have a look at some examples. Figure 3.9 was created by an Earley-

Parser using our sample-grammar, and parsing example 3.6, that is repeated here

as example 3.8, with a numbered set of bullets added.

(3.8) •0 Steve •1 created •2 that •3 sound •4 on •5 the •6 computer •7

Let’s have a closer look at the state from figure 3.9, with the number [1] in

chart[5], repeated here.

N ′ → N ′ P •NP [3, 5]

In this state the parser tries to prove the rule N ′ → N ′ P NP to be appliable

to the input, beginning at •3. The • can be found in the input-stream as •5, and

given that it’s right of N ′ P , and left of NP , it means that an N ′ and the P have

already been recognized, and the NP still has to be read.

For each state in the chart, the Earley-Algorithm applies one of three opera-

tions known as Predictor, Scanner and Completer, each of which add new

states to the current or next chart. A state that is already in the chart is never

CHAPTER 3. SYNTAX 64

added a second time, even if the operation would normally do so. This is how

data- and runtime-structure effectively avoid redundancy.

The Predictor is applied to each rule that still has non-terminals immediately

to the right of the •, that is, to each state that still has to prove a new non-

terminal to appear next. In order to do so the Predictor adds new states to

the chart, “expanding” the non-terminal-symbol in question by the rules replacing

this particular symbol, therefore running in a “top-down”-manner.

Let’s again consider an example. The initial state of the parser is the “artifi-

cial” state

λ→ •S[0, 0]

the chart is initialized with. When the algorithm comes across this state it

finds the non-terminal S to the right of the dot. There is one rule expanding

S, namely S → NP V P , therefore the Predictor would add the new state

S → •NP V P [0, 0] to the chart. Next the Predictor comes across this newly

created state, finding the non-terminal NP to the right of the •. There are two

rules that expand the NP , namely NP → N ′ and NP → Det N ′, therefore the

Predictor creates two new states, NP → •N ′[0, 0] and NP → •Det N ′[0, 0],

and so on.

The Scanner is, as the name suggests, used to advance a state by scanning

the input. Let’s look at the operation of the Scanner, by considering the state

N ′ → N ′ • P NP [3, 4]

that can be found in the figure 3.9 in chart[4] at position [3]. In this state the

• is to the left of the P , therefore the parser has to prove a symbol of category P

to appear next in the input. Now it’s the Scanner’s job to look at the input, and

verify whether the next input-symbol is a P or not. In the input, the signal to the

CHAPTER 3. SYNTAX 65

right of •4 is “on”, so the Scanner adds the new rule P → on • [4, 5] to the next

chart. When the parser proceeds to the next word, the Completer takes care

of proceeding the • in state N ′ → N ′ •P NP [3, 4] to give N ′ → N ′ P •NP [3, 5].

The Completer is called for a state which is “complete”. A state is considered

complete, when the • is at the far right of the rule. In the last paragraph we

added the state P → on • [4, 5]. Therefore, any state “looking” for a P in the

input at •4, can be advanced, which means the • can be moved from the left of

a P to the right.

The Completer, coming across P → on • [4, 5] in chart[5] would, therefore,

look through all the states in chart[4]. When it finds, for example, N ′ → N ′ •

P NP [3, 4] in chart[4], it advances the •, and adds the new state N ′ → N ′ P •

NP [3, 5] to chart[5].

An Example-Run

Because a fundamental understanding of the Earley-algorithm is vital to this

project, we will not introduce any new concepts in this section, but dedicate it

to revise what we’ve heard about the Earley-algorithm so far, by following an

Earley-parser all the way through a parse.

(3.9) Steve plays chess.

The chart in figure 3.10 represents a run of an Earley-parser, parsing example

3.9 with a simplified version of our grammar.

The first state (λ→ •S[0, 0]) is added as an initialization-value for the chart,

and is handled just like any other state. Since it has a non-terminal to the right of

the •, the Predictor is called to handle that state. The Predictor finds the

symbol S to the right of the •, and looks up all the rules in the grammar that have

the form S → . . . and adds them to the current chart (which is chart[0]). In this

case, there is only one rule of that form in the grammar, which is S → NP V P .

CHAPTER 3. SYNTAX 66

chart[0]

[0] λ→ •S [0, 0, 0]

[1] S → •NP V P [0, 0, 0]

[2] NP → •Det N [0, 0, 0]

[3] NP → •N [0, 0, 0]

chart[1]

[0] N → steve• [0, 1, 1]

[1] NP → N• [0, 1, 1]

[2] S → NP • V P [0, 1, 1]

[3] V P → •V NP [1, 1, 0]

chart[2]

[0] V → plays• [1, 2, 1]

[1] V P → V •NP [1, 2, 1]

[2] NP → •Det N [2, 2, 0]

[3] NP → •N [2, 2, 0]

chart[3]

[0] N → chess• [2, 3, 1]

[1] NP → N• [2, 3, 1]

[2] V P → V NP• [1, 3, 2]

[3] S → NP V P• [0, 3, 2]

[4] λ→ S• [0, 3, 1]

Figure 3.10: A chart for a run of our Earley parser on example 3.9

CHAPTER 3. SYNTAX 67

Therefore the state S → •NP V P [0, 0] is added to the chart. Whenever a

grammar-rule is newly added to the chart by the Predictor its • is on the far

left (since we haven’t read any symbols for this rule so far), which is why its

rule-position must match its global position. The global position itself is always

carried over from the original state the Predictor was called for (which is

λ → •S[0, 0] in our case), to ensure that when “working off” the new state, the

parser looks for the symbols at the same position in the input where the original

state would have expected them.

Working off the agenda, our parser now finds the state S → •NP V P [0, 0] we

just added and interprets it in exactly the same way by calling the Predictor,

since the symbol to the right of the • is NP , which is a non-terminal. The

Predictor looks up all the rules in the grammar that have the form NP →

In our grammar there are two such rules: NP → Det N and NP → N , which is

why the two states NP → •Det N [0, 0] and NP → •N [0, 0] are added.

Now the parser finds the state NP → •Det N [0, 0] that was just added. This

time the symbol to the right of the bullet is Det, which is a terminal. That’s

why we call the Scanner now, instead of the Predictor. Instead of looking

up a rule in the grammar, the Scanner looks up the word in the input. In our

case it would look for a Det appearing in the input to the right of •0 (or, to

put it simply, the first word). The first word is Steve, and Steve can under no

circumstances be a Det. That’s why the Scanner doesn’t add any states.

The next state the parser considers is NP → •N [0, 0]. Again, the Scanner

is called, but this time the input (Steve) does match the terminal to the right of

the • (N), which is why the state N → steve • [0, 1] gets added to the next chart

(which is chart[1]). The rule-position is still 0, because we, or merely the rule in

the state, are still talking about the first word in the input. The rule N → steve

has been proven to be appliable for the first word in the input. The • is now to

the right of steve, since we have already read steve. Of course, this increases the

global position, since the • from the state N → steve • [0, 1] now corresponds to

CHAPTER 3. SYNTAX 68

•1 from the input, and not to •0.

Since there is no further rule in the current chart (chart[0]), the parser can

now move on to the next chart (chart[1]). The first state it finds there is the state

N → steve • [0, 1], that was just added by the Scanner. This state is said to be

complete, since there is no further symbol to the right of the •, which is why the

Completer is called to handle this state. The Completer now does the job

of looking through the old states to see if any of the states were looking for the

symbol we just found in the input, so it looks through the states in chart[0]. The

symbol we just found in the input is the lefthand-side of the state we were called

for (N → steve • [0, 1]) which is N , so it is interested in all the states of the form

? → . . . • N . . . in that chart the rule-position of the complete state points to.

(In our case the rule-position is 0, so it looks in chart[0].) There is only one such

state in chart[0], which is NP → •N [0, 0]. This state is now “advanced”, which is

simply the process of moving the • from the lefthand-side of the symbol over to the

righthand-side, therefore our Completer would use the state NP → •N [0, 0]

from chart[0], and advance it by adding the state NP → N • [0, 1] to chart[1]

according to the state it was called for (N → steve • [0, 1]).

Again, the parser can move on in the agenda. This time it finds the state

NP → N • [0, 1] we just added. This is, again, a complete state (there is no

further symbol to the right of the •), which is why the Completer is called to

handle this state, which goes through the same procedure of searching chart[0]

for states looking for an NP to be advanced. There is one such state, which is

S → •NP V P [0, 0], so the Completer adds the state S → NP • V P [0, 1].

Now our parser is confronted with the state S → NP • V P [0, 1], which has

a non-terminal (V P) to the right of the •, so the Predictor is called, to add

states from the grammar, that have the form V P → In the grammar there

is one such rule, namely V P → V NP , so the rule V P → •V NP [1, 1] is added

(recall that the bullet for predicted states is always at the far left, and the rule-

position as well as the global position are initialized to the original state’s global

CHAPTER 3. SYNTAX 69

position).

When handling state V P → •V NP [1, 1], the parser calls the Scanner

to scan for a V , appearing in the input at •1. The Scanner is, in this case,

successful in doing so, since the second word is plays. Therefore it adds a new

complete state, regarding that V , so the Completer takes care of advancing

V P → •V NP [1, 1] to give V P → V •NP [1, 2].

This state is then handled by the Predictor which adds the states NP →

•Det N [2, 2] and NP → •N [2, 2], both of which are handled by the Scanner,

which fails for the first one, and succeeds for the second one, because the word it

finds at •2, chess is a N , and can’t be a Det. That’s how state N → chess• [2, 3]

enters chart[3]. It’s used by the Completer to advance state NP → •N [2, 2],

which is why it adds state NP → N • [2, 3]. This state itself is complete and

therefore, once again, the Completer is called, this time to advance state V P →

V • NP [1, 2] to give V P → V NP • [1, 3], again a complete state, used by the

Completer to advance state S → NP • V P [0, 1] to give S → NP V P • [0, 3].

This can then be used to complete the initial state λ → •S[0, 0] to give

λ→ S • [0, 3], which is the end of our odyssee through the chart shown in figure

3.10.

Building the Parse-Forest

Actually, the algorithm we just showed is not a parser, but rather, a recognizer.

It is a way of telling whether a given input is grammatical, but there’s no way

to retrieve a parse-tree from the chart, shown in figure 3.9. When the algorithm

terminates, it can search the last chart for a state like λ → S•. If there is no

such state, the input does not match, if there is one, it does match the input.

In figure 3.11 we showed how a chart of an Earley-parser could look, in contrast

to the chart of an Earley-recognizer. We have added a column containing the

pointers that make up the so-called parse-forest. Recalling that natural-language

CHAPTER 3. SYNTAX 70

chart[0]

[0] λ → •S [0, 0, 0] []

[1] S → •NP V P [0, 0, 0] []

[2] NP → •N′ [0, 0, 0] []

[3] NP → •Det N′ [0, 0, 0] []

[4] N′
→ •N′ P NP [0, 0, 0] []

[5] N′
→ •Adj N′ [0, 0, 0] []

[6] N′
→ •N [0, 0, 0] []

chart[1]

[0] N → steve• [0, 1, 1] []

[1] N′
→ N• [0, 1, 1] [[(1, 0)]]

[2] NP → N′
• [0, 1, 1] [[(1, 1)]]

[3] N′
→ N′

• P NP [0, 1, 1] [[(1, 1)]]

[4] S → NP • V P [0, 1, 1] [[(1, 2)]]

[5] V P → •V ′ [1, 1, 0] []

[6] V P → •V ′ Adv [1, 1, 0] []

[7] V P → •V ′ P NP [1, 1, 0] []

[8] V ′
→ •V [1, 1, 0] []

[9] V ′
→ •V NP [1, 1, 0] []

chart[2]

[0] V → created• [1, 2, 1] []

[1] V ′
→ V • [1, 2, 1] [[(2, 0)]]

[2] V ′
→ V • NP [1, 2, 1] [[(2, 0)]]

[3] V P → V ′
• [1, 2, 1] [[(2, 1)]]

[4] V P → V ′
• Adv [1, 2, 1] [[(2, 1)]]

[5] V P → V ′
• P NP [1, 2, 1] [[(2, 1)]]

[6] NP → •N′ [2, 2, 0] []

[7] NP → •Det N′ [2, 2, 0] []

[8] S → NP V P• [0, 2, 2] [[(1, 2)], [(2, 3)]]

[9] N′
→ •N′ P NP [2, 2, 0] []

[10] N′
→ •Adj N′ [2, 2, 0] []

[11] N′
→ •N [2, 2, 0] []

[12] λ → S• [0, 2, 1] [[(2, 8)]]

chart[3]

[0] Det → that• [2, 3, 1] []

[1] NP → Det N′
• [2, 3, 1] [[(3, 0)]]

[2] N′
→ •N′ P NP [3, 3, 0] []

[3] N′
→ •Adj N′ [3, 3, 0] []

[4] N′
→ •N [3, 3, 0] []

chart[4]

[0] N → sound• [3, 4, 1] []

[1] N′
→ N• [3, 4, 1] [[(4, 0)]]

[2] NP → Det N′
• [2, 4, 2] [[(3, 0)], [(4, 1)]]

[3] N′
→ N′

• P NP [3, 4, 1] [[(4, 1)]]

[4] V ′
→ V NP• [1, 4, 2] [[(2, 0)], [(4, 2)]]

[5] V P → V ′
• [1, 4, 1] [[(4, 4)]]

[6] V P → V ′
• Adv [1, 4, 1] [[(4, 4)]]

[7] V P → V ′
• P NP [1, 4, 1] [[(4, 4)]]

[8] S → NP V P• [0, 4, 2] [[(1, 2)], [(4, 5)]]

[9] λ → S• [0, 4, 1] [[(4, 8)]]

chart[5]

[0] P → on• [4, 5, 1] []

[1] N′
→ N′ P • NP [3, 5, 2] [[(4, 1)], [(5, 0)]]

[2] V P → V ′ P • NP [1, 5, 2] [[(4, 4)], [(5, 0)]]

[3] NP → •N′ [5, 5, 0] []

[4] NP → •Det N′ [5, 5, 0] []

[5] N′
→ •N′ P NP [5, 5, 0] []

[6] N′
→ •Adj N′ [5, 5, 0] []

[7] N′
→ •N [5, 5, 0] []

chart[6]

[0] Det → the• [5, 6, 1] []

[1] NP → Det • N′ [5, 6, 1] [[(6, 0)]]

[2] N′
→ •N′ P NP [6, 6, 0] []

[3] N′
→ •Adj N′ [6, 6, 0] []

[4] N′
→ •N [6, 6, 0] []

chart[7]

[0] N → computer• [6, 7, 1] []

[1] N′
→ N• [6, 7, 1] [[(7, 0)]]

[2] NP → Det N′
• [5, 7, 2] [[(6, 0)], [(7, 1)]]

[3] N′
→ N′

• P NP [6, 7, 1] [[(7, 1)]]

[4] N′
→ N′ P NP• [3, 7, 3] [[(4, 1)], [(5, 0)], [(7, 2)]]

[5] V P → V ′ P NP• [1, 7, 3] [[(4, 4)], [(5, 0)], [(7, 2)]]

[6] NP → Det N′
• [2, 7, 2] [[(3, 0)], [(7, 4)]]

[7] N′
→ N′

• P NP [3, 7, 1] [[(7, 4)]]

[8] S → NP V P• [0, 7, 2] [[(1, 2)], [(7, 5), (7, 11)]]

[9] V ′
→ V NP• [1, 7, 2] [[(2, 0)], [(7, 6)]]

[10] λ → S• [0, 7, 1] [[(7, 8)]]

[11] V P → V ′
• [1, 7, 1] [[(7, 9)]]

[12] V P → V ′
• Adv [1, 7, 1] [[(7, 9)]]

[13] V P → V ′
• P NP [1, 7, 1] [[(7, 9)]]

Figure 3.11: A chart for a run of our Earley parser against example 3.6, this time

with the parse-forest

CHAPTER 3. SYNTAX 71

grammars are ambiguous, we need a representation dealing with a whole set

of possible parse-trees, rather than a single one. Such a set of parse-trees is

sometimes referred to as a parse-forest.

Let’s start our examination of these pointers with the state λ → S•, that

represents the successfully parsed input. The pointer we added, (7, 8), points to

the state numbered [8] in chart[7], which is S → NP V P•. This could be read

as, “This S was successfully parsed because S → NP V P•”. This state, again,

is augmented with the pointer

[[(1, 2)], [(7, 5), (7, 11)]]

which demonstrates the full complexity of this data-structure. The array of

arrays has to be read in the same order as the rule. Therefore [(1, 2)] is related

to the NP , and [(7, 5), (7, 11)] is related to the V P , meaning the NP is the one

expanded in state [2] in chart[1], and the V P could either be the one from state

[5] or [11] in chart[7].

This parse-forest can be easily built by augmenting the Completer a bit.

Every time the Completer advances a rule by “applying” a complete state, it

adds a pointer to the “applying” state (the incomplete one, the one that needs to

be advanced), pointing to the “applied” one (the complete state), corresponding

to the position of the • in the rule. This would leave the chart with pointers that

can easily be traversed using standard tree-handling algorithms.

A more detailled description of an actual implementaion of an Earley-parser

is presented in the second part of this paper.

3.4 Feature Structures

In the previous section we already mentioned specifiers from a linguistic point

of view. Feature structures are a computational model linguistic specifiers are

traditionally implemented with.

CHAPTER 3. SYNTAX 72

We mentioned that terminal-symbols, in our case morphological items, have

a set of specifiers associated with them, and that it should be possible that these

specifiers constrain the appliability of certain rules.

In the first chapter we showed how a word-form like “doggies” goes through

the morphological analyzer, that sets some “global flags”, as we called them,

like, rootform=dog, num=plural, babytalk=true. Such a morphologi-

cal item could be returned by the morphological analyzer using a feature-structure

that, when denoted as an attribute-value matrix, AVM for short, looks like

doggies

















categ N

rootform dog

num plural

babytalk true

















This is simply a way of encoding a set of feature-value pairs. The value of

each feature can either be atomic or another feature structure. Let’s consider an

example that is a little bit more complex.

swims

























categ V

rootform swim

trans intrans

agreement





number SG

person 3





























This example shows the feature agreement that takes another feature struc-

ture as its value. This hierachical organization of feature structures doesn’t only

allow to logically group subsets of related features together, and easily access

them, it also makes it possible to build more complex data-structures like lists or

trees, to encode not only lexical items, but all data-structures that arise in NLP,

including rules and complete parse-forests.

Although practical systems are often built in a way, that the only data-

structure they need to deal with is the feature-structure, encoding rules and

even complete parse-forests as feature structures, we will describe the basic idea

CHAPTER 3. SYNTAX 73

using the simplified approach given in Jurafsky & Martin (2000), to avoid going

into too much detail. The interested reader is referred to Copestake (2002) for a

description of implementing so-called “typed feature structure grammars”. This

book also puts a strong emphasis on how they are used in the LKB-system (the

system for grammar-engineering distributed by Stanford’s LinGO-initiative).

In our simplified approach we will augment a “normal” CFG with a feature

structure, that constrains its use. The rule NP → Det N serves as a good

example. Say we wanted to augment this rule, so it accepts this dog, and it

rejects *these dog.

Let’s first consider the feature structures for these words.

dog











categ N

rootform dog

num SG











these











categ Det

rootform this

num PL











this











categ Det

rootform this

num SG











We could use a rule like:

NP → Det N













num SG

Det
[

num SG

]

N
[

num SG

]













Such a rule reads “Replace a Det and an N by an NP , if, and only if, the

Det has the feature num=SG and the N has the feature num=SG. The resulting

NP should then also get the feature num=SG.

Feature-structures can use so-called “reentrant” structures. The above feature-

structure could be rewritten as follows, using reentrancy.













num 1

Det
[

num 1

]

N
[

num 1 SG

]













In this case the features “refer” to each other’s value, which wouldn’t change

anything in this example, since all the num-features would still be bound to SG.

The advantage of such a notation comes in, when considering feature-structures

CHAPTER 3. SYNTAX 74

like the following one, that don’t give a feature an actual value, yet still require

it to be equal.












num 1

Det
[

num 1

]

N
[

num 1

]













This would enable us to use one augmented rule, to handle both singular and

plural NPs, rather than using two distinct rules, the only difference being num’s

value.

Therefore our complete rule, accepting NPs like this dog, and rejecting *these

dog would look like:

NP → Det N













num 1

Det
[

num 1

]

N
[

num 1

]













3.4.1 Unification

In this section we will introduce one of the mightiest operators in computer-

science, called “unification” and how it is applied to feature structures, in order

to equip them with a limited degree of “intelligent” behavior. The unification-

operator is simple, yet so powerful, that it suffices to give programming-languages

(like Prolog) the ability to read and write simple and complex data-structures,

to perform logical and therefore numerical operations and to control its program’s

runtime-flow (usually in combination with a search-strategy like backtracking).

This section will only give the basic ideas of unification by showing a few ex-

amples. The reader is again referred to Jurafsky & Martin (2000) and Copestake

(2002) for a detailled description of unification and its applications to language-

processing, and to Sterling & Shapiro (1994) which gives the details on how

unification is used in logic programming languages.

Let’s start by considering the most basic example of the unification operator

(written t in the following).

CHAPTER 3. SYNTAX 75

[

number SG

]

t
[

number SG

]

=
[

number SG

]

[

number SG

]

t
[

number PL

]

Fails!

This illustrates how unification can be used for simple equality checks. Unifi-

cation succeeds, if two completely specified feature-structures are actually equal,

returning that feature structure, and failing otherwise.

[

number SG

]

t
[

number []
]

=
[

number SG

]

[

number SG

]

t
[

person 3

]

=





number SG

person 3





In these cases the feature-structures are “compatible”. Values that are left

unspecified can be matched against any value. This is how unification “merges”

compatible feature-structures.













num 1

Det
[

num 1

]

N
[

num 1

]













t



Det





rootform this

num PL







=



















num 1

Det





rootform this

num 1 PL





N
[

num 1

]



















This shows how unification works for reentrant data-structures. While reen-

trancy from the first argument is preserved, the data from the second argument

can be successfully “merged in”. This has the consequence, that the value for the

Det ’s num-feature gets bound to PL, and so do the other num-feature’s values,

that are required to be equal to it.

From a linguistic point of view this behavior comes very handy. Consider a

morphological analyzer confronted with the word-form fish. The morphological

analyzer has no way of telling whether it is singular or plural. However a human

understander would have no problem telling that fish in this fish is singular, and

fish in these fish is plural.

This can be easily implemented using unification. A morphological analyzer

would return a feature-structure that doesn’t specify the num-feature for fish.

CHAPTER 3. SYNTAX 76

When unifying that item in the course of parsing the NP these fish, unification

would automatically bind the fish’s num-feature to PL.



















num 1

Det





rootform this

num 1 PL





N
[

num 1

]



















t

[

N
[

rootform fish

]

]

=

























num 1

Det





rootform this

num 1 PL





N





rootform fish

num 1





























3.4.2 Parsing with Feature Structures

In this chapter we will refine our Earley-Parser with two goals in mind: blocking

constituents violating unification-constraints, and providing a richer representa-

tion for constituents using our framework based on feature-structures.

This can be done with two slight modifications to the Earley-Parser presented

earlier. The first one concerns the representation of a state in the chart. A state

like N ′ → N ′ P •NP [3, 5] would now be represented like

N ′ → N ′ P •NP [3, 5]



















N’



N





rootform sound

num SG









P
[

rootform on

]

NP []



















This new representation simply adds a new field to the state, carrying the

feature-structure. A machine might represent it as a directed acyclic graph, DAG

for short, which is basically the data-structure behind our feature-structures.

The second change affects the algorithm itself, the Completer to be precise.

Recall that the Completer is that part of the Earley-algorithm that takes care of

advancing every state that “is looking for” a symbol that has just been completed.

In our revised Earley-Completer, we can now try to unify the feature-structure

of the state that is to be advanced with the feature-structure of the state that

is already complete. The result of this unification is stored as the new feature-

structure associated with this state. If the unification fails, the state is not

CHAPTER 3. SYNTAX 77

advanced at all, therefore blocking a constituent violating a unification-constraint

from “taking part” in the parse.

Although we will not give a full Earley-chart for a parse (which is left as an

exercise for a reader with a really long sheet of paper), we will try to give an

example.

(3.10) Thick strings are better than thin ones.

(3.11) Thick strings is better than thin ones.

In the course of parsing example 3.10 the Completer will come across a

state

N ′ → Adj N ′ • [0, 2]



















Adj





rootform thick

num 1





N’



N





rootform string

num 1 PL



























This state represents the complete constituent Thick strings as an N ′. The

Completer can now use this state to complete the state

NP → •N ′[0, 0]





num 1

N’
[

num 1

]





This can be done by unifying the complete state with the fs4.n′-part of the

one that is to be completed, to give

NP → N ′ • [0, 2]

























num 1

N’



















Adj





rootform thick

num 1





N’



N





rootform string

num 1 PL



















































What we have parsed so far is the NP thick strings, and we have found out

that it is plural. Now we can advance the S rule using our completed NP .

CHAPTER 3. SYNTAX 78

S → NP • V P [0, 2]

































NP

























num 1

N’



















Adj





rootform thick

num 1





N’



N





rootform string

num 1 PL



















































VP
[

num 1

]

































After a while the parser will also have the V P , that is in question accessible.

The V P from example 3.10 would give a state like

V P → V ′ • [2, 7]



















V’



















num 1

V





rootform be

num 1 PL





. . .





































while the V P from example 3.11 would look like

V P → V ′ • [2, 7]



















V’



















num 1

V





rootform be

num 1 SG





. . .





































(the only difference being num’s value). When the completer tries to advance

the S-rule by unifying this V P with the state for the S, unification succeeds in

example 3.10, to give

S → NP V P • [0, 7]





















































NP

























num 1

N’



















Adj





rootform thick

num 1





N’



N





rootform string

num 1 PL



















































VP



















V’



















num 1

V





rootform be

num 1





. . .

























































































CHAPTER 3. SYNTAX 79

In example 3.11 such a unification would fail, and therefore the S-state would

not be completed by applying this state.

Chapter 4

Semantics

McCarthy (1989) makes a statement about his notion of “common-sense knowl-

edge”, that fits perfectly into our idea of semantics.

Common-sense knowledge includes the basic facts about events (in-

cluding actions) and their effects, facts about knowledge and how it

is obtained, facts about beliefs and desires.

We already pointed out that FOPC and other equivalent first-order logic lan-

guages are commonly used to describe these facts about events, actions and so

on, which is why, in this section, we will mainly be concerned with the problem

of providing an interface between what syntactic analysis left us with (let’s say

a parse forest, to keep it simple), and an FOPC-representation of the underlying

meaning. Such a representation would enable a computer-system to draw con-

clusions from it, which shall suffice as evidence that the computer understood

the sentence, in our rather pragmatic approach to the “myths and magics” of the

true nature of intelligence and understanding.

4.1 Overview

(4.1) Steve plays the guitar.

80

CHAPTER 4. SEMANTICS 81

Steve

N

NP

plays

V

the

Det

guitar

N

NP

VP

S

Figure 4.1: A parse-tree for example 4.1

In order to give the reader a rough overview of semantic analysis, in this

section we will consider example 4.1 and try to develop an adequate meaning

representation by composing simpler meaning representations of the constituents,

based on the syntax-tree given in figure 4.1.

Let’s first try to capture the meaning of the word guitar in this sentence,

which turns out to be rather trivial: The term guitar can be used “for every g

such that g is a guitar”.

∀gIsA(g, Guitar)

Neglecting the meaning of the determiner the, we can move on to the verb

heading the V P containing this phrase, namely plays.

In example 4.1, we can say that play means that someone (p) is capable of

playing something (i), which could be captured by

∃p∀iP lays(p, i)

The NP the guitar can be viewed as a parameter that is passed as an i to

this fact.

CHAPTER 4. SEMANTICS 82

∃p∀iP lays(p, i) ∧ IsA(i, Guitar)

If we move up another level to the S headed by the NP Steve with a semantic

representation

∃pHasName(p, Steve)

we can do the same thing again, to get

∃p∀iP lays(p, i) ∧ IsA(i, Guitar) ∧HasName(p, Steve)

What our system just did was successfully understand that Steve plays the

guitar, describes a relation P lays that holds between a p and every i such that

another relation IsA holds between i and some constant Guitar and yet another

relation HasName between p and some constant Steve.

Note that terms like Guitar and Steve are simple constants bearing no mean-

ing as such. They have to be defined in the semantic framework. If, for example,

there is a rule IsA(Evo, Guitar), we can deduce that Steve is capable of playing

Evo, which could be the name of Steve’s favourite guitar.

4.1.1 Ambiguity

Note that a computer trying to do what we just did would, of course, be con-

fronted with ambiguity. The word play can have several meanings, some of which

are given in M1-M5.

∃p∀iIsCapableOfP layingInstrument(p, i)

as in Steve plays the guitar, or

∃p, gIsCapableOfP layingGame(p, g)

CHAPTER 4. SEMANTICS 83

as in Steve plays chess, or

∃p, tUsuallyP laysWithToy(p, t)

as in Steve plays with dolls,

or

∃p, mP laysInABandTogetherWith(p, m)

as in Steve plays with Joe etc.

Differences can only be observed in predicate names and quantifiers, which is

another piece of evidence that we’ve successfully singled out semantic problems,

since disambiguation can only be done on a semantic basis (it requires knowledge

of the problem-domain, and logical inference to disambiguate, for example, that

if the guitar is an instrument and not a game, the meaning of play is M1, rather

than M2).

Syntactic ambiguities, such as deciding in the sentence We bought the dog

whether bought is transitive or ditransitive as in We bought the dog a nice toy

would never “make it that far” in our analysis, since a rule like V P → V NPNP, cns1

and another one like V P → V NP, cns2 would already have distinguished be-

tween the two lexemes, and we can freely provide them with different semantic

representations, given

cns1

[

V
[

trans ditrans

]

]

cns2

[

V
[

trans trans

]

]

The problem we are facing when we have to choose the “correct” meaning

from M1-M5, is often referred to as “sense-ambiguity”.

CHAPTER 4. SEMANTICS 84

4.1.2 Knowledge

One might easily be misled into thinking that ambiguity in the above example

was created quite artificially by introducing so many predicates for play, and that

the problem could easily be circumvented by proposing only a single predicate

P lays as in the previous section.

The point that is crucial to the understanding of FOPC and its use as a

“meaning representation” is that, by themselves, predicates and symbols do not

carry meaning. They rather introduce it indirectly by establishing equivalence

classes between equal (or rather unifiable) symbols.

Ambiguity arises as soon as semantic knowledge, that is modelled neither

in a unique “dictionary definition” of the lexeme or grammar rule, nor in the

specification of the problem domain (the machine’s knowledge of the world it

operates in), is neccessary to successfully create a unique meaning representation.

In a way it could be viewed as the consequences of incompleteness in modelling

the neccessary knowledge.

Say we wanted our system to tell whether somebody is intelligent, and whether

somebody is musically talented, and we equip our system with a few facts about

its problem-domain:

IsDifficult(Chess)

IsDifficult(Mastermind)

∀x, gIntelligent(x)⇐ IsCapableOfP layingGame(x, g) ∧ IsDifficult(g)

IsDifficult(V iolin)

IsDifficult(Clarinet)

∀x, iTalented(x) ⇐ IsCapableOfP layingInstrument(x, i) ∧ IsDifficult(i)

Given this scenario it would, of course, be possible to use a single predicate

like P lays, but this would require us to rewrite these rules as:

IsDifficult(Chess)

CHAPTER 4. SEMANTICS 85

IsDifficult(Mastermind)

IsA(Chess, Game)

IsA(Mastermind, Game)

∀x, gIntelligent(x)⇐ P lays(x, g) ∧ IsA(x, Game) ∧ IsDifficult(g)

IsDifficult(V iolin)

IsDifficult(Clarinet)

IsA(V iolin, Instrument)

IsA(Clarinet, Instrument)

∀x, iTalented(x)⇐ P lays(x, i) ∧ IsA(i, Instrument) ∧ IsDifficult(i)

By doing so we actually disambiguated the input by providing the system

with information about what is an instrument and what is a game. This new

information, that is additionally (to the model of the problem domain) required

for disambiguation could be formalized as follows:

IsA(Chess, Game)

IsA(Mastermind, Game)

IsA(V iolin, Instrument)

IsA(Clarinet, Instrument)

∀x, oIsCapableOfP layingGame(x, o)⇐ P lays(x, o) ∧ IsA(o, Game)

∀x, oIsCapableOfP layingInstrument(x, o)⇐ P lays(x, o)∧IsA(x, Instrument)

A human understander takes this knowledge required for semantic disam-

biguation of natural language from a knowledge-repository known as “common

sense”. Making it accessible to machines is a rather difficult task and one of the

most central problems for symbolic artificial intelligence. Maybe efforts like Cyc

Lenat (1995) will make “common sense” possible for machines one day, but this

is certainly not within the scope of this paper.

CHAPTER 4. SEMANTICS 86

4.2 A Linguistic Perspective to Meaning

In the above section it got obvious that meaning is a rather difficult concept

to formalize. What is meaning? Is it possible to capture meaning in a formal

system? Does a single word have meaning? Is it possible to tell how many

meanings a single word has? Does a sentence have meaning? Can the meaning

of a sentence be composed by combining “smaller meanings” of the words and

grammatical rules that make up the sentence?

These are questions we are facing here, and the answer to most of them might

be “no”, possibly uttered by an “old-school”-philosopher, followed by a big “but”

uttered by someone following the more recent tradition of analytic philosophy:

No, but if we make the right presumptions, accept little weaknesses and apply a

certain degree of pragmatism, we can have considerable success when measured

in terms of practical application of our theory.

We might easily agree that language is, at its core, a symbolic system, and

any symbolic system can be viewed as a language. This is why the process of

“understanding” language is sometimes viewed as the process of “translating”

from one language, such as English, into another language, such as FOPC.

Note that this step might be seen as illegal, because such a view would put

the semantic level into the interface between one language and another. Let’s

consider the example of a human trying to translate an English sentence into

the German language. The translator would have to “understand” the English

sentence - something we tried to deal with using the notion of capturing the

meaning of a sentence in a “semantic representation”. This “understanding”

would then be used by a human translator to form a German sentence. Now, if

we wanted a computer to translate an English sentence into FOPC, and it would

first have to capture the meaning in a “semantic representation”, what would

this representation be? Certainly not FOPC.

In a way, we completely skip the idea of meaning. What we want to develop

CHAPTER 4. SEMANTICS 87

here could be viewed as a model of translating from one language into another

without having to really understand. Such a model is backed by presumptions

which have turned out to be fruitful in their application rather than the meta-

physical truth behind the concept of meaning.

4.2.1 Sense

A tool that’s very useful for translating from one language into another is a

dictionary - a dataset associating a set of words in one language with a set of

words in the other language making statements about their interchangability. If

I didn’t know the German word for guitar and I looked it up in a dictionary it

would give me Gitarre, suggesting that guitar is a linguistic symbol used by the

English language to refer to the same sense as Gitarre in German.

Note that sense is, in our theory, a purely virtual level. This can be seen,

when we consider ambiguity. The example we just gave was very simple: guitar

refers to exactly one sense, the same and the only sense that Gitarre refers to.

Let’s consider an example that involves ambiguity. If we looked up bass in a

dictionary it would give us two German words: Bass and Barsch. The first one

is a musical instrument, the second one is a kind of fish. A good dictionary helps

in doing this kind of disambiguation by giving a glossary describing the terms.

Note the parallelity between this concept, and the exemplaric formalization

of an English sentence in FOPC we just did. The glossary is exactly the same

“information that is additionally (to the model of the problem domain) required

for disambiguation”, we were using in the previous section.

What does this mean for the concept of sense? Our dictionary, disambiguating

its entries by giving glossaries, is now using a semantic level to anchor the process

of associating English and German words. And again we run into the same

limitation we were just talking about. What semantic level can be used by a

computer translating English into FOPC?

CHAPTER 4. SEMANTICS 88

We can get around that problem by sticking with our view of understanding

by translating and viewing the semantic level in between as a black-box. There is

no problem in modelling a data-structure that is aware of one sense described by

the tuple [bass,Barsch] and one sense by [bass,Bass]. We can view “true mean-

ing” as attached to this data-structure like [bass,Bass] is a musical instrument

and [bass,Barsch] is a kind of fish, yet when modelling language for use by an

automaton we simply leave out this attachment.

Putting it simply: A traditional English-German-dictionary makes statements

like “You can use the word Bass for bass if you are talking about a musical

instrument” and “You can use the word Barsch for bass if you are talking about

fish”. In our analytic dictionary we cannot make these statements, because we

can’t model the “if ...”-part of that statement, but we can make statements like

“There exists a sense that is the intersection of the meanings of Bass and bass”

and “There exists another sense that is the intersection of the meanings of Barsch

and bass”. If we do that we establish a so called differential theory of semantics.

We developed this idea by following an example of translating from English to

German, which is why we came up with English/German-tuples like [bass,Barsch]

to account for our black-box-notion of sense, but it is important to note that this

is not the only way one could go about this. The only thing that really matters

is to capture meaning by some sort of unambiguous data-structure mapping to

linguistic symbols.

The creators of WordNet1, who emphasized the importance of synonymy in

capturing meaning did something similar. In WordNet so-called synsets are used

to account for sense. These synsets aren’t tuples as in our example, but rather

sets of English words that can be used interchangably in some sense. For example

(night,nighttime,dark) is one synset. The words could be used interchangably in

a sentence like She walked home alone in the night, but not in others like She

1see Miller et al. (1993), Miller (1993), Fellbaum et al. (1993), Fellbaum (n.d.) and Beckwith

et al. (n.d.) for details on WordNet

CHAPTER 4. SEMANTICS 89

(a) (b)

Figure 4.2: A black-box-view of sense

wants to go out Saturday night.

The parallelity between our approach, and that of WordNet can also be de-

picted graphically as in figure 4.2. Figure 4.2(a) shows how sense is created in our

example as an intersection of the meanings of an English and a German word, and

figure 4.2(b) accounts for WordNet’s idea of synsets. Figure 4.3 shows how dif-

ferent words contribute to two distinct senses of the same word, dark. One sense

is created by the synset (night,nighttime,dark) and one by (black,sinister,dark).

The examples chosen here shouldn’t mislead the reader into thinking that a synset

always consists of three words. There can, of course, be more or less than three

words contributing to a synset, the example was chosen for the sake of readability

of the diagram.

4.2.2 Reference

Although sense is a very important theoretic aspect in describing meaning it is

still somewhat abstract. If Steve’s son asked him what a guitar was, he proba-

bly wouldn’t come up with something like “The concept behind what could be

described by the English word guitar and the German word Gitarre”, he would

merely grab Evo, his favourite guitar, and say, “This is a guitar”, making use of

CHAPTER 4. SEMANTICS 90

Figure 4.3: Two senses of dark

the concept of reference, which could be viewed as the ultimate goal of language.

The symbols used in language are ultimately used to refer to concrete or abstract

entities we have in mind.

While Steve might think of Evo, a white electric guitar with steel-strings,

when he hears the word guitar, Jack might think of his favourite guitar, Liz, a

wooden acoustic guitar with nylon-strings.

This suggests a kind of referential ambiguity that arises when mapping from

a sense to its referent, analogously to sense-ambiguity that arises when mapping

from a word to its sense.

Not only is it possible that one sense might be associated with different ref-

erents, it is also possible that distinct senses resolve to the same referent. For

example, the capital of Norway and Oslo refer to the same place, somewhere

in Scandinavia. Does this mean that the capital of Norway and Oslo have the

same sense - are synonyms? Certainly not, because if the Norwegian government

decides to declare Nuuk the new capital, Oslo would still be Oslo.

CHAPTER 4. SEMANTICS 91

4.2.3 Lexical Semantics

Now that we know how a word is related to its sense, which is again related to its

referent, we can have a more detailled look at how words and their senses relate to

each other, a study widely known as lexical semantics. This field has seen a lot of

research in the recent past. WordNet was definitely one of the more ambitioned

projects, with its attempt to actually build a dictionary organizing words and

their senses and providing valuable information about how they relate to each

other. These are sometimes referred to as lexical databases. In this section we

will have a closer look at those relations WordNet attempts to cover.

Synonymy

The most important relation in WordNet is synonymy, because it is the synonymy-

relation that enables WordNet to capture meaning. It is usually viewed to hold

between two expressions, if the substitution of one for the other never changes

the truth-value of the sentence the substitution is made in. This is where the

concept of meaning comes in. If two expressions are substitutable, then they

could be said to mean the same. Miller et al. (1993) point out a problem with

this definition of synonymy, and offer a solution.

By that definition, true synonyms are rare, if they exist at all. A

weakened version of this definition would make synonymy relative to

a context: two expressions are synonyms in a linguistic context C if

the substitution of one for the other in C does not alter the truth

value.

This is why, in WordNet, words are considered synonyms, if there is a linguistic

context where the words are synonymous.

The use of substitutability to define synonymy has two important conse-

quences: First, two words can only be synonymous if they belong to the same

CHAPTER 4. SEMANTICS 92

POS. A verb and a noun, for example, are never substitutable. Secondly syn-

onymy is symmetric: if x is synonymous to y, then y is synonymous to x.

Lexical Relations

Lexical relations are relations that hold between word-forms, and not neccessarily

between their senses. We will give a brief overview of the most commonly used

lexical relations.

Polysemy/Homonymy Although polysemy is a relation that appears in Word-

Net only implicitly, it is of central importance, for example, for sense-disambiguation.

Two words are polysemous if their word-forms are the same, but their senses

aren’t. In a way polysemy is closely related to synonymy. Both arise from ambi-

guity in the mapping between word-form and word-sense. While when we’re map-

ping from a sense to its word-forms we are dealing with synonymy, we are dealing

with polysemy when we’re mapping from a word-form to its sense. Homonymy

is very similar to polysemy. Homonymy is usually viewed to hold between word-

forms whose senses are completely unrelated, while two words can be polysemous

also when their senses are somehow related, as long as they aren’t equal. This

was mentioned only for preventing confusion, because homonymy and polysemy

are widely used in that way. For our differential theory of sense, this is somewhat

awkward, because here sense can never be related yet unequal, which is why we

will use the terms polysemy and homonymy interchangably in the rest of this

paper.

Antonymy is, although speakers of English have little difficulty recognizing it,

rather difficult to formalize. It could be thought of as the opposite of polysemy.

Sometimes the antonym of x is not-x, but not always. Miller et al. (1993) use the

example of rich and poor. These words are antonymous, but if someone is not

rich, it doesn’t neccessarily mean that he is poor. It is interesting to mention, that

CHAPTER 4. SEMANTICS 93

antonymy, besides synonymy, is the only relation that is maintained in WordNet

for all parts of speech.

Semantic Relations

Semantic relations are relations that hold between senses, in contrast to the lexical

relations we mentioned in the previous section, which hold between word-forms.

Hyponymy and Hypernymy are also called subordination and superordina-

tion. They are used to organize the lexical database hierachically (for example,

to set up an inheritance system, a concept we will deal with in greater detail

later). For example guitar is a hyponym of stringed instrument which is again

a hyponym of instrument. Generally one can say, that x is a hyponym of y if a

native speaker accepts sentences like x is a kind of y. Hyponymy is transitive,

therefore if x is a hyponym of y and y is a hyponym of z, then x is a hyponym

of z. Unlike synonymy, hyponymy is asymmetrical. If x is a hyponym of y, y is

not a hyponym of x, but rather a hypernym. WordNet maintains hyponymy and

hypernymy for nouns and verbs.

Meronymy and Holonymy can also be used to organize a database hierachi-

cally, with some reservations. For example neck is a meronym of guitar. Generally

one can say that x is a meronym of y if a native speaker accepts sentences like

an x is a part of a y. This relation is also transitive and asymmetrical. Again

if x is a meronym of y and y is a meronym of z, then x is a meronym of z and

if x is a meronym of y, then y is a holonym of x. Sometimes additional classifi-

cation of meronymy is done. WordNet uses three kinds of meronymy/holonymy:

member-, substance- and part-meronymy, which are maintained only for nouns

(which doesn’t come as a surprise, but was mentioned for completeness).

CHAPTER 4. SEMANTICS 94

F 1 F 2 F 3 . . . F n

M1 E1,1 E1,2

M2 E2,2

M3 E3,3

.

Mm Em,n

Figure 4.4: A Lexical Matrix

Entailment is used in WordNet to organize verbs. For example snore entails

sleep. The term entailment is defined in logic (where it is also known as strict

implication) as follows: A proposition P entails a proposition Q if it is under

no circumstances possible to make P true and Q false. In lexical semantics a

verb p entails a verb q if the statement Someone p logically entails the statement

Someone q. Lexical entailment is a unilateral relation: If q entails p, then p

cannot entail q. See Fellbaum (n.d.) for the details on entailment in WordNet.

The lexical matrix

Figure 4.4 shows a matrix, that could be thought of as a datastructure for map-

ping words to their senses, and senses to their words. This table, taken from

Miller et al. (1993), could be thought of as another way of depicting the same

concept as figure 4.2(b), namely formalizing sense in a differential approach to

meaning. We could view F 1..F n as symbols representing all possible word-forms,

and M1..Mn as representing all possible meanings. An entry like E1,1 would be

read The word-form F 1 can be used to express the meaning M 1.

This simple data-structure deals elegantly with the two most important rela-

tions of lexical semantics: synonymy and polysemy. If we wanted to look up the

meaning of a word-form F 2, we would simply have to look at column F 2 to find

two appropriate meanings: M 1 and M2, which confronts us with polysemy. If

CHAPTER 4. SEMANTICS 95

entity

objectthing cause substance location

animate o. whole artefact natural o.wall

goods material ... surfacetoy

music-box celesta wind i.calliopestringed i.

instrument

banjo koto pianopsalteryguitar

acoustic g. steel g.electric g.

Figure 4.5: A sample of WordNet’s hyponymy-structure

we wanted to look up a word-form for a meaning we have in mind, say M 1, we

would have a look at the row M 1, discovering two possible word-forms, namely

F 1 and F 2, which confronts us with synonymy.

The lexical matrix also helps to visualize the layer in between word-form and

word-meaning, namely the data-cells denoted Ej,i. In our simple approach this

would be a truth-value, saying “this association is valid” or “this association is

invalid”, but in a more sophisticated approach to lexical semantics it might be

desireable to use a numeric value, for example saying “this association is true at

a probability of 0.67”, or signals helping with disambiguation, etc.

CHAPTER 4. SEMANTICS 96

The Lexical Inheritance System

A lexical inheritance system is used, for example, in WordNet to organize nouns

and equip them with a limited degree of semantic information. How do conven-

tional dictionaries get semantic information across? If we looked up the word

guitar in a dictionary, it would give us a glossary like a stringed instrument that

is small, light, made of wood, and has six strings usually plucked by hand or a

pick. Now what is a stringed instrument? If we looked that word up in the

dictionary, we would get something like a musical instrument producing sound

through vibrating strings. What does that tell us about guitars? Obviously, that

a guitar is a musical instrument producing sound through vibrating strings, that

is small, light, made of wood, and has six strings usually plucked by hand or a

pick.

What we just did was, we resolved the lexical inheritance system of our dictio-

nary. We could go on like this for quite a while, looking up guitar, then stringed

instrument, then instrument until we end up at a word, that stands for itself, like

entity.

That we already mentioned the sequence guitar-stringed instrument-instrument

in this paper is not a coincidence: We mentioned it as an example for hyponymy,

which is the basic building-block organizing the nouns in our dictionary into a

hierachical system as depicted in figure 4.5. In WordNet the top of this tree-

structure is the synset for the word entity which is the most abstract “thing” a

noun can be. Then WordNet tells us about different kinds of “entities”, including

objects, places, agents etc. When we go a step down this hierachy towards, say,

object the concept of inheritance allows us to view an object as an entity. This

implies that an object has all attributes, parts and functions, that an entity has.

If we go down another step in this hierachy, say to the synset for artifact we

are again allowed to view an artifact as an object. Therefore artifact inherits

all attributes, parts and functions from object, and implicitly also from entity,

CHAPTER 4. SEMANTICS 97

because object, as we just mentioned, inherits all attributes, parts and functions

from entity. If we keep on doing this, going down the hierachy, until we arrive

at guitar we know that a guitar is something “which is perceived or known or

inferred to have its own physical existence”, although this can not be found in

the definition of a guitar, because this fact was inherited all the way down from

entity to guitar. The application of this concept of inheritance to our hierachical

system, created by the hyponymy-relations, is what makes this hierachy an in-

heritance system. The details on lexical inheritance and its use in WordNet can

be found in Miller (1993).

4.3 A Formal Perspective to Meaning

Now that we know how to capture the meaning of a single word we can go on to

develop a formal approach to meaning and its representation in FOPC.

4.3.1 Representing Lexemes

(4.2) Steve plays the guitar.

When developing a meaning representation for example 4.1, repeated here as

example 4.2, in section 4.1 we started out by representing the meaning of the

word play as the following FOPC-expression:

∃p∀iP lays(p, i)

Mapping words to this kind of expression is the dictionary’s job, since both

words and expressions like the above one could, in their language, somehow be

viewed as the nuclear meaning-carrying unit.

First of all, it is important to recognize the need for the consistent use of pred-

icates and predicate-structures in dictionary definitions. FOPC doesn’t as such

CHAPTER 4. SEMANTICS 98

provide data-structures for handling knowledge or common-sense, it’s just a for-

malism for describing relations among symbolic expressions. The way a problem-

domain is actually modelled in FOPC places some restrictions on what dictionary-

definitions of words might look like. These restrictions could be thought of as an

interface between the “natural-language-part” (dictionary, grammar, etc.) and

the “processing-part” (the formalization of the problem domain) of our natural-

language-processor.

Let’s return to the example from section 4.1.2: We had a problem domain for

a system telling whether someone is intelligent and whether someone is talented,

that looked like:

IsDifficult(Chess)

IsDifficult(Mastermind)

∀x, gIntelligent(x)⇐ IsCapableOfP layingGame(x, g) ∧ IsDifficult(g)

IsDifficult(V iolin)

IsDifficult(Clarinet)

∀x, iTalented(x) ⇐ IsCapableOfP layingInstrument(x, i) ∧ IsDifficult(i)

Given this problem domain it would not make sense for the dictionary to map

the word play to ∃p∀iP lays(p, i), because given P lays(Steve, V iolin) our pro-

gram cannot deduce Talented(Steve). This is how the definition of the problem-

domain implicitly creates an interface that the dictionary has to implement if

the whole system is to be operational. This interface would make statements

like “For expressing meaning the dictionary can use the predicates IsDifficult,

IsCapableOfP layingGame and IsCapableOfP layingInstrument”.

This interface is rather problematic since it gives rise to ambiguity and knowledge-

problems. How should the dictionary know the difference between IsCapableOfP layingGame

and IsCapableOfP layingInstrument when deciding how to translate the word

plays? It is clearly not the dictionary’s job to find out (at least in our ap-

CHAPTER 4. SEMANTICS 99

proach), because it would require further knowlege about the problem domain

to do so, and therefore we have to redefine the problem domain, just as we did

in section 4.1.2, so that the interface reads “For expressing meaning the dictio-

nary can use the predicates IsDifficult and P lays as well as IsA(X, Game)

and IsA(X, Instrument)”. This eliminated ambiguity, because every symbolic

expression in the English language, e.g. plays has exactly one corresponding

symbolic expression in the FOPC-modelled problem-domain, ∃p∀iP lays(p, i) for

instance.

4.3.2 Knowledge-Representation in Natural Language Pro-

cessing

To maintain a certain degree of generality in their problem-domains linguists usu-

ally use models from artificial intelligence which were originally targeted towards

accounting for true “common-sense” or “knowledge” or whatever term you prefer

for McCarthy’s level-4-use of logic (McCarthy 1989, p9), but never really reached

that goal, yet turned out to be very useful for modelling natural language, which

is a symbolic system that operates exactly at that level.

In such a formalism you wouldn’t find a predicate like P lays(p, i) to account

for the meaning of the verb play, but rather a notion of events that can sometimes

seem somewhat artificial. Such a formalism would also make use of some very

important predicates like IsA or AM to represent certain aspects of modelling

nouns, referents and their properties.

Before we will have a look at these conventions in this section, recall that

according to McCarthy (1989), common-sense knowledge includes facts about

• events (including actions) and their effects

• knowledge and how it is obtained

• beliefs and desires

CHAPTER 4. SEMANTICS 100

• objects and their properties

Verbs: Events and Actions

Therefore to formalize a verb like play we would introduce an event to account

for the action of playing. The action of playing involves two so-called “semantic

roles”, that of the agent, and that of the experiencer. The agent is that object,

which causes the action to happen, the player, in our example. The experiencer

is that object which experiences the action, in our case, that “which gets played”,

the “playee” so-to-speak. (Although words like playee are somewhat awkward,

they are commonly used to emphasize the semantic-role-concept, showing the

analogy of the playee in a playing-event, the employee in an employing-event, the

trustee in a trusting-event and so on.)

Given that, we can define the verb play by the playing-event it describes as:

∃p, s, gIsA(p, P laying) ∧ P layer(p, s) ∧ P layee(p, g)

Therefore the word play indicates that “there exists a p, such that p is the

event of playing something, the player taking part in p is s and the playee taking

part in p is g”.

Nouns: Objects ...

The meaning of nouns is widely covered by the IsA-relation we’ve been using all

the time. We can simply describe nouns by atomic symbols. A guitar would then

be Guitar, as bass a Bass and so on. The Isa-relation associates noun-senses

like Guitar and possible referents like Evo. (Evo is, as we’ve mentioned earlier,

Steve’s favourite guitar.) Making assertions like Isa(Evo, Guitar).

Distinguishing sense and reference is sometimes a pitfall: Steve plays the guitar

in its Steve is capable to play the guitar -sense cannot be formalized as

∃pIsA(p, P laying) ∧ P layer(p, Steve) ∧ P layee(p, Guitar)

CHAPTER 4. SEMANTICS 101

Given that we use the IsA relation to account for reference (and the HasName

relation to account for names) the above statement would not imply

∃pIsA(p, P laying) ∧ P layer(p, Steve) ∧ P layee(p, Evo)

Once we decide we want to use the IsA-relation, we have to capture a noun

like guitar by ∀xIsa(x, Guitar) or ∃xIsa(x, Guitar) whenever we are actually

talking about the class of all guitars or a specific guitar.

We would therefore have to formalize Steve plays the guitar as

∃p∀s, gIsA(p, P laying) ∧ P layer(p, s)

∧HasName(s, Steve) ∧ P layee(p, g) ∧ IsA(g, Guitar)

Because given that Isa(Evo, Guitar) and HasName(Steve, Steve) this does

entail

∃pIsA(p, P laying) ∧ P layer(p, Steve)

∧HasName(Steve, Steve) ∧ P layee(p, Evo) ∧ Isa(Evo, Guitar)

which is exactly what we wanted to achieve.

Relations like HasName(Steve, Steve) might seem awkward, but this is due

to this example. Weisler & Milekic (2000) show why naming can be dealt with

on a separate “linguistic level”.

Adjectives: ... and their Properties

In a framework called “intersective semantics” the noun-phrase a great guitar

would be formalized in the following way:

∃xIsa(x, Guitar) ∧ Isa(x, Great)

The meaning of a great guitar is, in this framework, viewed as the intersection

of the set containing all guitars and the set containing all great things.

Jurafsky & Martin (2000) use three examples for showing why this approach

is a bit peculiar.

CHAPTER 4. SEMANTICS 102

(4.3) small elephant

(4.4) former friend

(4.5) fake gun

that would be formalized as

∃xIsa(x, Elephant) ∧ Isa(x, Small)

∃xIsa(x, Friend) ∧ Isa(x, Former)

∃xIsa(x, Gun) ∧ Isa(x, Fake)

This would state that a small elephant is a member of the set of small things,

that a former friend is a member of the set of friends, which is simply false, and

a member of the set of former things, which is somewhat unreasonable, similarly

to a fake gun, which is, in this model, considered a gun.

Unfortunately there is no easy way out of this problem, as long as we stick

with the principle of compositionality, but we might at least distinguish the IsA

relation from the AM -relation, just like Jurafsky & Martin (2000) did, and leave

further processing to the problem-domain, defining a great guitar as

∃xIsa(x, Guitar) ∧ AM(x, Great)

4.3.3 Lambda-Expressions

Before we can move on to account for the semantic representation of grammar-

rules we first have to provide a means to represent meanings that are “not yet

finished”. The dictionary definition of a single word or a phrase of a sentence

cannot usually stand for itself, it is rather a partial meaning, a subgoal on our

way to the complete meaning-representation of a sentence. This gives rise to the

need for an intermediate meaning-representation that accounts for these partial

meanings.

CHAPTER 4. SEMANTICS 103

The approach is simple: a partial meaning can be viewed as a template, like

a form that has to be filled out before it carries any relevant meaning. Repre-

senting this can be easily achieved, using the FOPC-formalism, if we make one

fundamental extension: the Lambda-symbol, which acts similarly to a quanti-

fier, and states “this is a form-variable that has to be specified in detail in later

processing”.

(4.6) I play no instrument

(4.7) Nobody plays the piano

Turning back to our example of ∃p∀iP lays(p, i), one might criticize the use of

the quantifiers ∃ and ∀. Does the word play really imply that there exists some

p, such that p plays i, and that p can really play every i? Examples 4.6 and 4.7

provide enough evidence, that another formalism is needed to account for the

“missing parts” in meaning: The lambda-expression.

Using a lambda-expression we could formalize the maining of play as

λp, iP lays(p, i)

which roughly reads “there is a p and an i, that still have to be specified in detail,

but we already know that there is a relation P lays that holds between them”.

Let’s consider an example that’s a bit more interesting. In section 4.1 we

represented the VP plays the guitar as

∃p∀iP lays(p, i) ∧ Isa(i, Guitar)

Of course this VP doesn’t yet “know” who will be the agent, therefore we

would have to use the following lambda-expression

sampleV P = λp∀iP lays(p, i) ∧ Isa(i, Guitar)

This time we also gave the lambda-expression a name, because we want to

introduce the following notation, which creates an expression where the variable

CHAPTER 4. SEMANTICS 104

marked by λ in sampleV P gets replaced by the expression Steve:

sampleV P (Steve)

This would be the same as writing

∀iP lays(Steve, i) ∧ Isa(i, Guitar)

This can also be done with complex-terms, like

sampleV P (∃eHasName(e, Steve))

In general complex-terms take the form

< quantifier variable body >

Our example would, in the first place, resolve to something like

∀iP lays(< ∃eHasName(e, Steve) > , i) ∧ Isa(i, Guitar)

which isn’t really syntactically correct FOPC, but it is possible to convert it back

to syntactically correct FOPC by rewriting the predicate, that uses the complex-

term

P (< quantifier variable body >)

as

quantifier variable body connective P (variable)

The connective depends on the quantifier. Variables that are quantified with

∃ are connected with ∧, variables that are quantified with ∀ are connected with

⇒.

Therefore our sample-expression would be rewritten as

∀i∃eHasName(e, Steve) ∧ P lays(e, i) ∧ Isa(i, Guitar)

Such a proceeding is called lambda-reduction.

CHAPTER 4. SEMANTICS 105

4.3.4 Representing Grammar-Rules

We might easily agree that the way a sentence is put together, the syntax, the

grammar-rules putting together the words in order to make up a meaningful

sentence, do themselves carry meaning.

A question that is a bit more tricky is what a grammar carrying out semantic

analysis should look like. We will use a quite simplistic approach called syntax-

driven semantic analysis, based on the presumption that semantic analysis can

be carried out in exactly the same structure as syntactic analysis.

To be more specific, this means, that if it is, on a syntactic level, possible to

deduce the syntax of a V P like

[V P [V plays][NP [Det the][N guitar]]]

from its parts, namely the V

[V plays]

the NP

[NP [Det the][N guitar]]

and the rule putting them together

V P → V NP

then it is also possible, on a semantic level, to deduce the semantics of the corre-

sponding V P

λs∃p, gIsA(p, P laying)∧ P layer(p, s)

∧P layee(p, g) ∧ IsA(g, Guitar)

from the same parts, namely the V

V = λg, s∃pIsA(p, P laying)∧ P layer(p, s) ∧ P layee(p, g)

CHAPTER 4. SEMANTICS 106

Steve

N (1)

NP (2)

plays

V (3)

the

Det (4)

guitar

N (5)

NP (6)

VP (7)

S (8)

Figure 4.6: Compositional structure

the NP

NP = ∃gIsA(g, Guitar)

and the rule putting them together, which is

V (NP)

Figure 4.6 depicts the same idea graphically in greater detail. Figure 4.3.4

is basically a syntax tree of example 4.1, this time in its There is a guitar that

is currently played by Steve-sense. The presumption of syntax-driven semantic

analysis allows us to use this syntax-tree not only as the structure building up

the whole syntax from its parts but also for building up the whole semantics

from its parts. Figure 4.7 shows what these nodes would in detail look like on a

semantic and on a syntactic level. Figure 4.8 shows the grammatical rules that

made the derivation of nodes (2),(6),(7) and (8) possible, again on a semantic and on

a syntactic level. (The derivation of the other nodes isn’t particularly interesting,

since they are based on simple dictionary look-ups.)

The semantic rules are, of course, lambda-reductions. The reader is invited

CHAPTER 4. SEMANTICS 107

syntax semantics
(1) [N Steve] ∃sHasName(s, Steve)
(2) [NP [N Steve]] ∃sHasName(s, Steve)
(3) [V plays] λg, s∃pIsA(p, P laying) ∧ P layer(p, s) ∧ P layee(p, g)
(4) [Det the] nil
(5) [N guitar] ∃gIsA(g,Guitar)
(6) [NP [Det the][N guitar]] ∃gIsA(g,Guitar)
(7) [V P [V plays][NP [Det the] λs∃p, gIsA(p, P laying) ∧ P layer(p, s)

[N guitar]]] ∧P layee(p, g) ∧ Isa(g,Guitar)
(8) [S [N Steve][V P [V plays] ∃s, p, gIsA(p, P laying) ∧ P layer(p, s)

[NP [Det the][N guitar]]]] ∧HasName(s, Steve) ∧ P layee(p, g) ∧ Isa(g,Guitar)

Figure 4.7: Tree-nodes and their syntactic and semantic content

syntactic rule semantic attachment
(2) NP → N N
(6) NP → Det N N
(7) V P → V NP V (NP)
(8) S → NP V P V P (NP)

Figure 4.8: grammatical production of the analysis-tree

CHAPTER 4. SEMANTICS 108

to use the process of lambda-reduction, introduced in the previous section, to

see that it is in fact possible to derive the meaning-representation of the whole

sentence, given in node (8) in figure 4.7 from the “semantic grammar” given in

figure 4.8, and the “semantic dictionary”, given in nodes (1), (3), (4) and (5) of figure

4.7, and that this derivation really has the same structure as the syntax-tree given

in figure 4.3.4.

As we’ve just shown, the principle of syntax-driven-semantic analysis allows

us to guide the semantic derivation along the lines of the parsing-tree. This allows

us to handle semantics by simply adding a new field to the sample-grammar we’ve

been using all the time, just as we did, when we augmented the CFG-rules with

constraints based on feature-structures.

The S-rule, we’ve been using so far would have looked like:

S → NP V P













num 1

NP
[

num 1

]

VP
[

num 1

]













Remember that it consists of a CFG-rule saying that an NP and V can be

replaced by an S, if it is possible to unify both the feature-structure S.NP with

the NP ’s feature structure and the feature-structure S.V P with the V P ’s feature-

structure, and the feature-structure in this case enforcing number-agreement.

In order to handle semantic processing we would now add another data-

structure to our grammar rule, leaving the S-rule as something like:

S → NP V P













num 1

NP
[

num 1

]

VP
[

num 1

]













V P (NP)

Of course the implementation of such complex grammars isn’t usually done

in this datastructure, containing a CFG-rule, a FS-constraint and a semantic

attachment, but rather, in an integrated way. The ERG, for example, is based

solely on feature-structures, because semantic attachments, as well as CFG-rules,

CHAPTER 4. SEMANTICS 109

Steve

N

NP

plays

V

chess

N

NP

VP

S

Figure 4.9: A parse-tree for example 4.8

can all be integrated into one powerful feature structure. This formalism was

chosen simply for the sake of readability.

4.4 Augmenting a Parser with a Semantic An-

alyzer

Now we know what a semantic dictionary could look like, how a grammar can be

augmented with semantic attachments, and how these partial meanings coming

from the dictionary and the grammar can be combined based on the presumptions

of syntax-driven semantic analysis using lambda-reductions.

What we want to do in this section is try to get our parser to do this

combination-task. Given that we’ve made the semantic dictionary and the se-

mantic grammar available to our parser, we want it to be able to come up with

a complete meaning-representation of a natural-language sentence it parses.

(4.8) Steve plays chess.

CHAPTER 4. SEMANTICS 110

We will, therefore, turn to example 4.8 (repeated from example 3.9). Its

syntax-tree is given in figure 4.9. This time we’ll follow an Earley-parser on its

way through the chart, and show how it does semantic analysis.

Figure 4.10 shows the chart created by a simple Earley-parser, when pars-

ing example 4.8 using the simplified grammar from the “syntactic production”-

column of figure 4.8.

Very similarly to what we did to the Earley-parser, when we extended it to

handle feature structures in section 3.4.2 we have to make two changes to the

parser: The first one concerns the representation of states. Additionally to the

normal fields of the state, and the associated feature structure we need a field

carrying the current semantic content of that state. Therefore a state like

NP → N • [2, 3]

which can be found in entry [1] of chart[3] would now be

NP → N • [2, 3], ∃gIsA(g, Chess)

Feature-structures and backpointers for are left out for readability.

The second change concerns the Completer. Recall that the Completer

is that part of the Earley-algorithm that takes care of advancing every state

that “is looking for” a symbol that has just been completed, and that a state is

considered complete if its • is at the far right of the rule in the state, for example

as a result of the Scanner having successfully read an input-token that matches

the POS we are looking for. The Completer would, therefore, be the part of

the program responsibe for carrying out the lambda-reduction indicated in the

grammar-rule of the state that was just completed, carrying over the result of

this lambda reduction to the state “looking for” the constituent that was just

completed and, by the lambda-reduction, semantically analyzed.

In our example, the first time the Completer is called is for the complete

CHAPTER 4. SEMANTICS 111

chart[0]

[0] λ→ •S [0, 0, 0] []

[1] S → •NP V P [0, 0, 0] []

[2] NP → •Det N [0, 0, 0] []

[3] NP → •N [0, 0, 0] []

chart[1]

[0] N → steve• [0, 1, 1] []

[1] NP → N• [0, 1, 1] [[(1, 0)]]

[2] S → NP • V P [0, 1, 1] [[(1, 1)]]

[3] V P → V •NP [1, 1, 0] []

chart[2]

[0] V → plays• [1, 2, 1] []

[1] V P → V •NP [1, 2, 1] [[(2, 0)]]

[2] NP → •Det N [2, 2, 0] []

[3] NP → •N [2, 2, 0] []

chart[3]

[0] N → chess• [2, 3, 1] []

[1] NP → N• [2, 3, 1] [[(3, 0)]]

[2] V P → V NP• [1, 3, 2] [[(2, 0)], [(3, 1)]]

[3] S → NP V P• [0, 3, 2] [[(1, 1)], [(3, 2)]]

[4] λ→ S• [0, 3, 1] [[(3, 3)]]

Figure 4.10: A chart for a run of our Earley parser on example 4.8 (Same as

figure with backpointers added)

CHAPTER 4. SEMANTICS 112

state [0] in chart[1]

N → steve • [0, 1], ∃sHasName(s, Steve)

(the value of the semantic attachment was provided by the Scanner, which

simply did a dictionary-lookup in the semantic dictionary, after having recognized

the word steve).

The completer then finds a state that can be advanced because of this newly

completed N -constituent: state [3] in chart[0], which is

NP → •N [0, 0], nil

Because advancing the • over the N in this state would create a complete

state, the completer can now carry out semantic analysis. Note that it is usually

necessary to wait for all constituents used by the current state to be completely

parsed and analyzed, before analysis of the current state can be done. In this case,

we have all constituents used by the NP → N -state, namely the N available, so

we can do the lambda-reduction which isn’t particularly exciting, given that the

semantic attachment to the NP → N -rule is simply N , (as can be seen in figure

4.8), ordering the parser to simply carry over the meaning from the N . Therefore

the Completer creates state [1] from chart[1]

NP → N • [0, 1], ∃sHasName(s, Steve)

And because this state the Completer just created is itself complete, the

Completer would now be called for that state. Looking for states in need of

an NP , the Completer would now find state [1] from chart[0]

S → •NP V P [0, 0], nil

The • in this state can now be advanced over the NP . In this case the Com-

pleter doesn’t carry out any semantic action, because the new state wouldn’t

be complete, therefore creating state [2] in chart[1] as

S → NP • V P [0, 1], nil

CHAPTER 4. SEMANTICS 113

The Predictor, finding the non-terminal-symbol V P in this state to the left

of the •, would now take care of adding state [3] to chart[1], and we can move

on to the next chart.

The Scanner would now find the token plays in the input, and, after looking

the word up in the semantic dictionary create state [0] in chart[2] as

V → plays • [1, 2], λg, s∃pIsA(p, P laying)∧ P layer(p, s) ∧ P layee(p, g)

This state is complete, and therefore it’s now the Completer’s turn again,

adding state [1] to chart[2] without doing semantic analysis, because, as we’ve

just mentioned, this would require all constituents to be completed. In our case

it is the NP that we lack information about. The Predictor would then create

states [2] and [3] in chart[2], and we could again go on to the next chart.

In chart[3] the Scanner would find the token chess in the input and therefore

create state [0] in chart[3] as

N → chess • [2, 3], ∃gIsA(g, Chess)

Using this state the Completer can now complete state [3] in chart[2]. In

this case the resulting state would again be a complete one, therefore semantic

analysis is carried out in this case, doing the lambda-reduction from the NP →

N -rule which is simply N , therefore carrying over the semantic attachment from

the N to the new state for the NP which is added as state [1] to chart[3] as

NP → N • [2, 3], ∃gIsA(g, Chess)

This state is exactly what state [3] in chart[1] “has been looking for”. The

Completer when called for the state we just created, would, therefore, try to

advance state [3] in chart[1], using state [1] in chart[3]. Because advancing the •

in V P → V •NP over the NP would create a completed state, the Completer

has to do semantic analysis, which is in this case a bit more interesting, because

the semantic attachment to the V P → V NP -rule is V (NP). The NP is what

CHAPTER 4. SEMANTICS 114

we just completed, and the V can be found by the lambda-reducer using the

backpointers. The new semantic attachment must be the result of the lambda-

reduction V (NP), which, fully written, looks like

λg, s∃p IsA(p, P laying) ∧ P layer(p, s)

∧P layee(p, g) (< ∃gIsA(g, Chess) >)

A technique called currying allows us to handle lambda-expressions like this

one, where there are two variables marked with lambda, but only one is to be

reduced. It simply states, that in such a case the lambda-variable at the left end of

the quantification-block is reduced, and the result is itself a lambda-expression,

containing the lambda-variables that were not reduced. In our case we would

reduce g, and leave s a lambda-variable. This lambda-reduction would therefore

evaluate to

λs∃g, p IsA(p, P laying) ∧ P layer(p, s)

∧P layee(p, g) ∧ IsA(g, Chess)

Now the completer can add the new state [2] to chart[3]

V P → V NP•[1, 3], λs∃g, p IsA(p, P laying)∧P layer(p, s)∧P layee(p, g)∧IsA(g, Chess)

This state can now be used by the Completer to complete state [2] in

chart[1]. This time the state we want to complete comes from the rule S →

NP V P which has the semantic attachment V P (NP). In our case that resolves

to sem9(sem3) which is

λs∃g, p IsA(p, P laying) ∧ P layer(p, s)

∧P layee(p, g) ∧ IsA(g, Chess) (< ∃sHasName(s, Steve) >)

that evaluates to

∃s, g, p IsA(p, P laying) ∧ P layer(p, s) ∧HasName(s, Steve)

∧P layee(p, g) ∧ IsA(g, Chess)

QED.

Part II

LISA: A Prototype

115

Chapter 5

Introduction

In this chapter we will give the reader an overview of what we expect our proto-

type to do. We will show some of the overall design of the prototype and provide

the reader with a first glance into the logics behind the actual problem-solving

specific to the Kommisar Klug-problem we will confront our prototype with.

5.1 What we want our Prototype to do

To demonstrate that our prototype really understands natural language, we con-

front it with a text, written in natural language, such as the one shown in figure

5.1. Then we use a parser and a morphological analyzer, that turn this text into a

parseforest. That parseforest and some additional facts and rules are then loaded

into a Prolog-processor, which executes a query.

Figure 5.1 and 5.2 show our problem domain. These two texts also serve as

the only source we used for training the dictionary and the grammar, which is

why it is highly unlikely, that our prototype would work for any other text.

The problem domain is based on a character, Professor Oberaigner used for

teaching boolean logics at HTL-Leonding.

116

CHAPTER 5. INTRODUCTION 117

Kommissar Klug is on the verge of solving one of his most compli-

cated cases. He knows that at least two of the suspects Peter, Frank,

Richard and Steve are involved. If he can prove Richard’s guilt, he

will also know that Frank and Peter are involved. Proving Steve’s

participation he can confirm Peter’s innocence. ”Allright”, he mum-

bles under his breath, ”The case isn’t closed yet, but we can already

arrest someone”.

Who is Kommissar Klug talking about?

Figure 5.1: Kommissar Klug’s problem (version 1)

Kommissar Klug is on the verge of solving one of his most compli-

cated cases. He knows that at least three of the suspects Peter,

Frank, Richard and Steve are involved. If he can prove Richard’s

guilt, he will also know that Frank and Peter are involved. Proving

Steve’s participation he can confirm Peter’s innocence. ”Allright”,

he mumbles under his breath, ”The case isn’t closed yet, but we can

already arrest someone”.

Who is Kommissar Klug talking about?

Figure 5.2: Kommissar Klug’s problem (version 2)

CHAPTER 5. INTRODUCTION 118

5.1.1 The Kommissar Klug Problem

Based on the Kommissar-Klug problem, it is easily possible to formalize the

statements in boolean logics:

First we define some variables:

p Peter is guilty

q Frank is guilty

r Richard is guilty

s Steve is guilty

Given these variables we can formalize the statement, “If he can prove Richard’s

guilt, he will also know that Frank and Peter are involved.” as r → p ∧ q, and

the statement “Proving Steve’s participation he can confirm Peter’s innocence.”

as s → ¬p. We can use a table such as the one shown in figure 5.3 to solve the

problem. The first 4 columns show all the permutations of truth-values for p, q,

r and s (“T” indicates the boolean value “true” and “F” indicates “false”). For

each of these permutations, we can calculate the value of the two statements.

The seventh column is true for all permutations that make the statement, “He

knows that at least two [. . .] are involved.”, true. In the last column we build

the conjunction of all of these statements, and we find that three permutations

are not contradictory:

• Peter, Frank and Richard could have done it together. (In this case, Steve

can’t be involved).

• Peter and Frank could have done it. Richard isn’t neccessarily involved.

• Frank and Steve could have done it.

We find that in each of these permutations Frank is involved, which is why

we consider Frank guilty, and our prototype seems to agree on that, as shown in

figure 5.4 (note that the others are not guilty, since Kommissar Klug is “in dubio

pro reo”).

CHAPTER 5. INTRODUCTION 119

p q r s r → p ∧ q s→ ¬p at least 2 conjunction
T T T T T F T F
T T T F T T T T
T T F T T F T F
T T F F T T T T
T F T T F F T F
T F T F F T T F
T F F T T F T F
T F F F T T F F
F T T T F T T F
F T T F F T T F
F T F T T T T T
F T F F T T F F
F F T T F T T F
F F T F F T F F
F F F T T T F F
F F F F T T F F

Figure 5.3: Permutations for boolean truth-values (version 1)

In order to show that our prototype is appliable to a bigger problem do-

main than only outputting X = semFRANK, we consider another problem, which

is shown in figure 5.2. It’s the same problem, but this time we know that three of

the suspects must have been involved, which leaves only one permutation valid,

which is the one where Peter, Frank and Richard are involved, and, again, our

prototype agrees on that, as shown in figure 5.5.

5.1.2 Some DOs and DON’Ts

What we’ve just shown doesn’t, by itself, have much to say. Consider figure 5.6,

which took me about three minutes to write, which reacts very similarly to the

real LISA-prototype, which took me almost a year to write.

The big difference is that the program outlined in figure 5.6 can’t really be said

to understand the problem, because in this program, the programmer models his

own knowledge of the particular problem and the language, rather than provide

the program with a means to autonomously understand the problem stated in a

CHAPTER 5. INTRODUCTION 120

KOMMISSAR KLUG IS ON THE VERGE OF SOLVING ONE OF HIS MOST COMPLICATED CASES . SUCCESS!

HE KNOWS THAT AT LEAST TWO OF THE SUSPECTS PETER FRANK RICHARD AND STEVE ARE INVOLVED . SUCCESS!

IF HE CAN PROVE RICHARDS GUILT HE WILL ALSO KNOW THAT FRANK AND PETER ARE INVOLVED . SUCCESS!

PROVING STEVES PARTICIPATION HE CAN CONFIRM PETERS INNOCENCE . SUCCESS!

" ALLRIGHT " HE MUMBLES UNDER HIS BREATH " THE CASE ISNT CLOSED YET BUT WE CAN ALREADY ARREST SOMEONE " . SUCCESS!

WHO IS KOMMISSAR KLUG TALKING ABOUT ? SUCCESS!

% dictionary compiled 0.00 sec, 1,372 bytes

% parseforestpl compiled 0.07 sec, 164,440 bytes

% lang compiled 0.00 sec, 9,076 bytes

% probdom compiled 0.00 sec, 3,336 bytes

% ./test.pl compiled 0.08 sec, 178,380 bytes

Welcome to SWI-Prolog (Version 5.0.8)

Copyright (c) 1990-2002 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- guilty(X).

X = semFRANK ;

No

?-

Figure 5.4: Running the program on Kommissar Klug’s problem (version 1)

KOMMISSAR KLUG IS ON THE VERGE OF SOLVING ONE OF HIS MOST COMPLICATED CASES . SUCCESS!

HE KNOWS THAT AT LEAST THREE OF THE SUSPECTS PETER FRANK RICHARD AND STEVE ARE INVOLVED . SUCCESS!

IF HE CAN PROVE RICHARDS GUILT HE WILL ALSO KNOW THAT FRANK AND PETER ARE INVOLVED . SUCCESS!

PROVING STEVES PARTICIPATION HE CAN CONFIRM PETERS INNOCENCE . SUCCESS!

" ALLRIGHT " HE MUMBLES UNDER HIS BREATH " THE CASE ISNT CLOSED YET BUT WE CAN ALREADY ARREST SOMEONE " . SUCCESS!

WHO IS KOMMISSAR KLUG TALKING ABOUT ? SUCCESS!

% dictionary compiled 0.00 sec, 1,372 bytes

% parseforestpl compiled 0.08 sec, 164,440 bytes

% lang compiled 0.01 sec, 9,076 bytes

% probdom compiled 0.00 sec, 3,336 bytes

% ./test.pl compiled 0.10 sec, 178,380 bytes

Welcome to SWI-Prolog (Version 5.0.8)

Copyright (c) 1990-2002 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- guilty(X).

X = semPETER ;

X = semFRANK ;

X = semRICHARD ;

No

?-

Figure 5.5: Running the program on Kommissar Klug’s problem (version 2)

CHAPTER 5. INTRODUCTION 121

#!/bin/sh

if cat test.txt | grep -e two > /dev/null

then

echo "X = semFRANK"

fi

if cat test.txt | grep -e three > /dev/null

then

echo "X = semPETER"

echo "X = semFRANK"

echo "X = semRICHARD"

fi

Figure 5.6: A big DON’T

language.

A program, which is able to understand a problem, when stated in a language

is allowed to use knowledge

• about the language

• about the problem domain

as a basis to deduce its knowledge of the particular problem from it, but is not

allowed to use any knowledge of the particular problem stated by the programmer

in an explicit way.

5.2 Modules and how they Interact

Figure 5.7 is a diagram showing the most important modules and how they

interact. The overall goal is that the prototype should be able to execute the

query guilty(X) and come up with the solution X = semFRANK. This should be

done using knowledge stated in English.

There are two programs involved in doing so. One is a Prolog-program. We

simply load facts and rules making up the semantic analyzer, as well as facts and

CHAPTER 5. INTRODUCTION 122

ASCII-Text

tokenized words

parseforest

PARSER

morphological
Analyzer

parseforest

SEMANTICAL
ANALYZER

Prolog
Converter

X = semFRANKguilty(X)?

Figure 5.7: The most important modules

CHAPTER 5. INTRODUCTION 123

rules making up the parse-forest for the English text into a Prolog-interpreter,

but how do we obtain these facts and rules that make up the parse-forest?

This task is done by the second program, which is written in C. It is an

Earley-parser. It opens the ASCII-Text and reads one word after the other,

performing some filtering that should be done prior to morphological analysis

(splitting the text up into tokens separated by whitespace, bringing the strings

into an uppercase representation, handling special characters such as punctuation,

etc.). These words are then run through the morphological analyzer. As far as

the parser is concerned, this is done by simply calling a function run.

Its implementation can be found in a separate module. This module is created,

not by the C-Compiler, but by a compiler we wrote especially for the LISA-

project. This compiler is capable of turning an ASCII or XML-representation of

an FST into machine-executable code.

These tokenized and morphologically analyzed words can then be used by

an Earley-parser to build up an internal representation of a parseforest. The

next task of our C-Program is then to bring its internal representation into a

representation compatible with Prolog, by writing a Prolog-file containing

facts and rules that make up the parseforest.

5.3 The Kommissar Klug Problem Domain

5.3.1 Knowledge from the Text

In this section we will propose some predicates that we would have to derive from

the text.

The first predicate is semsuspect(X). It is derivable for any X that is men-

tioned in the text as a suspect. In our case this would be:

semsuspect(peter).

semsuspect(frank).

CHAPTER 5. INTRODUCTION 124

semsuspect(richard).

semsuspect(steve).

seminnocentif(A,B) is derivable if the text says something like, “A is inno-

cent if B is guilty”. In our case, this would be

seminnocentif(peter,steve).

semguiltyif(A,B) is used analogously if the text says something like, “A is

guilty if B is guilty”:

semguiltyif(peter,richard).

semguiltyif(frank,richard).

semsuspectnumber(N) is derivable if the text says something like, “At least

N suspects were involved”.

semsuspectnumber(two).

Note that we would first have to tell the system what “two” means. We can use

something like a semantic dictionary, telling the system the most important fact

about “two”, that it is the number that comes after “one”:

s(two,one).

s(three,two).

Here “s” stands for the “successor”-relation.

5.3.2 Knowledge about the Problem Domain

Given this textual knowledge we can start to give the system some way of dealing

with it. One of the most important rules is that if Y is innocent, assuming that

X is guilty, then X is innocent assuming that Y is guilty. This seems to make

sense, but it is also derivable from boolean logics:

b→ ¬a

CHAPTER 5. INTRODUCTION 125

¬b ∨ ¬a

¬a ∨ ¬b

a→ ¬b

We can formalize this by

innocentif(A,B):-seminnocentif(B,A).

innocentif(A,B):-seminnocentif(A,B).

The next relation states that, if we assume that R is guilty, and are therefore

allowed to conclude that P is guilty, from the semguiltyif-relation, and if we

assume that S is guilty, and are therefore allowed to conclude that P is innocent

from the innocentif-relation, then we also know that, assuming that S is guilty,

we can conclude that R must be innocent.

innocentif(R,S):-semguiltyif(P,R),innocentif(P,S).

This can also be shown on a formal basis:

(r → p) ∧ (s→ ¬p)

(r → p) ∧ (p→ ¬s)

(r → ¬s)

(s→ ¬r)

We can formalize this by

innocentif(R,S):-semguiltyif(P,R),innocentif(P,S).

5.3.3 Further Considerations

In addition to to these rules, we need rules dealing with permutations of sus-

pects, taking into account the number of suspects involved etc, and we need

rules deriving the exemplaric facts given in the section about textual rules from

CHAPTER 5. INTRODUCTION 126

the parseforest. Of course, we don’t state the facts we showed as examples, be-

cause this would mean modelling knowledge about the specific problem explicitly.

These facts are derived from a simple algorithm that looks for certain patterns of

parsetrees in the parseforest we were given. We won’t describe these parts of the

semantic processor in greater detail since they mainly consist of technicalities.

Chapter 6

FST-Tools

A Few Words on this Document

While reading this document it is important to keep a few things in mind: First

of all, this document was never intended to be a scientific text or a textbook on

FST-processing. I have to admit that, except for a few pages in an introduc-

tory textbook, I’ve never read anything about the subject. Also the algorithms

presented here are merely a ”quick ’n dirty” hack. This document was created

purely by the need for a working system processing FSTs in the LISA-project.

If this document is not a scientific text, then what is it? It is Sourcecode-

documentation, in the style of Donald Knuth’s ”Literate Programming”-paradigm.

That is why this document is mainly targeting myself, as a reader, should I be

trying to ”get into” that code again, in a few years’ time. It is also targeted

towards other developers who want to work with this sourcecode, and to people

who are seeking a technically detailed description of an actual implementation of

an FST-compiler. In fact it is so detailled, it can actually be weaved, and run -

the magic of literate programming. What the reader certainly shouldn’t be doing

is take it as a reference or an academic resource of any kind.

I hope that, in this light, one might also excuse some of the stylistic and

127

CHAPTER 6. FST-TOOLS 128

didactic flaws in this document.

6.1 An Environment for Handling FSTs

In order to effectively handle FSTs in the LISA-project it is neccessary to create

a small toolkit, containing several classes, each of which handles a different task

related to FST-processing.

Although there already existed some toolkits for handling FSTs, at the time

of this writing, I couldn’t find one that was both, affordable, and suited for the

needs of this project, this is why I decided to quickly hack a set of small python

classes doing that work.

Python seemed to me a very well suited programming-language for handling

that task, since it is easy to learn and well documented, and since it comes with

a huge set of useful modules, and defines some excellent data-types that make

code more readable - that is why I use Python almost every time I do rapid

prototyping.

The main-program of this toolkit is a compiler, converting a description of a

transducer into assembly-code.

The input file takes the form of an XML-definition of the transducer, (con-

forming to fst.dtd). test1.xml is an example of such an input-file. The output-

file can be assembled by GNU-Assembler. The code is targeted towards the Intel

i386-Processor and follows C-call-conventions.

When assembled the object exports a symbol like int run(char *in, unsigned

long int *out) that, runs the FST. All resources that are needed are compiled

into the program, and the compiled code doesn’t involve any interpretive code,

only pure machine-code operating without any external resources.

This design makes it possible to achieve very high performance when running

the transducers, while preserving maintainability of the finite-state-transducers

and interoperability with the C-program that uses it.

CHAPTER 6. FST-TOOLS 129

6.1.1 Representing an FST

XML-Representation

This toolkit actually uses two different types of representations for FSTs. The

first one is a machine-readable format, reflecting the internal representation of

that data-structure in python. (We are going to hear about that soon). In

this section I want to focus on the second one, which was intended to be both

machine-readable and human-readable.

I decided to represent these FSTs using XML-files, conforming to fst.dtd.

The choice was XML since it is easily readable by a human, and because of the

available libraries, that make their handling easier.

CHAPTER 6. FST-TOOLS 130

"fst.dtd" 130 ≡

<!ELEMENT transducer (finstate|state)+>

<!ELEMENT state (transition)+>

<!ELEMENT finstate EMPTY>

<!ELEMENT transition EMPTY>

<!ELEMENT transduction EMPTY>

<!ATTLIST transducer

fin IDREF #IMPLIED

ini IDREF #REQUIRED>

<!ATTLIST state

id ID #REQUIRED>

<!ATTLIST finstate

id ID #REQUIRED>

<!ATTLIST transition

signal CDATA #REQUIRED

output CDATA #IMPLIED

target IDREF #REQUIRED>

<!ATTLIST transduction

target IDREF #REQUIRED

txt CDATA #REQUIRED>

�

The root-element is, of course, the transducer, which has both finstates (final

states) and states. There are two attributes: The required ”ini”-attribute refers

to the initial state in the transducer. Optionally the ”fin”-attribute can be used

to define the final state, if this transducer is designed to have only one final state.

Finstates and states must have a unique id. While a finstate is by definition

empty, and only serves as a ”declaration” of a valid final state, a normal state

has one or more transitions or transductions.

A transition is also empty by definition. Nevertheless some attributes are

CHAPTER 6. FST-TOOLS 131

required, one of which is signal containing a string-representation of the signal,

that fires the transition. The other one is the target identifying the state, this

transition leads to. If the optional attribute output is given, then this signal is

sent to the output-”tape” of the transducer.

It is important to notice, that the output-”tape” of a transducer in the LISA

project is by definition an array of double-words. (In C-syntax that would be an

unsigned long int[]), while the input-tape is a byte-array. (That is a char[]

in C).

Although output-symbols have to be a full double-word, input symbols are

merely considered partial strings of the input. Input symbols can have lengths of

1, 2, 3 or 4 bytes. The limitation is four, because that is the biggest quantity an

i386-Processor can effectively compare (That is with one CMPL-statement).

There are also some special-purpose signals. The first one is the &-signal which

is the default transition, the transition that fires when no other one in this state

does. If no default transition is specified a transition to a reject-state is implied.

fstcomp-dta2.txt gives some sample strings, and associated numbers:

"fstcomp-dta2.txt" 131 ≡

1001 xabcde

1002 xabfgh

1003 nnkki

1004 aabcde

1005 aabfgh

1006 xarki

�

A valid FST, representing these mappings would be fstcomp-dta2.xml

CHAPTER 6. FST-TOOLS 132

"fstcomp-dta2.xml" 132 ≡

<?xml version="1.0"?>

<!DOCTYPE transducer SYSTEM "file:///massdata/neword/src/lisa/tst/dta/fst.dtd">

<transducer ini="q0" fin="fin">

<finstate id="fin"/>

<state id="q0">

<transition target="q5" signal="xa"/>

<transition target="q11" signal="nnkk" output="1003"/>

<transition target="q18" signal="aab"/>

</state>

<state id="q4">

<transition target="q10" signal="cde" output="1001"/>

<transition target="q10" signal="fgh" output="1002"/>

</state>

<state id="q5">

<transition target="q10" signal="rki" output="1006"/>

<transition target="q4" signal="b"/>

</state>

<state id="q10">

<transition target="fin" signal="&"/>

</state>

<state id="q11">

<transition target="q10" signal="i"/>

</state>

<state id="q18">

<transition target="q10" signal="cde" output="1004"/>

<transition target="q10" signal="fgh" output="1005"/>

</state>

</transducer>

�

CHAPTER 6. FST-TOOLS 133

We haven’t yet mentioned the texttttransductions, from the above DTD. Instead

of a transition, one can use a transduction to insert an external FST into the

transducer. The external FST can be another XML-File (not yet implemented)

or a TXT-File with simple string-mappings.

"fstcomp-dta1.xml" 133 ≡

<?xml version="1.0"?>

<!DOCTYPE transducer SYSTEM "file:///massdata/neword/src/lisa/tst/dta/fst.dtd">

<transducer ini="q0" fin="fin">

<finstate id="fin"/>

<state id="q0">

<transition target="q1" signal="x"/>

<transition target="q1" signal="y"/>

</state>

<state id="q1">

<transduction target="q2" txt="tst/dta/fstcomp-dta2.txt"/>

<transduction target="q3" txt="tst/dta/fstcomp-dta3.txt"/>

</state>

<state id="q2">

<transition target="fin" signal="ab" output="42"/>

<transition target="fin" signal="cd"/>

</state>

<state id="q3">

<transition target="fin" signal="ef" output="43"/>

<transition target="fin" signal="gh"/>

</state>

</transducer>

�

CHAPTER 6. FST-TOOLS 134

"fstcomp-dta3.txt" 134 ≡

1007 this

1008 is

1009 a

1010 test

�

fstcomp-dta1.xml shows how this feature can be used. To get to state q1 the

transducer has to either match x or y. If the transducer fstcomp-dta2.txt

accepts the input it goes to state q2, if the transducer fstcomp-dta3.txt accepts

it, it goes to state q3 and so on.

The transducers fstcomp-dta2.txt and fstcomp-dta3.txt are not exter-

nally run, they are rather cascaded into the current transducer at compile-time.

It is part the program’s job to read the text-file, convert it to a transducer, and

insert it into the current FST.

Internal Representation

Of course these XML-files are a bit inconvenient to work with in a python-script.

(It would, perhaps, be technically possible to directly access DOM-Objects during

processing, but it would only artificially complicate things).

Instead we will use an array that will usually be called self.fst in the scripts.

The testdta1-array below is what such an array would look like for our example-

data from fstcomp-dta2.txt.

CHAPTER 6. FST-TOOLS 135

〈 fstcompdta2 135 〉 ≡

fstcompdta2[0] = {’xa’: [5, 0], ’nnkk’: [11, 1003], ’aab’: [18, 0]}

fstcompdta2[4] = {’cde’: [10, 1001], ’fgh’: [10, 1002]}

fstcompdta2[5] = {’rki’: [10, 1006], ’b’: [4, 0]}

fstcompdta2[10] = {’&’: [-1, 0]}

fstcompdta2[11] = {’i’: [10, 0]}

fstcompdta2[18] = {’cde’: [10, 1004], ’fgh’: [10, 1005]}

�

Macro never referenced.

fstcompdta2[] holds all possible states. Each state is a dictionary mapping the

signal to its transition.

Each transition is a tuple of the form (target, output). A target is either

an index, pointing to another state in testdta1[], or -1 if the transition points

to the final state. output is the output, associated with that transition or 0, if

there is no output associated with this transition.

6.2 Design of the Toolkit

The FST-compiler uses an object-oriented design. This is what the main program

looks like, and how the classes facilitate its work:

CHAPTER 6. FST-TOOLS 136

"fstcompxml.py" 136 ≡

#!/usr/bin/python

from optimizer import optimizer;

from xmlloader import xmlloader;

from compiler import compiler;

import sys;

if len(sys.argv)!=3:

print "usage: fstcompile.py <funcname> <xmlfile>"

else:

fs3=[{}];

xmlloader(fs3).load(sys.argv[2]);

optimizer(fs3).optimize();

compiler(fs3).compileit(sys.stdout);

�

CHAPTER 6. FST-TOOLS 137

"fstcomptxt.py" 137 ≡

#!/usr/bin/python

from optimizer import optimizer;

from txtloader import txtloader;

from compiler import compiler;

import sys;

if len(sys.argv)!=3:

print "usage: fstcompile.py <funcname> <txtfile>"

else:

fs3=[{}];

txtloader(fs3).load(sys.argv[2]);

optimizer(fs3).optimize();

compiler(fs3).compileit(sys.stdout);

�

The following classes operate in the background, to make this kind of usage

possible:

loader is the base-class for all classes, that are somehow capable of loading an

FST from an external resource.

xmlloader is derived from it. As the name suggests, its job is to load an FST

from an XML-file.

txtloader is the second loader in the toolkit. It can load an FST by reading a

file such as testdta1.txt and convert it to an FST.

CHAPTER 6. FST-TOOLS 138

opunit stands for OPerational UNIT, and it implements the core algorithms,

such as cascading or concatenating FSTs.

optimizer enters the scene, when the FST is ready to be compiled. The opti-

mizer can apply some optimizations, such as concatenating linear paths through

the FST to longer signals or joining redundant subtrees.

compiler is the class that can convert an FST to GNU-Assembler.

debugger is a set of functions that were useful when developing this. These

functions aren’t usually called in a productive environment. They implement

things like printing an FST, or traversing the FST to list all possible paths

through it, etc. This class isn’t described in this document.

This is quite a big number of classes for a system having less than 500 lines

of code. I chose this object-oriented design, anyway to maintain a greater degree

of readability.

6.3 The Compiler

It is the job of this class to read the internal representation of the FST after it’s

loaded, and create an ASCII-File that can be assembled by the GNU-Assembler.

The target platform is i386, although optimizations for i486 were applied.

This is the basic outline of the class:

CHAPTER 6. FST-TOOLS 139

"compiler.py" 139 ≡

import sys;

import string;

class compiler:

def __init__(self,fst):

self.fst=fst;

if len(sys.argv)==2:

self.funcname=sys.argv[1];

else:

self.funcname=’run’;

〈define the littleend-function 143 〉

〈define the dotransition-function 149 〉

def compileit(self,out):

〈 initialize the transducer 140 〉

curstate=0;

while curstate<len(self.fst):

if len(self.fst[curstate])>0:

〈 initialize the new state 141b 〉

〈 remember the transitions 142a 〉

〈 assemble the state 142b 〉

curstate=curstate+1;

〈finalize the transducer 150b 〉

�

The argument that is read from the command-line, (funcname), is the name of the

CHAPTER 6. FST-TOOLS 140

symbol, that will get exported by the output-file. For example fsacompile.py

test input.xml will create an object, that exports a symbol

int test(char* in, unsigned long int* out),

in being the input-tape of the FST, and out being the FST’s output-tape

(that is the input of the caller then). The ability to specify the symbol-name

is particularly useful, when more transducers are linked against the same C-

program.

Recall that all output, done by this compiler, should conform to C-call-

conventions, which is why I use C-syntax to denote data-types and function-

declarations.

The default function-name is run. out is the file-handler the output is written

to.

6.3.1 Initializing the FST

〈 initialize the transducer 140 〉 ≡

self.curl=0;

print """〈 initial chunk of assembly-code 141a 〉""" % \

{’func’:self.funcname};�

Macro referenced in 139.

All we have to do is initialize the self.curl-variable, which is a counter for

naming intermediate labels, and print an initial chunk of assembly-code.

This code basically just exports the symbol (by the name that was specified

on the command-line), reads the first parameter (that is char* in) into eax and

the second one (that is unsigned long int* out) into ebx, and then jumps to

the initial state. It also builds up the stack-frame for this function.

CHAPTER 6. FST-TOOLS 141

〈 initial chunk of assembly-code 141a 〉 ≡

.text

.align 16

.globl %(func)s

.type %(func)s, @function

%(func)s:

pushl %%ebp

movl %%esp, %%ebp

push %%ebx

push %%ecx

push %%edx

movl 8(%%ebp),%%eax

movl 12(%%ebp),%%ebx

movl %%ebx,%%ecx

jmp q0�

Macro referenced in 140.

6.3.2 Collecting Data About the State

All we have to do is initialize the trns-variable.

〈 initialize the new state 141b 〉 ≡

trns={0:[], 1:[], 2:[], 3:[], 4:[]};�

Macro referenced in 139.

It is a dictionary of five arrays, each holding the transitions that have input

symbols of the length indicated by the keys in the dictionary. The zeroth holds the

transition with signal &. Recall that this is the default transition that fires when

no other transition does, and that a transition to the reject-state is implied, if

there is no default transition.

CHAPTER 6. FST-TOOLS 142

That way we’ll find all transitions with input-symbols of length n in trans[n],

when we need them.

And this is how it’s filled:

〈 remember the transitions 142a 〉 ≡

for key in self.fst[curstate].keys():

idx=0;

if key!=’&’:

idx=len(key);

trns[idx].append(\

(self.fst[curstate][key][0],key,self.fst[curstate][key][1])\

);�

Macro referenced in 139.

What we do is put together a tuple holding (target,signal,output), and ap-

pend it to the appropriate array in the trns-dictionary.

6.3.3 Assembling States

After initializing the data-structures for handling a state, and collecting data

about the state’s transitions, all we have to do is print assembly-code for that

state.

〈 assemble the state 142b 〉 ≡

〈 read the next signal from memory 144 〉

prev=0;

〈handle signals of length one 145a 〉

〈handle signals of length two 145b 〉

〈handle signals of length four 146 〉

〈handle signals of length three 147 〉

〈handle the default transition 148 〉�

Macro referenced in 139.

CHAPTER 6. FST-TOOLS 143

In this code-segment we also initialize the prev-pointer. We’ll hear about the

details of this pointer in the next section.

When we define how to handle the signals, we will need a small helper func-

tion, converting a signal in its string-representation, to a hexadecimal littleendian

number. (as will be found in a 32-bit-register, after mov-ing a 32-bit-quantity from

memory). That basically means reversing the bytes.

〈define the littleend-function 143 〉 ≡

def littleend(self,val):

num=0;

k=len(val)-1;

while k>=0:

num*=256;

num+=ord(val[k]);

k=k-1;

fmtst=’0x%%%dx’ % (len(val)*2);

hex=fmtst % (num);

return string.replace(hex,’ ’,’0’);�

Macro referenced in 139.

That’s quite simple. All we have to do is add up the ascii-values of the characters,

as we traverse the string backwards, and multiply the value with 256 (that is shift

left by 1 byte) before each iteration. Then we use python’s formatting capabilities

to return a hexadecimal string, instead of the number.

6.3.4 Examining the Signal

Reading a signal from memory is actually quite trivial. Depending on the max-

imum signal-length we’re going to handle in this state, we either movl, mov or

CHAPTER 6. FST-TOOLS 144

movb the next signal into the edx-register (respectively dx or dl). Note that it

takes the Intel 80486, and newer i386-processors, exactly one tact’s time, to do

any of these operations, so it would make no sense to first only movb, the first

byte, then try to match that, then movb, the second byte, in case we need that.

Note what this means for the input buffer: it must be three bytes longer,

than the actual string-length of the input, since it might happen, that we read

4 bytes from memory, because this state has transitions for 4-byte-signals, while

the current one is the last byte available in the input-buffer.

〈 read the next signal from memory 144 〉 ≡

if len(trns[4])>0 or len(trns[3])>0:

print ’q%d: movl (%%eax),%%edx’ % (curstate);

elif len(trns[2])>0:

print ’q%d: mov (%%eax),%%dx’ % (curstate);

elif len(trns[1])>0:

print ’q%d: movb (%%eax),%%dl’ % (curstate);

elif len(trns[0])>0:

print ’q%d:’ % (curstate);�

Macro referenced in 142b.

Now we have the data ready in the edx-register. We already mentioned that i386

uses little-endian memory-operations, that means, we have the first byte of the

signal at the least significant byte in the register (that would be al), and the last

byte in the most significant byte of the register.

CHAPTER 6. FST-TOOLS 145

〈handle signals of length one 145a 〉 ≡

if len(trns[1])>0:

prev=1;

print ’incl %eax’;

for trans in trns[1]:

print ’cmpb $%s,%%dl’ % (self.littleend(trans[1]));

self.dotransition(trans);�

Macro referenced in 142b.

First thing we do is we incl %eax. The policy is that at any time in further

processing we have to be able, to simply jump to any state, and leave eax pointing

to the next signal we have to examine. Then, for each transition in that state, we

simply compare the signal, and call the function dotransition to print assembly-

code handling the transition, if the compare was successful (equal, that is).

〈handle signals of length two 145b 〉 ≡

if len(trns[2])>0:

if prev==0:

print ’addl $2, %eax’;

elif prev==1:

print ’incl %eax’;

prev=2;

for trans in trns[2]:

print ’cmp $%s,%%dx’ % (self.littleend(trans[1]));

self.dotransition(trans);�

Macro referenced in 142b.

Note that we maintain the prev-pointer, giving information about the signal

length, we examined last, because that information is necessary to appropriately

CHAPTER 6. FST-TOOLS 146

set eax. Apart from that this code-snippet is quite the same as the above one.

〈handle signals of length four 146 〉 ≡

if len(trns[4])>0:

if prev==0:

print ’addl $4,%eax’;

elif prev==1:

print ’addl $3,%eax’;

elif prev==2:

print ’addl $2,%eax’;

prev=3;

for trans in trns[4]:

print ’ cmpl $%s,%%edx’ % (self.littleend(trans[1]));

self.dotransition(trans);�

Macro referenced in 142b.

And the same thing again for signal-length 4. Note that we handle length 4

before length 3, because comparing a signal of length 3 requires us to destroy

the data in the most significant byte, since there is no way to directly compare a

3-byte-quantity.

CHAPTER 6. FST-TOOLS 147

〈handle signals of length three 147 〉 ≡

if len(trns[3])>0:

if prev==0:

print ’addl $3,%eax’;

elif prev==1:

print ’addl $2,%eax’;

elif prev==2:

print ’incl %eax’;

elif prev==3:

print ’decl %eax’;

print ’andl $0x00FFFFFF,%edx’;

prev=4;

for trans in trns[3]:

print ’cmpl $%s,%%edx’ % (self.littleend(trans[1]+’\0’));

self.dotransition(trans);�

Macro referenced in 142b.

And this is how it works: all we basically have to do is to and it against a

mask, setting the first byte to zero, and all other bits to 1, which leaves the

most significant byte zero, and all others untouched. Then we append zero to the

signal, we want to compare it to, convert it to littleendian notation, and compare

the whole double-word.

CHAPTER 6. FST-TOOLS 148

〈handle the default transition 148 〉 ≡

if len(trns[0])==0:

print ’jmp reject’;

else:

if prev==1:

print ’decl %eax’;

elif prev==2:

print ’subl $2,%eax’;

elif prev==3:

print ’subl $4,%eax’;

elif prev==4:

print ’subl $3,%eax’;

self.dotransition(trns[0][0]);�

Macro referenced in 142b.

6.3.5 Handling Transistions

Up to this point we simply called a dotransition-function, to handle the tran-

sition, in case we leave the equal flag set.

This is what this function looks like:

CHAPTER 6. FST-TOOLS 149

〈define the dotransition-function 149 〉 ≡

def dotransition(self, targ):

if targ[0]==-1:

target=’match’;

else:

target=’q%d’ % targ[0];

if we are not doing any output:

if targ[2]==0:

if targ[1]!=’&’:

print ’je %s’ % (target);

else:

print ’jmp %s’ % (target);

if we are doing output:

else:

〈handle a transition with output 150a 〉�

Macro referenced in 139.

The approach is quite straightforward: recode any reference to the final state -1,

to match, and call all other targets q<index>. Then we can simply je to our

target. If the transition we are currently handling is the default-transition we

don’t need the conditional jump, printing an unconditional one instead.

But we can only handle transitions, that are not doing any output this way,

otherwise it gets a bit trickier: First thing we do is jump to the end of the block,

we are talking about, in case the equal-flag isn’t set. If we pass that point, or

if we are handling the default-transition we can savely do the output by simply

movl-ing it to the memory-region pointed to by ebx (recall that we read the

second argument to our function into that register, earlier), add 4 to the register,

to leave it pointing to the next memory-cell that’s ready for writing output to,

CHAPTER 6. FST-TOOLS 150

and jmp to the target.

〈handle a transition with output 150a 〉 ≡

if targ[1]!=’&’:

print ’jne i%d’ % (self.curl);

print ’movl $%s,(%%ebx)’ % (targ[2]);

print ’addl $4,%ebx’;

print ’jmp %s’ % (target);

if targ[1]!=’&’:

print ’i%d:’ % (self.curl);

self.curl=self.curl+1;�

Macro referenced in 149.

6.3.6 Finalizing the Transducer

All we have to do is

〈finalize the transducer 150b 〉 ≡

print """〈final chunk of assembly-code 151 〉"""�

Macro referenced in 139.

And this is what it looks like:

CHAPTER 6. FST-TOOLS 151

〈final chunk of assembly-code 151 〉 ≡

reject: xorl %eax,%eax

jmp done

match: movb (%eax),%dl

cmpb $0,%dl

jne reject

accept: subl %ecx,%ebx

shr $2,%ebx

movl %ebx,%eax

done: pop %edx

pop %ecx

pop %ebx

movl %ebp, %esp

popl %ebp

ret�

Macro referenced in 150b.

That basically just defines the standard-states match, reject and accept. match,

first has a look at the next signal. If it is not equal to zero, we reject the input,

else we accept it. (We do that because, we want strings to be zero-terminated.)

reject leaves the eax register 0 (which means the function has return code

FALSE), and the accept-state computes the number of output double-words, by

subtracting ecx from ebx and dividing by 4. (Note: When entering the procedure

we remembered the initial value of ebx in ecx). Last thing we do is return from

the function, that means reset the registers and tear down the stack-frame.

CHAPTER 6. FST-TOOLS 152

6.4 The XML-Loader

The XML-Loader is one of the central components, that are visible to the fstcompiler-

main-program. It is used to read an XML-File, and all external FSTs that are

referenced by it, and integrate everything into one transducer, leaving it ready

for further processing by other classes of this toolkit.

I already mentioned, that I chose XML as a representation for FSTs, because

it can easily be handled, using standard-libraries. The standard-library I am

using in this prototype is python’s SAX-API. It is an event-oriented framework

that automates the parsing, and leaves the processing up to the programmer.

This is what the class we are talking about looks like:

CHAPTER 6. FST-TOOLS 153

"xmlloader.py" 153 ≡

import sys;

import string;

from xml.sax import ContentHandler;

from xml.sax import saxutils;

from xml.sax import make_parser;

from xml.sax.handler import feature_namespaces;

from misc import loader;

from txtloader import txtloader;

from opunit import opunit;

class xmlloader(saxutils.DefaultHandler,loader):

def __init__(self,fst):

self.fst=fst;

self.fst.remove({});

def load(self, filename):

f=open(filename);

parser = make_parser();

parser.setFeature(feature_namespaces,0);

parser.setContentHandler(self);

parser.parse(f);

f.close();

def startElement(self, name, attrs):

if name==’transducer’:

〈 start the transducer 154a 〉

if name==’state’:

〈 start the state 154b 〉

if name in [’transition’, ’transduction’]:

〈 start the transition or transduction 155b 〉

def endElement(self, name):

if name==’state’:

〈finish the state 155a 〉

if name==’transducer’:

〈finish the transducer 156b 〉

�

CHAPTER 6. FST-TOOLS 154

This code doesn’t really do anything, it’s merely a skeleton, that we will fill, in

this section. The load-funciton registers the xmlloader class as content-handler

for the XML-file, and calls the parse-function, that starts the parsing process.

Whenever the SAX-parser for example comes across an opening transducer-

tag, it calls startElement, and sets the name-parameter to transducer. When it

finds the closing transducer-tag, it calls endElement, and sets name to transducer.

6.4.1 Initializing the Transducer

〈 start the transducer 154a 〉 ≡

self.statenos={};

self.nextstateno=0;�

Macro referenced in 153.

All we have to do, to initialize the transducer, is to initialize the statenos-

dictionary, that maps the XML-tag’s IDs, to indices of the self.fst-array, and

set self.nextstateno to 0. This is where we keep track of the index, that the

next state, we come across will get.

6.4.2 Handling States

This is how we initialize a new state:

〈 start the state 154b 〉 ≡

self.curst={};

self.statenos[attrs.get(’id’).encode(’ascii’,’ignore’)]=self.nextstateno;

self.nextstateno=self.nextstateno+1;�

Macro referenced in 153.

First we initialize the self.curst-dictionary, where we will put together the

current state, so that we can simply append it to self.fst, when we’re done.

Then we add the current ID, and stateno to the statenos-dictionary.

CHAPTER 6. FST-TOOLS 155

〈finish the state 155a 〉 ≡

self.fst.append(self.curst);�

Macro referenced in 153.

6.4.3 Handling Transitions and Transductions

This is quite simple. The following outline shouldn’t need any further explana-

tion.

〈 start the transition or transduction 155b 〉 ≡

〈 read the output into op 155c 〉

〈 read the target into trg 155d 〉

〈 read the signal into sig 156a 〉

self.curst[sig]=[trg,op];�

Macro referenced in 153.

We assume that op=0. If the key output is specified, we set op to its value.

〈 read the output into op 155c 〉 ≡

op=0;

if attrs.has_key(’output’):

op=string.atoi(attrs.get(’output’,’0’).encode(’ascii’,’ignore’));�

Macro referenced in 155b.

We set target to the target-attribute’s value. Note that this attribute is spec-

ified as mandatory in the DTD, so we don’t have to handle the default-case in

which no such attribute is specified.

〈 read the target into trg 155d 〉 ≡

trg=attrs.get(’target’).encode(’ascii’,’ignore’);�

Macro referenced in 155b.

If we are handling a transition, we simply set sig to the signal-attribute’s value.

If we are handling a transduction we insert a dummy-signal, that will get replaced

CHAPTER 6. FST-TOOLS 156

later. This dummy signal takes the form #T#<filename>, if we are talking about a

text-file as external FST. (That’s the only external resource, that is implemented

so far).

〈 read the signal into sig 156a 〉 ≡

if name==’transition’:

sig=attrs.get(’signal’).encode(’ascii’,’ignore’);

else:

sig=’#T#’+attrs.get(’txt’).encode(’ascii’,’ignore’);�

Macro referenced in 155b.

6.4.4 Putting Together the Transducer

What we have at this point in processing is a data-structure, that could al-

most be a transducer, with two differences: signals can be pseudo-signals like

#T#testdta1.txt, marking a spot, were we have to insert an external trans-

ducer, and targets aren’t indices in the array, but strings with the XML-id’s of

the targets.

〈finish the transducer 156b 〉 ≡

〈 replace xml-ids of targets by array-indices 157a 〉

〈 insert external transducers replacing the pseudo-signals 157b 〉�

Macro referenced in 153.

We can simply replace the XML-id’s by array-indices using the data we collected

in the statenos-dictionary.

CHAPTER 6. FST-TOOLS 157

〈 replace xml-ids of targets by array-indices 157a 〉 ≡

k=0;

while k<len(self.fst):

for key in self.fst[k].keys():

if self.fst[k][key][0]!=’fin’:

newt=self.statenos[self.fst[k][key][0]];

else:

newt=-1;

self.fst[k][key][0]=newt;

k=k+1;

�

Macro referenced in 156b.

Handling external transducers isn’t very complicated either, given that the actual

algorithmic work behind this is done by the opunit.

〈 insert external transducers replacing the pseudo-signals 157b 〉 ≡

k=0;

while k<len(self.fst):

for key in self.fst[k].keys():

if key[:3]==’#T#’:

fs2=[{}];

txtloader(fs2).load(key[3:]);

opunit(self.fst).join(k,fs2,self.fst[k][key][0]);

del self.fst[k][key];

k=k+1;�

Macro referenced in 156b.

If we come across a pseudo-signal, we simply load it using the txtloader, and

join it into the current transducer.

CHAPTER 6. FST-TOOLS 158

6.5 The TXT-Loader

It is the txtloader’s job to open a text-file such as the testdta1.txt-file at the

beginning of this chapter, and convert it to an FST.

Let’s have a look at the class’s basic outline:

"txtloader.py" 158 ≡

from misc import loader;

import string;

class txtloader(loader):

def __init__(self,fst):

self.fst=fst;

def _inserttrans(self,signal,target,output):

〈 insert a single transition into the current fst 164 〉

def _insertpath(self,entr,output):

〈 insert transition into the current fst making up to a path described by entr 163 〉

def _addstring(self,entry,output):

〈 insert the path described by entry to the current fst 161a 〉

def _resetall(self,node):

〈 reset output-signals along a path to 0 166b 〉

def _resetwherepossible(self,node):

〈 call resetall, for every path, where it is needed 166a 〉

def load(self,filename):

〈main function 159a 〉�

CHAPTER 6. FST-TOOLS 159

Because python’s object-oriented capabilities are actually quite poor, but still suf-

ficient for our needs, we will have to introduce a new convention: Every function,

that is not intended to be called by an external caller, begins with an underscore.

I absolutely admit that the above code-snippet may look cryptic, and do

nothing but confuse the reader. However I hope that the subsequent sections,

that reveal the details of these functions, will also make this clear.

Let us begin by looking at the main function:

〈main function 159a 〉 ≡

f=open(filename);

line=f.readline();

while line!=’’:

line=string.replace(line,’\n’,’’);

〈process the line 159b 〉

line=f.readline();

self._resetwherepossible(0);

f.close();�

Macro referenced in 158.

This is no big deal: Iterate through a textfile, and call resetwherepossible(0)

when finished. Details of the resetting are handled in section 6.5.2.

We will hear about the resetting later. Let’s first concentrate on the process-

ing:

〈process the line 159b 〉 ≡

spl=string.split(line);

word=spl[1];

no=string.atol(spl[0]);

word=word+’&’;

self._addstring(word,no);�

Macro referenced in 159a.

CHAPTER 6. FST-TOOLS 160

q0 q1 q2 q3 q4 q5
x a b dc

q6
e

-1
&

Figure 6.1: A part of an FST containing the string ”xabcde”

There’s still nothing revolutionary about that: split up each line by the default

whitespace-delimiter into a word, and a number this word will get mapped to.

Before adding the string to the current FST, we append the &-special-signal, to

make sure our transducer terminates properly. Consider the string hand and

handy. Once we have hand in the FST, if we want to add handy, we will need

a state such as {’&’:(-1,0),’y’:(42,0)}. Instead of implementing this as a

special-case in the inserting-procedure, we just define every word to have a final

&.

6.5.1 Adding a String

Now how do we go about adding a string into the current transducer?

Consider an example, taken from our testdta1.txt-file again, where the

string xabcde is already in the transducer. That situation is depicted in figure

6.1. The word we want to add to this transducer is the word xabfgh. The first

thing we would have to do is find out what portion of the current FST could be

reused for the new word. Such an algorithm, let’s call it A1, would find out that

we would have to add the path fgh to the node q4.

After that all we would have to do is add a state q7 with a transition &→ −1,

a state q8 with a transition h → q7 and state q9 with the transition g → q8, so

we could simply add the transition f → q9 to the state q4, leaving the FST like

depicted in figure 6.2, which is exactly what we wanted to achieve. Let’s call that

algorithm A2

CHAPTER 6. FST-TOOLS 161

q0 q6 q5 q4 q3 q2
x a b dc

q1
e

-1
&

q9 q8
g

f

q7
h

-1
&

Figure 6.2: A part of an FST containing the string ”xabcde” and ”xabfgh”

〈 insert the path described by entry to the current fst 161a 〉 ≡

〈do A1 161b 〉

〈do A2 162 〉�

Macro referenced in 158.

Now let’s go back one step, and have a more detailled look at A1.

〈do A1 161b 〉 ≡

curst=0;

cure=0;

while cure<len(entry) and self.fst[curst].has_key(entry[cure]):

〈 output-signal handling for FST-traversal when inserting 165 〉

curst=self.fst[curst][entry[cure]][0];

cure=cure+1;�

Macro referenced in 161a.

The principle is quite straightforward: Iterate through the characters of the string

we should add, and try to traverse the FST, while doing so. We do the traversal by

setting the curst-variable to the state pointed to by a transition from the current

state, which has as a signal, the character we are currently at. We terminate,

when no such transition is in the current state, or we run out of characters from

the input string.

Note that there is another condition, that makes our loop terminate, that isn’t

explicitly mentioned in the while-condition. The case I’m talking about is, when

we run out of input-states from the FST, or, putting it differently, that the FST

terminates, while we traverse it. We never actually reach the state -1, because

CHAPTER 6. FST-TOOLS 162

that would require us to follow the terminating transition from & to -1. This will

obviously never happen, since the symbol & isn’t (conceptually speaking) defined

in the input string.

In each case we leave the curst-variable with the index, where we have to

add the new path, and the cure-variable at the first index of the string, that

should be part of the new path (since we weren’t able to follow that particular

signal in the FST). That means the new path should be entry[cure:], to stay

in python-terminology.

Note that we haven’t mentioned the output-signals yet. We will talk about

them in section 6.5.2, which is why we leave a placeholder in the code for output-

signal-handling.

〈do A2 162 〉 ≡

if (cure+1)<len(entry):

stno=self._insertpath(entry[(cure+1):],output);

self.fst[curst][entry[cure]]=[stno,output];

else:

self.fst[curst][entry[cure]]=[-1,output];�

Macro referenced in 161a.

The details of the A2-algorithm reveal two cases we handle seperately.

The one from the if-block is the standard-case. For example, when we found

that we have to add the fgh path to the q4-state. The first thing we do is let

the insertpath-function do its work, and insert the path gh. Then we simply

add the transition, leading to that path, to the current state. Note that at this

point in processing we simply add the output-signal to every transition. Again

the reader is referred to section 6.5.2 for the details.

The else-block is entered when the string we are inserting is in fact a substring

of one that is already in the FST. In this case entry[(cure+1):] is undefined

because the index cure+1 is already out of bounds (that is what we check in the

CHAPTER 6. FST-TOOLS 163

if-condition). Or, to put it differently, entry[cure] is already the &-signal. In

this case we don’t call the insertpath-function, and set the target to -1.

Adding a Path

In the previous section we blindly called a function named insertpath that

inserts a path to the FST, and returns the index of the first state in this transducer

of the newly created path.

〈 insert transition into the current fst making up to a path described by entr 163 〉 ≡

if len(entr)==1:

return self._inserttrans(entr[0],-1,output);

else:

stno=self._insertpath(entr[1:],output);

return self._inserttrans(entr[0],stno,output);

�

Macro referenced in 158.

We already mentioned some of the behavioral details of this routine, in the pre-

vious section. Although it could easily be formulated as an iterative routine, I

chose a recursive one, which makes it more readable, but the algorithm is trivial

anyway.

If the path’s length is only one character, we simply insert a transition leading

to the -1-state, by calling the inserttrans-function.

If it is longer than one character, we insert the path entr[1:] (which is the

input-path with the first character stripped off), by recursively calling ourselves,

and insert a transition to the path that was just inserted. The signal that fires

that transition is, of course, the character we just stripped off.

Inserting a single transition is also trivial:

CHAPTER 6. FST-TOOLS 164

q0

q6

q5

q4
q3 q2

x:1001

a:1001

b:1001

d:1001c:1001 q1
e:1001

-1
&:1001

q9 q8
g:1002

f:1002

q7
h:1002

-1
&:1002

q26

r:1006

q24
i:1006

-1
&:1006

q25
k:1006

q13 q10
i:1003

-1
&:1003

q11
k:1003

q14
n:1003 n:1003

q12
k:1003

q18
q17 q16

d:1004c:1004 q15
e:1004

-1
&:1004

q23 q22
g:1005

f:1005

q21
h:1005

-1
&:1005

q20

a:1004

q19
a:1004 b:1004

Figure 6.3: What our FST would look like without resetting output-signals

〈 insert a single transition into the current fst 164 〉 ≡

newp={signal:[target,output]};

self.fst.append(newp);

return len(self.fst)-1;�

Macro referenced in 158.

6.5.2 Output

Figure 6.3 shows what our FST would look like, if we would run our program like

this. The structure is already completed, also the signals are already as intended,

the only thing that is a little bit confusing in figure 6.3 are the output-signals

(that can be found following the colon in the arc’s captions).

Until now we just set the output-field of each transition to the output of the

path that this transition was originally created for. Of course we only want to

do output once.

Obviously we cannot create output on any transition, that directly or indi-

rectly leads to a decision-state. (That is a state with more than one transition),

because, when we enter such a transition, we never know which path we will take,

CHAPTER 6. FST-TOOLS 165

q0

q6

q5

q4
q3 q2

x

a

b

d:1001c:1001 q1
e:1001

-1
&:1001

q9 q8
g:1002

f:1002

q7
h:1002

-1
&:1002

q26

r:1006

q24
i:1006

-1
&:1006

q25
k:1006

q13 q10
i:1003

-1
&:1003

q11
k:1003

q14
n:1003 n:1003

q12
k:1003

q18
q17 q16

d:1004c:1004 q15
e:1004

-1
&:1004

q23 q22
g:1005

f:1005

q21
h:1005

-1
&:1005

q20

a

q19
a b

Figure 6.4: What the additional line of code does to our transducer.

once the decision node is reached.

Therefore we can add the following line of code to our program:

〈 output-signal handling for FST-traversal when inserting 165 〉 ≡

self.fst[curst][entry[cure]][1]=0;�

Macro referenced in 161b.

.

This makes sure, that when we traverse the FST, in order to find out where

to append a new path, when we add a string (what was previously called A1) we

set all output-signals of transitions along that way to 0. Figure 6.4 shows how

the FST looks, after adding this line of code.

Note that it’s not possible to ”mistakenly” reset ALL output-signals, since at

least the &-transition, will never be touched by this routine.

The second thing we have to make sure is that, after we’ve done output once,

we don’t do it again. This is what the resetwherepossible-routine does.

CHAPTER 6. FST-TOOLS 166

〈 call resetall, for every path, where it is needed 166a 〉 ≡

if node==-1:

return;

for key in self.fst[node].keys():

if self.fst[node][key][1]==0:

self._resetwherepossible(self.fst[node][key][0]);

else:

self._resetall(self.fst[node][key][0]);�

Macro referenced in 158.

We will see code that looks like this a lot more often in the program. This is how

we recursively traverse the FST. For every transition with an output-signal we call

the resetall-function for the subtree of the FST, that has as root-element the

target of the transition. For every transition that doesn’t have an output-signal

we call ourselves.

〈 reset output-signals along a path to 0 166b 〉 ≡

if node==-1:

return;

for key in self.fst[node].keys():

self.fst[node][key][1]=0;

self._resetall(self.fst[node][key][0]);

�

Macro referenced in 158.

This is also quite simply a recursive transition of the FST, that sets every output-

signal along its way to 0.

After that we have the final product of this class, that is shown in figure 6.5.

CHAPTER 6. FST-TOOLS 167

q0

q6

q5

q4
q3 q2

x

a

b

dc:1001 q1
e

-1
&

q9 q8
g

f:1002

q7
h

-1
&

q26

r:1006

q24
i

-1
&

q25
k

q13 q10
i

-1
&

q11
k

q14
n:1003 n

q12
k

q18
q17 q16

dc:1004 q15
e

-1
&

q23 q22
g

f:1005

q21
h

-1
&

q20

a

q19
a b

Figure 6.5: Product of the TXT-Loader.

6.6 FST-Operations

After these little warm-up rounds, we will have to discuss the core-component

of the FST-toolkit: The opunit (As I already mentioned short for OPerational

UNIT). The opunit is capable of doing two things: appending an FST to an

existing one, and joining two FSTs ”in parallel”.

Let’s have a look at the class:

CHAPTER 6. FST-TOOLS 168

"opunit.py" 168 ≡

import string;

class opunit:

def __init__(self,fst):

self.fst=fst;

def _appendfst(self, add, anode, target):

〈 append a complete FST to the current one 169 〉

def appendfst(self, add):

self._appendfst(add, 0, -1);

def _join(self, bnode, bop, add, anode, aop, target):

〈 join an FST to the current one 170a 〉

def join(self, bnode, add, target):

self._join(bnode, 0, add, 0, 0, target);

�

6.6.1 Appending an FST

Appending an FST to the current one requires us to read every state from the new

transducer, append it to the self.fst-array, and recode every target-reference

to an index of the new array.

CHAPTER 6. FST-TOOLS 169

〈 append a complete FST to the current one 169 〉 ≡

if anode==-1:

return target;

newdic={};

for key in add[anode].keys():

n=self._appendfst(add,add[anode][key][0],target);

newdic[key]=[n,add[anode][key][1]];

self.fst.append(newdic);

return len(self.fst)-1;�

Macro referenced in 168.

Again, the basic structure of the code is a recursive traversal of the tree, that

we want to add. We compile each state, that we want to add to the new FST

by first recursively appending the subtree pointed to by each transition in the

current state, and adding a transition to that newly added subtree to the new

state, leaving the input- and output-signal untouched, and recoding the target to

the return-value of the recursive call. Then we append the newly created state to

the self.fst-array, and return the index that this state just got in that array.

6.6.2 Joining an FST

First of all, we have to define, what exactly we mean by joining: Suppose we

have a transducer T 1, accepting the set of strings S1, and a second transducer

T 2, accepting the set of strings S2. Then joining would produce a transducer T 3,

accepting the set of strings S3 = S1 ∪ S2.

In our case the join-function receives a parameter bnode, which is the root-

node of that subtree of self.fst, that will be joined. The tree that we will join

CHAPTER 6. FST-TOOLS 170

to that is the add-FST, and anode points to the root-node of the subtree of add,

that will be joined. target, is the target-state, that all paths from the add-FST

will ultimately lead to. (That is, the -1-signal will be recoded to that value in the

add-FST). aop and bop are part of the recursive algorithm that will be described

in greater detail later.

〈 join an FST to the current one 170a 〉 ≡

for key in add[anode].keys():

〈 set aope and bope to the output ”carried over” from the add or base-FST 170b 〉

〈do the joining 171 〉

�

Macro referenced in 168.

One of the more complex problems in this context, is to handle output-signals. In

some cases output-signals have to be ”shifted” along a path when new decision-

nodes enter the FST. That is what we need the aop and bop-parameters for. We

use aop to ”carry over” output-signals from the add-FST, and bop to do the same

thing with the base-FST (that is self.fst).

〈 set aope and bope to the output ”carried over” from the add or base-FST 170b 〉 ≡

aope=aop;

if aope==0:

aope=add[anode][key][1];

bope=bop;

if bope==0 and self.fst[bnode].has_key(key):

bope=self.fst[bnode][key][1];

self.fst[bnode][key][1]=0;�

Macro referenced in 170a.

The principle is quite simple: Recode aop to the current output-signal in the

add-FST, and bop to the current output-signal in the self.fst-FST, if they are

zero. (Later we will pass these in the recursive call).

CHAPTER 6. FST-TOOLS 171

If we ”pick up” an output-signal from the base-FST for carrying it over to a

later state, we also have to set the current output-signal to 0.

〈do the joining 171 〉 ≡

if self.fst[bnode].has_key(key):

self._join(self.fst[bnode][key][0],bope,add,add[anode][key][0],aope,target);

else:

if len(self.fst[bnode].keys())==1:

self.fst[bnode][self.fst[bnode].keys()[0]][1]=bope;

self.fst[bnode][key]=[self._appendfst(add,add[anode][key][0],target),aope];�

Macro referenced in 170a.

If it is possible to follow a transition in the base-FST’s current state, having the

same signal as the current transition of the current state in the add-FST, we

recursively call ourselves, for the target-states.

Otherwise, that is, in case we found the state where we have to add the new

subtree, we use appendfst to add it to self.fst, linking it to the target we got

as a parameter. The output is of course the aop-value we carried over.

If by doing so the state would become a decision state, we also have to set

the output-signal to the bop-value, we carried over.

CHAPTER 6. FST-TOOLS 172

6.7 The Optimizer

"optimizer.py" 172 ≡

import string;

class optimizer:

def __init__(self,fst):

self.fst=fst;

def _joinpossible(self, compare, modify):

〈 join a node to each joinable node 174b 〉

def _joinnodes(self,st):

〈 call joinpossible for each node 174a 〉

def _concatsubtree(self,curst):

〈 concatenate linear paths through the FST, leaving longer signals 177 〉

def _notorphaned(self,orph,curst):

〈find out whether orph is not an orphan of self.fst’s subtree curst 179a 〉

def _resetorphs(self):

〈 reset all orphaned states in the FST 179b 〉

def optimize(self):

self._joinnodes(0);

self._concatsubtree(0);

self._resetorphs();

�

CHAPTER 6. FST-TOOLS 173

q0 q4 q3 q2
dc:1001 e

q9 q8
g

f:1002

h

q13

q10
i

-1
&

q11
k

q14
n

q12k

q18
c:1004

f:1005

n:1003

q6

q20

x
q5

a b

r

a
q19

a b

Figure 6.6: An FST after joining.

6.7.1 Joining nodes

In order to write a routine ”optimizing” a transducer, we have do define, what

exactly we mean by ”optimal”. Figure 6.6 shows a ”more optimal” version of the

same FST, shown in figure 6.5. Now what exactly happened to it from figure 6.5

to figure 6.6?

We quite inaccurately refer to that process as ”joining”, because we already

used this terminus for ”parallely cascading” two transducers, in the previous

section. Note that this has nothing to do with what we are doing here.

It is apparent in figure 6.5, that the paths de&, gh& and ki& are all redundant,

and even within these redundant paths there is a redundancy, namely the states

q1, q7, q24, q10, q15, q21, which are basically all the same. Our process of ”joining”,

defines a means to get rid of these redundancies.

The basic iteration-pattern I chose was straightforward, and I suppose it’s not

quite optimal, but simple, readable and easily understandable.

CHAPTER 6. FST-TOOLS 174

〈 call joinpossible for each node 174a 〉 ≡

if st==-1:

return;

for sig in self.fst[st].keys():

self._joinnodes(self.fst[st][sig][0]);

self._joinpossible(st,0);�

Macro referenced in 172.

I guess there’s nothing to say about that. It’s a simple depth-first, left-to-right,

postprocessing tree-traversal, the ”processing” being abstracted by a procedure-

call to joinpossible.

〈 join a node to each joinable node 174b 〉 ≡

if modify==compare:

return 0;

if modify==-1:

return 0;

〈find out whether the compare-node is joinable to any of the subtrees of modify 175 〉

if not poss:

return poss;

return self.fst[compare]==self.fst[modify];�

Macro referenced in 172.

We process each node by again traversing the FST, ”comparing” each node in

the tree, to each other node. (We will see that the term ”compare” is not quite

correct, but for the time being it will do). Each time this procedure is entered,

we are actually dealing with two nodes, compare and modify.

CHAPTER 6. FST-TOOLS 175

The compare-node is that node this procedure was originally called for from

joinnodes. It never gets touched. The modify-node is the one we traverse

in this recursive procedure. This is the one, that will get modified if possible,

because joinpossible not only returns whether a join is possible, it also carries

out the joining if possible.

If these two nodes are actually the same, we can, of course, not join them.

If the node, we are attempting to modify is already the -1-node it is also not

possible. If not all the subtrees allow joining, we also can’t do it. If for all these

reasons we are still in the procedure, the joining is possible if, and only if, the

states are completely equal.

One might think that conceptual ”equality” is actually different from the ==-

operator, because python would check whether each entry in the dictionary has

exactly the same signal mapping to exactly the same (target,output)-tuple.

In figure 6.5 for example the subtrees from q3 and q17 are actually equal, but

the python objects {’d’:(2,0)} and {’d’:(16,0)} are different. The trick,

that makes the == work correctly in this case, is, that we have already done

the joining of the subtrees, at this point in processing. That means that the

subtree 16, and the subtree 2 will already be joined, therefore leaving the states

as {’d’:(2,0)} and {’d’:(2,0)}, which are obviously equal.

〈find out whether the compare-node is joinable to any of the subtrees of modify 175 〉 ≡

poss=1;

for sig in self.fst[modify].keys():

if self._joinpossible(compare, self.fst[modify][sig][0]):

self.fst[self.fst[modify][sig][0]]={};

self.fst[modify][sig][0]=compare;

poss=0;�

Macro referenced in 174b.

CHAPTER 6. FST-TOOLS 176

q0

q4

q10 -1q11

q18

q5

xa

nnkk:1003

aab

fgh:1005

cde:1001

i

rki:1006

fgh:1002

cde:1004

&

b

Figure 6.7: An FST after concatenating paths.

In order to find out whether all subtrees allow joining we first assume, that they

do. If we find, that one of the subtrees of the current modify-node is joinable to

the current compare node, then the modify-node itself cannot be joinable to it,

and we therefore set poss=0 in this case.

If we find out that one of the subtrees of the modify-node is joinable to the

compare-node, then we can modify the modify-node, by setting the target of the

transition, that we found to be joinable to the compare-state to compare itself,

and the old state to {}.

6.7.2 Concatenating Linear Paths

Figure 6.7 shows a version of our sample-FST, which is even more ”optimal”.

The background of this idea is purely technical. The FST will be handled by an

Intel 80468 or higher, and as I already mentioned, this processor can compare

a 32-bit-quantity as quickly as an 8-bit-quantity. In order to make use of that

capability this optimization-technique, is used, to create longer signals (of up to

32 bits) by concatenating signals, connecting non-decision-states.

CHAPTER 6. FST-TOOLS 177

〈 concatenate linear paths through the FST, leaving longer signals 177 〉 ≡

if curst<0:

return;

for thiskey in self.fst[curst].keys():

thisst=self.fst[curst][thiskey][0];

nextkey=’’;

if thisst!=-1:

nextkey=self.fst[thisst].keys()[0];

if nextkey!=’&’:

if thisst<0 or len(self.fst[thisst])>1 or (len(thiskey)+len(nextkey))>4:

self._concatsubtree(thisst);

elif len(self.fst[thisst])==1:

〈 concatenate the current and the next state 178 〉

return;�

Macro referenced in 172.

Yet another recursive traversal of the FST. For each transition in each state we

do the following: First we find out about the current key (thiskey), the current

state thisst, the key of the transition we might want to concatenate to the

current one nextkey.

If we are at the -1-state, at a decision-state or if we are about to produce

a signal with a length greater than 4, we go on to the next state and can not

do any further optimization. Otherwise, we can concatenate the current and the

next state.

CHAPTER 6. FST-TOOLS 178

〈 concatenate the current and the next state 178 〉 ≡

nextst=self.fst[thisst][nextkey][0];

self.fst[curst][thiskey+nextkey]=[nextst,self.fst[curst][thiskey][1]];

del self.fst[curst][thiskey];

self._concatsubtree(curst);�

Macro referenced in 177.

This routine finds out about the state, we have to link the current one to, adds

the new transition for the signal thiskey+nextkey, deletes the old one, and calls

the procedure for the current state again, to see what else we can optimize in the

current state, before breaking off the currently running function. This algorithm

may also seem a bit naive, but for our purposes it will do.

6.7.3 Removing Orphaned States

While concatenating the paths we often leave states as ”orphans”, that means

when recursively tranversing the FST, we never come across these states, yet they

are still in the array. For easier processing by subsequent routines that operate on

these FSTs it would be fine, to set all the states in the array that are completely

irrelevant to the FST to a defined value, say {}.

We divide this algorithm into two parts. Finding out whether a specific state

is not an orphan, that means it can be reached through recursive traversal, is

one routine, and another routine goes iteratively through the array, checking for

each state, whether it is not an orphan. If it is not not an orphan, it can safely

be reset to {}.

CHAPTER 6. FST-TOOLS 179

〈find out whether orph is not an orphan of self.fst’s subtree curst 179a 〉 ≡

if curst==-1:

return 0;

if orph==curst:

return 1;

for thiskey in self.fst[curst].keys():

if self._notorphaned(orph,self.fst[curst][thiskey][0]):

return 1;

return 0;�

Macro referenced in 172.

The -1 state is not an orphan, if the current state, is the state, in question of

being an orphan, it is definitely not an orphan, because we would never have

reached it otherwise.

Then we simply assume, that it is not not an orphan, and check in each

subtree, whether we can find the state there. If we find any subtree, where that

state is not an orphan, it is also not an orphan of the current subtree.

〈 reset all orphaned states in the FST 179b 〉 ≡

k=0;

while k<len(self.fst):

if not self._notorphaned(k,0):

self.fst[k]={};

k=k+1;�

Macro referenced in 172.

This is, for a change, not a recursive traversal of the FST, but a simple linear

iteration through it. While doing that iteration we simply set every state, that

CHAPTER 6. FST-TOOLS 180

is found not to be not an orphan to {}.

6.8 Future Directions of this Toolkit

This section aims to give an overview of future directions of this toolkits. The

implementation, that was presented in the previous sections is basically a ”quick

’n dirty”-hack leaving (a lot of) room for further optimization.

6.8.1 Probabilistic Data

This toolkit handles states with transitions, that are not in any way ordered.

If we are trying to model a dictionary for a morphological parser for natural

language processing, using this software, we have some very valuable statistic

data available, making statements about how likely a certain transition in a state

is to be followed. That makes it possible to order transitions by their likeliness,

potentially shortening the number of transitions that have to be handled, before

the correct one is found.

6.8.2 Optimizations

Most of the optimization-algorithms that were used in this implementation aren’t

actually finding any ”optimum”, they rather make it ”a little bit more optimal”.

For example when deciding which transition should do the output I followed a

pure intuition, when deciding that this is always the transition leading away from

the last decision-state for the specific path. When concatening the linear paths

it was a pure convenience for the programmer, to always concatenate the signals

in an order that naturally arises from the traversal of the FST, although in some

cases this might not be optimal.

CHAPTER 6. FST-TOOLS 181

6.8.3 External FSTs

It might be desireable to be able to insert a transduction reading an external

FST from another XML-file, so that FSTs could easily be modularized.

6.8.4 Dirty States

When the opunit does certain operations it sometimes leaves behind dirty states

such as {’&’: (42,0)}, of course such a transition could be completely avoided.

6.8.5 Parameterizability

At the moment this code works only in a quite limited amount of operating

environments. The framework should extend its parameterizability, providing a

means of easily porting it, for example to other processors or other assemblers

and calling-conventions.

Chapter 7

Parser

7.1 General Considerations

As we have quite extensively elaborated on the subject of parsing in the first part

of this paper, it is not neccessary to provide a more detailled account of what

parsing is all about, and what exactly we expect our parser to do, in this section.

The parser we want to construct for the LISA-project is an Earley-parser de-

signed mainly according to considerations regarding performance and simplicity.

Although whereever possible we try to make use of general interfaces, so

the parser can easily be extended (most notably the event-oriented parseforest-

traverser, we will hear about later), we keep focus on a simple task: Reading a file

of plain Ascii-text, using a morphological analyzer and building up an effective

representation of a parse-forest, that is subsequently translated into Prolog.

This time the language of choice was C (plain Ansi/ISO-C, not C++),

rather than Python, because the much lower level that C operates on seemed

to fit not only out of performance-reasons, but also for explaining the data-

and runtime-structures that are used, when building a parser. To me it seemed

inappropriate to use a language like Python or make extensive use of standard-

libraries (like Mfc) providing high-level data-structures, because I wanted to

182

CHAPTER 7. PARSER 183

make these data-structures transparent to the reader, rather than follow the

”never mind what’s in the black box”-zeitgeist software-engineering seems to be

following nowadays.

7.1.1 Representing the Text

The text we want our parser to operate on is represented in a way, as if we inteded

it to be read by humans. The test-files looks like this:

"test.txt" 183 ≡

Kommissar Klug is on the verge of solving one of his

most complicated cases. He knows that at least two

of the suspects Peter, Frank, Richard and Steve are involved. If he

can prove Richard’s guilt, he will also know that Frank and

Peter are involved. Proving Steve’s participation he can

confirm Peter’s innocence. "Allright", he mumbles

under his breath, "The case isn’t closed yet, but

we can already arrest someone".

Who is Kommissar Klug talking about?

�

It is definitely not what one would call machine-readable, but after all, under-

standing this kind of input is what this paper is all about.

7.1.2 Representing the Grammar

An Earley-Parser can be thought of as having two ”inputs”. The text it should

parse, and the grammar it should use for parsing. Unlike techniques like LR-

parsing (and its generalization for ambiguous grammars, described by Tomita

(1987)) that use precomputed LR-tables, an Earley-Parser directly operates on a

CFG.

CHAPTER 7. PARSER 184

I chose to represent the CFG in C as a three-dimensional array of bytes.

〈define the data-type of the grammar 184 〉 ≡

#define GRATYPE(id) const char id[NUM_NONTERM][12][MAX_RULLEN + 1]

#define MAX_RULLEN 3�

Macro referenced in 190b.

That the Earley-parser directly operates on CFGs has the big advantage that

it is possible for an Earley-parser to read the CFG at runtime. However, for

simplicity’s sake, I chose not to make use of this, but rather to hardcode the

grammar in the initialization of a global variable named grammar.

CHAPTER 7. PARSER 185

〈define the grammar 185 〉 ≡

GRATYPE(grammar)={

{

{2, NTGS_CL, TGS_EOS},

{2, NTGS_WHQ, TGS_EOS},

GRA_STOP

}, {

{2, TGS_DET, NTGS_NP},

{2, TGS_ADJ, NTGS_NP},

{2, TGS_FUNC, NTGS_NP},

{2, TGS_FUNC, NTGS_CL},

{2, TGS_N, NTGS_NP},

{2, TGS_NAME, NTGS_NP},

{2, NTGS_NP, NTGS_PP},

{2, NTGS_PP, NTGS_NP},

{3, TGS_ADJ, TGS_P, NTGS_NP},

{1, TGS_N},

{1, NTGS_NL},

GRA_STOP

}, {

{2, NTGS_VCL, NTGS_NP},

{2, NTGS_VP, TGS_ADV},

{2, NTGS_VP, NTGS_PP},

{1, NTGS_VCL},

{2, NTGS_VCL, TGS_ADJ},

{2, NTGS_VP, TGS_FUNC},

GRA_STOP

}, {

{2, TGS_P, NTGS_NP},

{2, TGS_P, NTGS_VP},

GRA_STOP

}, {

�

Macro defined by 185, 186.

Macro referenced in 191a.

CHAPTER 7. PARSER 186

〈define the grammar 186 〉 ≡

{1, TGS_NAME},

{2, TGS_NAME, NTGS_NL},

{2, TGS_FUNC, NTGS_NL},

GRA_STOP

}, {

{2, NTGS_NP, NTGS_VP},

{1, TGS_EX},

{3, TGS_FUNC, NTGS_CL, NTGS_CL},

{2, NTGS_VP, NTGS_CL},

{2, NTGS_QCL, NTGS_CL},

{2, NTGS_CL, NTGS_QCL},

{3, NTGS_CL, TGS_FUNC, NTGS_CL},

{2, NTGS_PP, NTGS_VP},

GRA_STOP

}, {

{3, TGS_FUNC, NTGS_VP, NTGS_NP},

{2, TGS_FUNC, NTGS_VP},

{3, TGS_FUNC, NTGS_VP, NTGS_VP},

GRA_STOP

}, {

{1, TGS_V},

{2, TGS_V, TGS_V},

{2, TGS_V, TGS_P},

GRA_STOP

}, {

{3, TGS_QM, NTGS_CL, TGS_QM},

GRA_STOP

}

};�

Macro defined by 185, 186.

Macro referenced in 191a.

CHAPTER 7. PARSER 187

This initialization-string already provides us with a full insight of this data-

structure. The first dimension (the one dereferenced with grammar[SYM]) wouldn’t

be neccessary, but later in this paper we will see why it is more efficient. It refers

to a two-dimensional array, that holds all rules of the form SYM → α. We

need the second and third dimension, because there is presumably more than one

such rule, and in each of the rules α can have more than one symbol. Therefore

grammar[1][2][3]) would dereference the third symbol of α in the second rule

that takes the form S → α, given that S is assigned the numeric value 1.

Boundaries for the first array-dimension are given via NUM NONTERM, the count

of nonterminal symbols. Throughout this program, we will try to keep consistent

with the convention that data-structures of dynamic size are terminated by a

special symbol. This is why boundaries of the second array-dimension are given

only implicitly with the GRA STOP symbol. When iterating through the rules for

grammar[SYM] this symbol should be read as ”no more rules available for SYM”.

GRA STOP is defined as

〈define GRA STOP 187 〉 ≡

#define GRA_STOP {0}�

Macro referenced in 190b.

The only exception to this is the data-structure representing a single CFG-rule,

the third dimension of our grammar-array. Instead of terminating a rule with a

special symbol, the zeroth element of the rule carries the number of symbols this

rule has, similar to the way Pascal represents strings. We make this exception,

because providing the symbol-count makes testing a state for completion a lot

more efficient. (All one would have to do then is compare the position of the •

and the number of symbols in the rule, instead of having to iterate over the rule

and count the symbols).

To make code more readable the numeric value of each symbol is defined using

C’s precompiler.

CHAPTER 7. PARSER 188

〈define numeric values for non-terminal symbols 188 〉 ≡

#define NTGS_S 0

#define NTGS_NP 1

#define NTGS_VP 2

#define NTGS_PP 3

#define NTGS_NL 4

#define NTGS_CL 5

#define NTGS_WHQ 6

#define NTGS_VCL 7

#define NTGS_QCL 8

#define NUM_NONTERM 9�

Macro referenced in 190b.

The prefix NTGS stands for ”non-terminal grammar symbol”, while the prefix TGS

stands for ”terminal grammar symbol”. The NUM-macros provide the count of

terminal, respectively non-terminal symbols, and are very useful for bounding

arrays and for iterating over them.

CHAPTER 7. PARSER 189

〈define numeric values for terminal symbols 189a 〉 ≡

#define TGS_EOS 128

#define TGS_ADJ 129

#define TGS_ADV 130

#define TGS_DET 131

#define TGS_EX 132

#define TGS_N 133

#define TGS_NAME 134

#define TGS_P 135

#define TGS_V 136

#define TGS_FUNC 137

#define TGS_QM 138

#define NUM_TERM 11�

Macro referenced in 190b.

Note that the first non-terminal is assigned the numeric value 0, while the first

terminal is assigned the numeric value 128. This way the parser can easily dis-

tinguish terminals and non-terminals, by testing the most significant bit, and it

can easily map numeric-values to values used for indexing arrays, by erasing the

most significant bit of a terminal symbol’s numeric value.

Again for readability’s sake these operations are defined as precompiler-macros

〈define macros for distinguishing terminals and nonterminals 189b 〉 ≡

#define IS_POS(sym) (sym&0x80)

#define AS_POS(sym) (sym&0x7F)�

Macro referenced in 190b.

For forming human-readable output it is also desirable to provide a way of map-

ping numeric-values back to strings (called debug-symbols, therefore debsym for

short). This is done using two globally available string-arrays:

CHAPTER 7. PARSER 190

〈define arrays mapping numeric values back to strings 190a 〉 ≡

const char debsym_pos[NUM_TERM][5]={

"EOS", "Adj", "Adv", "Det", "Ex", "N", "Name", "P", "V", "Func", "QM"};

const char debsym_nt[NUM_NONTERM][4]={

"S", "NP", "VP", "PP", "NL", "CL", "WHQ", "VCL", "QCL"};�

Macro referenced in 191a.

Now we have everything we need to handle the grammar. This is what the

grammar-module looks like:

"grammar.h" 190b ≡

#ifndef HAVE_GRAMMAR_H

#define HAVE_GRAMMAR_H

〈define the data-type of the grammar 184 〉

〈define numeric values for non-terminal symbols 188 〉

〈define numeric values for terminal symbols 189a 〉

〈define GRA STOP 187 〉

〈define macros for distinguishing terminals and nonterminals 189b 〉

extern GRATYPE (grammar);

extern const char debsym_pos[NUM_TERM][5];

extern const char debsym_nt[NUM_NONTERM][4];

#endif

�

CHAPTER 7. PARSER 191

"grammar.c" 191a ≡

#include "grammar.h"

〈define the grammar 185, . . . 〉

〈define arrays mapping numeric values back to strings 190a 〉

�

7.2 A Simple Earley-Recognizer

In this section we will build a small Earley-recognizer that is declared as:

〈declaration for the main routine 191b 〉 ≡

int parse (FILE * f, struct chart **top, struct state **succ);�

Macro never referenced.

Its overall structure looks like this:

CHAPTER 7. PARSER 192

〈 implementation for the main routine 192a 〉 ≡

int

parse (FILE * f, struct chart **top, struct state **succ)

{

〈declarations for the parse-routine 195a, . . . 〉

if (feof (f))

return FALSE;

〈 create the chart (192b *top) 198a 〉

〈 create the initial state 195b 〉

〈work off the agenda 197a 〉

return TRUE;

}�

Macro referenced in 228.

The parse-routine returns a boolean value, corresponding to whether it could

successfully read from the input-file *f. The return-value has nothing to do with

whether the parse itself was successful or a syntax-error. The routine leaves the

address of the initial state where **top points to, and the address of the final

state in case of a successful parse or NULL in case of a syntax-error where **succ

points to.

The caller needs these two states in order to inspect the parse-forest we build

up during parsing, but in this section we shouldn’t be concerned with the parse-

forest, yet. All we want to do in this section is recognize whether the input is

syntactically correct or incorrect.

CHAPTER 7. PARSER 193

Note that we use the word chart here also for a single entry in what is com-

monly called the chart. To be precise this is the data-structure that holds all the

states corresponding to a specific position in the input, but this shouldn’t cause

any confusion, since the context usually makes it clear.

7.2.1 Basic data-structure

The top-level data-structure we will be operating on is a list of charts.

〈data-structure for the chart 193 〉 ≡

struct chart

{

struct statelist *itemtop;

struct statelist *itemtail;

〈 indices for the states in the chart 202a, . . . 〉

struct chart *next;

struct wordref *word;

〈numeric index for debugging-purposes 214b 〉

〈 general purpose pointer for the chart 227b 〉

};�

Macro never referenced.

Each item in the list holds two pointers referring to the top and the tail of a

statelist and a pointer referring to a wordref, because every word corresponds

to exactly one position in the input, and every chart corresponds to exactly one

position in the input.

struct statelist is a wrapper-structure for listing states in a linked list.

CHAPTER 7. PARSER 194

〈data-structure for listing states 194a 〉 ≡

struct statelist

{

struct state *st;

struct statelist *next;

};�

Macro never referenced.

struct wordref is a wrapper-structure that represents a word.

For now we keep focus on building a simple Earley-recognizer, and we are now

at the most central data-structure of the Earley-algorithm: the state.

〈data-structure for states 194b 〉 ≡

struct state

{

char rule_left;

char *rule_right;

char bul_pos;

struct chart *glb_pos;

struct chart *rul_pos;

〈pointers for the parse-forest 221, . . . 〉

〈 general purpose pointer for the state 227c 〉

};�

Macro never referenced.

Let’s have a look at the prominent initial state λ → •S[0, 0] and how we load it

into a struct state declared as

CHAPTER 7. PARSER 195

〈declarations for the parse-routine 195a 〉 ≡

struct state *ini;

char inirule[] = { 1, NTGS_S };

�

Macro defined by 195a, 196, 199, 215a.

Macro referenced in 192a.

〈 create the initial state 195b 〉 ≡

ini = (struct state *) immalloc (sizeof (struct state));

ini->rule_left = NTGS_LAMBDA;

ini->rule_right = inirule;

ini->bul_pos = 0;

ini->glb_pos = *top;

ini->rul_pos = *top;

〈 initialize the data-structures needed for the parse-forest (195c ini) 222a, . . . 〉�

Macro referenced in 192a.

First we allocate memory for this state using immalloc, which can be thought of

as doing the same as malloc.

The rest is rather self-explaining: rule left is the symbol on the left-hand-

side of the →. rule right is the rest of the grammar-rule. It is implemented as

a pointer to the grammar. bul pos indicates the position of the • in the state,

with the index starting at 0, which indicates that the bullet is at the far left.

When the bullet is at the far right then bul pos equals rule right[0]. (Recall

that this is where we keep the length of a grammar-rule).

glb pos and rul pos are what we’ve called the ”global position” and the

”rule-position” in the first part of this paper. In the examples we represented

these as numeric values used for indexing the list that contains the charts. Of

course this wouldn’t lead us anywhere in this case, since we’ve decided to im-

plement the chart-list as a linked-list. That’s why glb pos and rul pos are

CHAPTER 7. PARSER 196

implemented as pointers to the charts corresponding to the input-positions, that

would otherwise be indicated as numeric values.

7.2.2 The Agenda

Recall that the Earley-algorithm is able to dynamically manipulate its own run-

time structure by working off the chart while adding new states to the chart. The

agenda and the chart is actually the same. I use the word agenda for chart only

when I want to emphasize the chart’s role as a ”guide” through the runtime of

the parser.

First the parser gives itself something to do by enqueuing the initial state

to the agenda. Then it simply iterates over the agenda, interpreting each state

”along the way” until it finds an item in the agenda that tells it to stop doing so.

We simply use a pointer like

〈declarations for the parse-routine 196 〉 ≡

struct chart *cur;

�

Macro defined by 195a, 196, 199, 215a.

Macro referenced in 192a.

to iterate through the agenda. The iteration looks like this:

CHAPTER 7. PARSER 197

〈work off the agenda 197a 〉 ≡

enqueue (ini, *top);

(*top)->word = NULL;

cur=(*top);

for (;;)

{

struct wordref *curwr;

〈 assign an index for debugging-mode 215b 〉

〈 create the chart (197b cur->next) 198a 〉

〈 get the next word from the input and save it in curwr 198b 〉

cur->next->word = curwr;

〈print the current word for debugging 215c 〉

〈handle all states in the current chart 200 〉

〈do debug-output for the finished chart 219b 〉

if (cur->next->itemtop == NULL)

{

〈handle the syntax-error 201b 〉

}

cur = cur->next;

}

end:�

Macro referenced in 192a.

CHAPTER 7. PARSER 198

The infinite loop and the end-label might seem a bit awkward, but artificially

formulating a while-condition would even be worse (at least to my taste of ”coding

aesthetics”, but de gustibus non est disputandum). This way we can simply

terminate the recognizer by jumping to end whenever we find we are done with

the job. Note that break would also artificially complicate things since we would

have to break two loops at once.

〈 create the chart 198a 〉 ≡

@1 = (struct chart *) immalloc (sizeof (struct chart));

bzero (@1, sizeof (struct chart));�

Macro referenced in 192a, 197a.

Creating a new chart requires bzeroing it first, because some routines depend on

NULL-values indicating empty lists.

After creating a new chart we have to assign it to a word read from the input

(except for the top chart, which corresponds to that position in the input, where

nothing has been read so far).

〈 get the next word from the input and save it in curwr 198b 〉 ≡

curwr = NULL;

if ((cur->word == NULL) || (cur->word->morph & 0xF0000000))

{

curwr = getnextword (f);

if (curwr == NULL)

return FALSE;

}�

Macro referenced in 197a.

If cur == NULL (that is, if we are in the top chart), or if the POS of the word,

assigned to the current chart is not an end-of-sentence-character we can read

from the input. We don’t do any reading after having discovered the end of the

CHAPTER 7. PARSER 199

sentence, because reading beyond the bounds of the current sentence would ”read

away” a word, that will be needed in the next parse.

If the result of getnextword(f) is NULL we return FALSE because in that case

the premorpher found an EOF. This situation is considered a reading-error, and

not a syntax-error. Otherwise the result is saved in curwr.

The interpretation of the states in a chart is probably the most prominent

part of the Earley-algorithm.

Again we use a pointer-variable

〈declarations for the parse-routine 199 〉 ≡

struct statelist *curit;

�

Macro defined by 195a, 196, 199, 215a.

Macro referenced in 192a.

to iterate through the states in a chart. This iteration looks like this:

CHAPTER 7. PARSER 200

〈handle all states in the current chart 200 〉 ≡

for (curit = cur->itemtop; curit != NULL; curit = curit->next)

{

〈do debug-output of the current state 216 〉

if ((!(curit->st->rule_right == NULL))

&& (curit->st->rule_right[0] > curit->st->bul_pos))

{

if (IS_POS (curit->st->rule_right[curit->st->bul_pos + 1]))

scanner (curit->st);

else

predictor (curit->st);

}

else

{

if (curit->st->rule_left == NTGS_LAMBDA)

{

〈handle the successfullly finished parse 201a 〉

}

else

completer (curit->st);

}

}�

Macro referenced in 197a.

In the first part of this paper we already explained the working of the three basic

parts of the Earley-algorithm, the Predictor, the Scanner and the Com-

pleter. Recall that the Predictor is run for every state that has a nonter-

minal to its right, to ”expand” rules that could possibly lead to a solution, the

Scanner is called for every state that has a terminal to its right, to scan the

CHAPTER 7. PARSER 201

input, and the Completer is called for every complete state (that is a state with

the • at the far right) in order to advance rules that are looking for the symbol

we just proved the input to be interpretable as. Make sure you’ve completely

understood that section in the first part, before going on.

If the parse we were working on was successful, we simply save the state that

gave us this idea in *succ, and jump to the end.

〈handle the successfullly finished parse 201a 〉 ≡

cur->next = NULL;

(*succ) = curit->st;

goto end;�

Macro referenced in 200.

If the parse was not successful, we do the same, except for *succ which has to

take the value NULL in this case, as we’ve mentioned before.

〈handle the syntax-error 201b 〉 ≡

〈do debug-output for the syntax-error 217 〉

cur->next = NULL;

(*succ) = NULL;

goto end;�

Macro referenced in 197a.

7.2.3 Enqueuing and Indexing

Now that we’ve seen how we can work off states in the chart, let’s consider the

next question: How do the states get there? Traditional implementations of the

Earley-algorithm have a routine called Enqueue, that takes care of this. This

routine is called from the Predictor, Scanner and Completer functions to

enqueue a newly created state to a chart.

The most important feature of this routine is that it checks whether a given

state is already in the chart, before it actually adds the state to the chart. Op-

timizing this part is essential for achieving high performance, because the parser

CHAPTER 7. PARSER 202

spends most of its running time doing this check. (Profiler-results showed, that

the parser spent 54.74% of its total running time doing this check, when run

against our sample-file and sample-grammar!)

This is why I’ve tried to make that lookup as fast as possible, using a separate

index-structure, instead of iterating over all states in the chart, and checking

whether we “incidentally” come across one that equals the one we are looking

for.

〈 indices for the states in the chart 202a 〉 ≡

struct stateindex *idx;

�

Macro defined by 202a, 211a.

Macro referenced in 193.

〈definition of the struct stateindex 202b 〉 ≡

struct stateindex

{

struct state *st;

struct stateindex *less;

struct stateindex *greater;

};�

Macro never referenced.

The struct stateindex is a node in a heap. It refers to a state and two subtrees.

The subtree pointed to by *less contains all the states that are smaller, and the

subtree pointed to by *greater contains all the states that are greater than the

state pointed to by *st.

We decide whether a state is greater or smaller than another one using a

function called compare, where return values are interpreted anolagous to those

of strcmp. If s1 < s2 the return-value is negative, if s1 = s2 it is zero, if s1 > s2

it is positive. It doesn’t matter how this comparison is actually done, as long as

CHAPTER 7. PARSER 203

half of the comparisons return a negative, and half of the comparisons return a

positive value.

I implemented it like this:

〈 compare-implementation 203 〉 ≡

int

compare (struct state *s1, struct state *s2)

{

int rc;

if ((rc = (s1->rule_right - s2->rule_right)))

return rc;

if ((rc = (s1->bul_pos - s2->bul_pos)))

return rc;

if ((rc = (s1->glb_pos - s2->glb_pos)))

return rc;

if ((rc = (s1->rul_pos - s2->rul_pos)))

return rc;

〈 check data-structures for the parse-forest 226a 〉

return 0;

}�

Macro never referenced.

Unfortunately experimental results using a debugger showed that this function

doesn’t exhibit that feature. Most of the comparisons are positive. Creating a

better compare-function might be subject to further work on this parser, since the

parser spent 22.6% of its running time in this function. Providing a way to com-

pare two states with return-values of a better statistical distribution would also

dramatically speed up the find-routine, which uses 32.2% of the total running-

CHAPTER 7. PARSER 204

time.

Given a data-structure for indexing states in a heap, and a way of comparing

two states we can now implement find as standard heap-lookup.

〈 find-implementation 204 〉 ≡

struct stateindex **

find (struct stateindex **idx, struct state *st)

{

if ((*idx) == NULL)

return idx;

else

{

int rc = compare (st, (*idx)->st);

if (rc == 0)

return idx;

if (rc < 0)

return find (&((*idx)->less), st);

else

return find (&((*idx)->greater), st);

}

}�

Macro never referenced.

The only thing that might seem unfamiliar, is why we are working with pointers

to a pointer to an index (**idx), instead of using simple pointers to an index

(*idx). The reason is that we want to give the caller the possibility to modify

such a pointer, in order to append a state at the right node of the index.

CHAPTER 7. PARSER 205

〈 enqueue-implementation 205 〉 ≡

struct state *

enqueue (struct state *news, struct chart *chart)

{

struct stateindex **si;

si = find (&(chart->idx), news);

if ((*si) == NULL)

{

〈 add the state to the chart 206, . . . 〉

return news;

}

else

return (*si)->st;

}�

Macro referenced in 228.

Provided with these indexing-facilities enqueuing is quite straightforward. All we

have to do is see if we can find a given state in a given chart. If we can’t find it,

we add it and return the state we have just added. If we can find it, we return

the state that is equal to the one we were supposed to add to the chart instead.

CHAPTER 7. PARSER 206

〈 add the state to the chart 206 〉 ≡

struct stateindex *newsi;

add_to_listtail (&(chart->itemtop), &(chart->itemtail), news);

newsi = (struct stateindex *) immalloc (sizeof (struct stateindex));

newsi->less = NULL;

newsi->greater = NULL;

newsi->st = news;

(*si) = newsi;

�

Macro defined by 206, 211b.

Macro referenced in 205.

All we have to do, to actually add a new state to a chart, is append it to the

linked list we use for traversing the agenda using append to list (which is an

implementation of the well-known algorithm used for adding an element to the

tail of a linked list) and create a new index-item, that we add to that node of the

index the find-routine returned.

7.2.4 The Predictor

Recall that the Predictor is that part of the Earley-algorithm that takes care of

expanding states which have a nonterminal to the right of their •, and is therefore

responsible for the top-down nature of the parser.

CHAPTER 7. PARSER 207

〈 the Predictor 207 〉 ≡

int

predictor (struct state *st)

{

char sym;

int i;

〈do debug-output for the predictor 220a 〉

sym = st->rule_right[(unsigned int) st->bul_pos + 1];

for (i = 0; grammar[(unsigned int) sym][i][0] != 0; i++)

{

〈 add the current rule as a new state 208a 〉

}

return 0;

}�

Macro referenced in 228.

First the predictor finds out which symbol SYM is at the right of the • in the

state it was called for (*st). Then it iterates over all rules in the grammar that

have the form SYM → α. This is why we have partitioned the grammar in such

a way, because instead of having to iterate over all of the rules, and check the

symbol to the left of the • for equality with the symbol we want to expand, we

can simply iterate over all the rules in grammar[SYM].

CHAPTER 7. PARSER 208

〈 add the current rule as a new state 208a 〉 ≡

struct state *newst;

newst = (struct state *) immalloc (sizeof (struct state));

newst->rule_left = sym;

newst->rule_right = (char *) grammar[(unsigned int) sym][i];

newst->bul_pos = 0;

newst->glb_pos = st->glb_pos;

newst->rul_pos = st->glb_pos;

〈 initialize the data-structures needed for the parse-forest (208b newst) 222a, . . . 〉

enqueue (newst, st->glb_pos);�

Macro referenced in 207.

We initialize the fields bul pos, glb pos and rul pos according to the standard

Earley-algorithm.

The • in a predicted state is, of course, at the far left, since we haven’t read

any input for it, or completed it so far. Therefore bul pos must be zero.

The state we predict shouldn’t only find the correct symbol (that is the symbol

to the right of the • in the state we were called for), it should also look for it

at the correct position in the input (that is the global position of the bullet in

the symbol we were called for). Therefore we initialize the new rul pos to that

glb pos. If the • is at the far left of the new state, then its rul pos must, of

course, match its glb pos, which is why the new glb pos is the same as the old

one.

CHAPTER 7. PARSER 209

7.2.5 The Scanner

The Scanner takes care of adding states to the chart, corresponding to the input.

If a state has a nonterminal symbol to the right of its •, then the Scanner is

called to see if the symbol this state expects can really be found in the input at

that position. If so, it adds a new state that can then be used by the Completer

to advance the state that is ”looking for” that nonterminal.

〈 the Scanner 209 〉 ≡

int

scanner (struct state *st)

{

char cursym;

〈do debug-output for the scanner 220b 〉

cursym = st->rule_right[st->bul_pos + 1];

if ((st->glb_pos->next->word != NULL)

&& ((st->glb_pos->next->word->morph >> 28) == (cursym & 0x7F)))

{

〈 add the current input as a new state 210a 〉

}

return 0;

}�

Macro referenced in 228.

CHAPTER 7. PARSER 210

〈 add the current input as a new state 210a 〉 ≡

struct state *newst;

newst = (struct state *) immalloc (sizeof (struct state));

newst->rule_left = cursym;

newst->rule_right = NULL;

newst->bul_pos = 1;

newst->glb_pos = st->glb_pos->next;

newst->rul_pos = st->glb_pos;

〈 initialize the data-structures needed for the parse-forest (210b newst) 222a, . . . 〉

〈manipulate the data-structures needed for the parse-forest according to the scan 227a 〉

enqueue (newst, st->glb_pos->next);�

Macro referenced in 209.

In this case the position of the • is the far right end (which is position 1, given that

states added by the Scanner take the form POS → WORD•). Therefore the

rule position must be the same as in the state we were called for (st->glb pos)

and given that the • is one word further in the input, the global position of the

new state must be the one following the global position of the state we were called

for (st->glb pos->next).

7.2.6 The Completer

The Completer connects the top-down predictions from the bottom up, an-

chored by scanned states. It is called for every complete state (SYM → γ•)

and looks through all the states ”looking for” the newly completed symbol SYM

(A→ α•SYMβ), and adds a new state, where the • is advanced over the symbol

CHAPTER 7. PARSER 211

SYM (A→ αSYM • β).

”Looking through” all the states of the form A→ α • SYMβ would be quite

time-consuming, if we implemented it as an iteration over all the states in the

chart matching them against this form. That’s why we use another index, a

linked list pointing us to all such states.

〈 indices for the states in the chart 211a 〉 ≡

struct statelist *idx_ntsym_rod[NUM_NONTERM];

struct statelist *idx_tsym_rod[NUM_TERM];�

Macro defined by 202a, 211a.

Macro referenced in 193.

Of course, somehow, we have to create this list, and the right place to do so is

the Enqueue-routine.

〈 add the state to the chart 211b 〉 ≡

if ((news->rule_right != NULL)

&& (news->rule_right[0] > news->bul_pos))

{

char sym = news->rule_right[news->bul_pos + 1];

if (IS_POS (sym))

add_to_listhead (&(chart->idx_tsym_rod[AS_POS (sym)]), news);

else

add_to_listhead (&(chart->idx_ntsym_rod[(unsigned int) sym]), news);

}�

Macro defined by 206, 211b.

Macro referenced in 205.

This way the Completer can iterate through all the states that have the form

A → α • SYMβ in the chart, by simply iterating through the list headed by

chart->idx tsym rod[SYM] for terminal symbols and chart->idx ntsym rod[SYM]

for non-terminal symbols.

CHAPTER 7. PARSER 212

〈 the Completer 212 〉 ≡

int

completer (struct state *st)

{

char sym = st->rule_left;

struct statelist *cur;

〈do debug-output for the completer 220c 〉

if (IS_POS (sym))

cur = st->rul_pos->idx_tsym_rod[AS_POS (sym)];

else

cur = st->rul_pos->idx_ntsym_rod[(unsigned int) sym];

for (; cur != NULL; cur = cur->next)

if (cur->st->glb_pos == st->rul_pos)

{

〈 complete the state 213 〉

}

return 0;

}�

Macro referenced in 228.

Additionally to the basic iteration-pattern this runtime-structure features a check,

that validates whether the complete state and the state to be completed match

with respect to their positions in the input.

CHAPTER 7. PARSER 213

〈 complete the state 213 〉 ≡

struct state *newst;

newst = (struct state *) immalloc (sizeof (struct state));

newst->rule_left = cur->st->rule_left;

newst->rule_right = cur->st->rule_right;

newst->bul_pos = cur->st->bul_pos + 1;

newst->glb_pos = st->glb_pos;

newst->rul_pos = cur->st->rul_pos;

〈prepare the data-structures needed for the parse-forest for completion 222b, . . . 〉

newst = enqueue (newst, st->glb_pos);

〈manipulate the data-structures needed for the parse-forest according to the completion 223 〉�

Macro referenced in 212.

To advance the • in a state, the rule is simply carried over to the new state, and

the rule-position also stays the same. The position of the • is incremented, and

the new position in the input, corresponding to that new position of the • (its

glb pos) is the same as in the complete state (the state we were called for).

7.2.7 User-Output

Usually we wouldn’t want our parser to operate completely silently. Doing

human-readable output at important places in the code makes debugging sig-

nificantly easier.

Doing this output is very important for the parser to be useful, but algorith-

mically trivial. The reader not interested in this kind of detail should feel free

CHAPTER 7. PARSER 214

to skip this section. It provides no information essential to the understanding of

the rest of the program.

In order not to confront the user with too much trash-output, the parser

provides two compile-time-options:

〈 compile-time-options for debugging 214a 〉 ≡

#define DEBUG_MODE

#define ONLY_LAST�

Macro never referenced.

Here DEBUG MODE specified that we want our program to do user-output. If we

didn’t define DEBUG MODE, the parser would operate completely silently. There are

two versions of debug-mode. In plain debug-mode (when DEBUG MODE is defined

and ONLY LAST isn’t) the parser does output for every state in the chart. This

is usually too much senseless output, unless we are really looking for a bug in

the code. That’s why the option ONLY LAST can be used, to tell the parser to

do output for every state in a chart only for the last chart before it discovers a

syntax-error. This output is very useful when doing grammar-engineering. As

long as there is no syntax-error, words are printed on the screen as they are read.

The first problem, for forming human-readable output, is the ”pointer-jungle”

that makes up the data-structures for parsing. Pointers allow for very efficient

processing, but they are unreadable by humans. That’s why each chart is assigned

a numeric index. (This index is used only for output-purposes).

〈numeric index for debugging-purposes 214b 〉 ≡

#ifdef DEBUG_MODE

char debidx;

#endif�

Macro referenced in 193.

Of course we also have to assign a value to this index. We do that in the main

loop by using a counter-variable

CHAPTER 7. PARSER 215

〈declarations for the parse-routine 215a 〉 ≡

#ifdef DEBUG_MODE

int w = 0;

#endif�

Macro defined by 195a, 196, 199, 215a.

Macro referenced in 192a.

and assigning the chart its value

〈 assign an index for debugging-mode 215b 〉 ≡

#ifdef DEBUG_MODE

cur->debidx = w++;

#endif�

Macro referenced in 197a.

After reading a word we also print it on the screen if we are in the only-last-mode.

〈print the current word for debugging 215c 〉 ≡

#ifdef DEBUG_MODE

#ifdef ONLY_LAST

if (cur->word != NULL)

printf("%s ", cur->word->cha);

#endif

#endif�

Macro referenced in 197a.

Then, for each state in the chart, we call the debug out-routine if we’re in plain

debug-mode.

CHAPTER 7. PARSER 216

〈do debug-output of the current state 216 〉 ≡

#ifdef DEBUG_MODE

#ifndef ONLY_LAST

debug_out (curit->st);

#endif

#endif�

Macro referenced in 200.

We also call this routine for every state in a chart, where we discovered a syntax-

error. We do this only if we are in only-last-mode. (Otherwise we would already

have printed them ”along the way”). In this case, we have to start a new iteration

over the states in the current chart, and we indent the output, marking states with

a "*" that would be handled by the Scanner. This makes grammar-engineering

a lot easier, because it gives information about what POS the parser would have

expected at this position in the input.

CHAPTER 7. PARSER 217

〈do debug-output for the syntax-error 217 〉 ≡

#ifdef DEBUG_MODE

#ifdef ONLY_LAST

printf ("\n");

for (curit = cur->itemtop; curit != NULL; curit = curit->next)

{

if (((!(curit->st->rule_right == NULL))

&& (curit->st->rule_right[0] > curit->st->bul_pos))

&& (IS_POS (curit->st->rule_right[curit->st->bul_pos + 1]))

)

printf ("* ");

else

printf (" ");

debug_out (curit->st);

}

#endif

#endif�

Macro referenced in 201b.

The implementation of debug out looks like this:

CHAPTER 7. PARSER 218

〈define the routine for printing a state 218 〉 ≡

#ifdef DEBUG_MODE

void

debug_out (struct state *st)

{

int i;

symout (st->rule_left, stdout);

printf ("-> ");

if (st->rule_right != NULL)

for (i = 1; i <= st->rule_right[0]; i++)

{

symout (st->rule_right[i], stdout);

printf (" ");

}

else

printf ("%s ", st->glb_pos->word->cha);

printf ("[%d,%d,%d]\n", st->rul_pos->debidx, st->glb_pos->debidx,

st->bul_pos);

}

#endif�

Macro never referenced.

This routine is quite simple. We call sym out for each symbol, throwing in

the string "->" to indicate the →, and print the debug-indices of rule-position

and global position (the rul pos and glb pos) as well as the position of the •

(bul pos)

CHAPTER 7. PARSER 219

〈define the routine for printing a symbol 219a 〉 ≡

void

symout (char sym, FILE * f)

{

if (sym == NTGS_LAMBDA)

fprintf (f, "\\lambda ");

else if (IS_POS (sym))

fprintf (f, "%s", debsym_pos[AS_POS (sym)]);

else

fprintf (f, "%s", debsym_nt[(unsigned int) sym]);

}�

Macro never referenced.

The implementation is, again, quite simple. Note that this routine is defined,

also when we are not in debug-mode, and has a parameter for the output-file.

This way output-modules (such as the module that does the conversion to TEX,

and the one that does the conversion to Prolog) can use it.

The last piece of ”output-cosmetics” is the string "--" we print when we are

finished with a chart, so the user sees where a chart ends and a new one begins

and a message indicating which part of the program was used to interpret a state:

〈do debug-output for the finished chart 219b 〉 ≡

#ifdef DEBUG_MODE

#ifndef ONLY_LAST

printf ("--\n");

#endif

#endif�

Macro referenced in 197a.

CHAPTER 7. PARSER 220

〈do debug-output for the predictor 220a 〉 ≡

#ifdef DEBUG_MODE

#ifndef ONLY_LAST

printf ("CALLED PREDICTOR\n");

#endif

#endif�

Macro referenced in 207.

〈do debug-output for the scanner 220b 〉 ≡

#ifdef DEBUG_MODE

#ifndef ONLY_LAST

printf ("CALLED SCANNER\n");

#endif

#endif�

Macro referenced in 209.

〈do debug-output for the completer 220c 〉 ≡

#ifdef DEBUG_MODE

#ifndef ONLY_LAST

printf ("CALLED COMPLETER\n");

#endif

#endif�

Macro referenced in 212.

7.3 Building a Parse-Forest

The program we’ve been considering so far is not yet a parser, but rather a recog-

nizer. The runtime-structure of the recognizer allows interpretation of the input,

while recognizing it. The kind of interpretation we want to do in this program is

build up a data-structure similar to what Tomita (1987) calls a ”packed forest”.

Recall that the biggest problem in interpreting natural language is that of

CHAPTER 7. PARSER 221

ambiguity. A parser dealing with an ambiguous grammar has to build up a

data-structure similar to a parse-tree, but effectively dealing with concurrent

interpretations of a single node.

We already introduced the notion of the backpointer in the first part, when

we were explaining the augmentations neccessary to provide a way for extracting

a parse-forest from the chart. The basic idea behind it was to add a pointer

corresponding to a symbol in a state pointing to the state, that caused the • to

be advanced over the symbol.

7.3.1 Backpointers

〈pointers for the parse-forest 221 〉 ≡

struct statelist *backptr[MAX_RULLEN];

�

Macro defined by 221, 225.

Macro referenced in 194b.

This array is indexed, according to symbol-positions in the rules. A state for the

rule S → NP V P would therefore carry the backpointer indicating the state the

NP was resolved by in st->backptr[0] and the backpointer indicating the state

the V P was resolved by in st->backptr[1].

The type of this pointer is struct statelist * instead of struct state

* because there can be more than one state, that could cause a symbol to be

resolved. Therefore we use this wrapper-structure for building up a linked list of

states.

This also means, that we have to initialize the elements to NULL, so we can

use standard linked-list-algorithms.

CHAPTER 7. PARSER 222

〈 initialize the data-structures needed for the parse-forest 222a 〉 ≡

bzero (@1->backptr, sizeof (@1->backptr));

�

Macro defined by 222a, 226b.

Macro referenced in 195b, 208a, 210a.

Note that this is where ambiguity enters our data-structure and makes it a parse-

forest, rather than a parse-tree, because these lists are used to enlist alternative

interpretations for a single symbol.

7.3.2 Providing Backpointers during Completion

It’s the Completer’s job to provide backpointers, since the completer is the only

routine that ”knows” which state causes which other state’s • to be advanced over

a symbol.

Recall that cur->st is the state which is looking for a symbol the Com-

pleter was called for. Of course the backpointers of the state, created by the

Completer (newst) first have to be copied over from the old state.

〈prepare the data-structures needed for the parse-forest for completion 222b 〉 ≡

memcpy (newst->backptr, cur->st->backptr, sizeof (newst->backptr));

�

Macro defined by 222b, 226c.

Macro referenced in 213.

Then we enqueue the newly created state to the chart, if it isn’t already there. We

call the enqueue-routine in such a way that newst either stays untouched, in case

it gets enqueued to the chart, or newst is set to the state that is found to be equal,

but already in the chart. In each case it is the newst-state where we have to add

a new backpointer, and this can be done with a simple call to add to listhead,

which is an implementation of the well-known algorithm adding an element to

the head of a linked list.

CHAPTER 7. PARSER 223

〈manipulate the data-structures needed for the parse-forest according to the comple-

tion 223 〉 ≡

add_to_listhead (&(newst->backptr[(unsigned int) cur->st->bul_pos]), st);�

Macro referenced in 213.

7.3.3 Member-Span

Augmenting the recognizer in such a way also makes a change in the routine

neccessary that checks two states for equality, when deciding whether a new

state should be entered into the chart.

Consider a state s like S → •NPV P that should be advanced. Let’s assume

that there are two states s1 and s2 of the form NP → α•, such that s2’s global

position is further in the input, than s1’s (say s1’s global position is 2, and s2’s

is 3, when speaking in terms of numeric global-positions, as in the first part of

this paper), and they both have the same rule-position as the global position of

s. Completing s with s1 would lead to a state s3, and completing s with s2 would

lead to a different state s4. These are, of course, two distinct states because their

global positions don’t match, but both of the states s3 and s4 would have the

form S → NP • V P .

Now let’s further assume there are two states s5 and s6, that both have the

form V P → β•, such that s6’s rule position matches s2’s global position (and

therefore also s4’s), and s5’s rule position matches s1’s global position (and there-

fore also s3’s) and s5’s and s6’s global positions are equal. (This situation might

seem quite abstract, but it is in fact a very common member of the ”family” of

ambiguities, the most prominent member of which is known as ”dangling else”).

Let’s have a look at how our parser would deal with this situation. It would

come across s3, and complete it with s5. Let’s call the resulting state s7. This

state would now be added to the chart, given that there is not already such a

state. Then it would come across s4, and would complete it with s6, resulting in

the state s8.

CHAPTER 7. PARSER 224

We might now easily agree on the fact that s7 and s8 must be two distinct

nodes in the resulting parse-forest, since they ”split up” their rule S → NP | V P

at different places in the input, and since they have completely different back-

pointers.

However the parser we’ve constructed so far wouldn’t agree: s7 and s8 both

have the same rule, the same rule position, the same global position and the same

bullet position. That’s why s8 wouldn’t be added to the chart, since it would be

considered to be equal to the state s7, which is already in the chart.

This goes along with the intuition that one might have, that when adding

new information to the data-structure making up a ”state” (in our case the lists

of backpointers) this new information must also be considered a distinguishing

feature in the equality-check.

It’s important to understand what this means for our recognizer. Building up

a parse-tree is no longer a task that can go ”along the way” of recognition, but

it does, in fact, influence the runtime-structure of the recognition. States that

wouldn’t make it into the chart, if it wasn’t for building up the parse-tree, have

to be added. At least this is how our prototype works.

Considering the backpointer-lists as distinguishing features in the equality-

check is, again, a challenge if we want to do it in a performant way. Checking

two lists of backpointers is a rather time-consuming operation. Therefore we

make use of the fact that a backpointer-list can be uniquely identified given the

symbol it resolves, the global position of the spot immediately to the left of the

symbol and the global position immediately to the right of the symbol. The

check for the position each of these symbols ”starts at” must be implemented

using a new data-structure, which we call ”member span”, the other checks are

then given implicitly.

CHAPTER 7. PARSER 225

〈pointers for the parse-forest 225 〉 ≡

struct chart *memb_span[MAX_RULLEN];�

Macro defined by 221, 225.

Macro referenced in 194b.

In this array we keep the rule positions common to all backpointers in the list

at the corresponding index. (Therefore, if we have a state with the rule S →

NP V P , we would find the backpointers for resolving the V P at backptr[1],

according to the rule we’ve already mentioned. The V P is the second symbol,

and indexing begins with 0. In memb span[1] we would find the rule-position

common to all the states in backptr[1].

I’d like to elaborate a little bit on this subject, since it is one of the trickier

parts in this program. Why is checking this array of start-positions sufficient

for knowing that all backpointer-lists are equal? As I’ve already mentioned, a

backpointer-list is uniquely identified by the symbol it resolves, and the positions

where the states resolving the symbol start, and where they end. This seems logi-

cal (since we can’t use two different interpretations that expand different symbols

for interpreting one symbol in the original state and two different interpretations

for one symbol must begin at the same place in the input, and end at the same

place, since otherwise we could skip symbols, or multiply use the same symbols),

but how do we know that our program now exhibits this feature?

The check for the symbol is the simplest. It is implicitly stated in the check

for equality of the grammar-rules. If two grammar-rules are equal, then all the

symbols in the state, and their order, must also be equal.

The check for the start positions is the only one we have to do explicitly,

by checking the start positions saved in the memb span-array. The check for the

end positions is then given implicitly, since one symbol ends where the next one

begins (and we would have to check all the start-positions anyway), leaving only

the symbol the • is advanced over, without a check for the end position, and this

CHAPTER 7. PARSER 226

check is implicitly given by checking the global position of the new state.

Ergo, the only augmentation neccessary in the compare-routine is

〈 check data-structures for the parse-forest 226a 〉 ≡

if ((rc = memcmp (s1->memb_span, s2->memb_span, sizeof (s1->memb_span))))

return rc;�

Macro referenced in 203.

The use of memcmp might seem a bit oversimplified here, and a more effective

implementation would indeed be possible, because actually we have to check

only the symbols to the left of the •, but since the maximum length of a rule is

3 in our sample-grammar, and usually not much bigger, this is neglectable.

Of course we have to initialize the array, by bzeroing it, so the undefined

values don’t cause the comparison to fail.

〈 initialize the data-structures needed for the parse-forest 226b 〉 ≡

bzero (@1->memb_span, sizeof (@1->memb_span));�

Macro defined by 222a, 226b.

Macro referenced in 195b, 208a, 210a.

7.3.4 Providing Member-Span-Data during Completion

This works similarly to the way we update backpointers. First memb span is

copied over, then the new backpointer is written to the array.

〈prepare the data-structures needed for the parse-forest for completion 226c 〉 ≡

memcpy (newst->memb_span, cur->st->memb_span,

sizeof (newst->memb_span));

newst->memb_span[newst->bul_pos - 1] = newst->glb_pos;�

Macro defined by 222b, 226c.

Macro referenced in 213.

This time we have to apply our augmentation also to the Scanner:

CHAPTER 7. PARSER 227

〈manipulate the data-structures needed for the parse-forest according to the

scan 227a 〉 ≡

newst->memb_span[newst->bul_pos - 1] = newst->glb_pos;�

Macro referenced in 210a.

〈 general purpose pointer for the chart 227b 〉 ≡

void *info;�

Macro referenced in 193.

〈 general purpose pointer for the state 227c 〉 ≡

void *info;�

Macro referenced in 194b.

CHAPTER 7. PARSER 228

"parse.c" 228 ≡

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <strings.h>

#include "config.h"

#include "grammar.h"

#include "parse.h"

#include "misc.h"

#include "debug.h"

#include "premorph.h"

〈 enqueue-implementation 205 〉

〈 the Completer 212 〉

〈 the Predictor 207 〉

〈 the Scanner 209 〉

〈 implementation for the main routine 192a 〉

�

Discussion

In grammar-school our headmaster used to promote his Ancient-Greek-course by

telling students how generally appliable linguistic structures were, when it came

to everyday problem-solving. Today I understand what he meant, but when I

first set out to build this natural language understander, I didn’t quite realize

that I was actually trying to build the almost mythical “general problem solver”.

Needless to say I did not succeed in building the HAL-like computer that would

revolutionize artificial intelligence.

One of the greatest challenges in authoring this kind of work was to steer a

middle-course between generality and speciality. Generality, on one side of the

didactic spectrum, could provide the reader with a sophisticated understanding

of all the techniques used and how they could work together to make up any NLP-

system he has in mind, but would never provide information detailed enough to

allow him to sit down and hack it into a computer. Speciality, on the other side

of the spectrum, would leave the reader with a very detailed understanding of a

prototype that executes a very narrowly defined task, but would never provide

information neccessary to take these concepts and apply them to any other but

this narrowly defined task. The danger of overwhelming the reader with tons of

very specific but loosely related facts, is opposed to that of getting lost in vaguely

formulated ideas and concepts that seem to have no more practical impact.

The compromise that I chose was to stay on the didactic, more general and,

hopefully, more interesting side of this spectrum, but to pick out the two tech-

229

CHAPTER 7. PARSER 230

nically most challenging aspects of creating this prototype and to present them

in full detail down to the sourcecode-level. This is why topics discussed in this

paper span the whole spectrum from philosophical considerations about the true

nature of sense and meaning to the question of whether a double-word is written

to memory in AT&T-Assembler with the mov- or the movl-mnemonic.

Of course this strategy has some negative impacts on the prototype. While

the prototype is suited very well in terms of didactic considerations applied to

a system that was never meant to be used for anything else but for didactic

purposes and laboratory conditions, it does have some flaws, in terms of design-

considerations applied to a more pragmatic, business-like approach to software-

engineering.

The parser and the FST-Tools, the parts that were described here in greater

detail are very general, very flexible and highly performant, but none of this is

actually made use of in the whole system, since these parts are connected mainly

by “glue code”, which simply serves the purpose of integrating everything into

a system carrying out a real-world task that makes everything transparent and

shows that (rather than how) these core-components can be used for building

practical systems.

In fact, the prototype is far away from a practical system, since this “glue

code” limits the problem domain and the linguistic data too much as to actually

make it useful under any but laboratory-conditions, which is the only thing I

regret now.

These are some of the major limitations:

• The dictionary contains exactly the words that are really in the corpus, and

the grammar contains only the rules that are really used by sentences in

the corpus.

• There is no way the system can learn new words or grammar rules.

• Input is not at all disambiguated. All interpretations are considered equally

CHAPTER 7. PARSER 231

probable, no statistical methods are used. There is not even a way for the

system to choose one of the interpretations as a means of disambiguation.

If a given fact is derivable from any one of the interpretations, it can be

used for semantic processing.

• The grammar works only on parts of speech. Our parser cannot use gram-

mars dealing with features or semantic attachments.

• The syntactic aspects of the grammar and the syntactic parser is com-

pletely decoupled from the semantic aspects of the grammar and semantic

processing.

• The “glue code” bridging the semantic and syntactic layers doesn’t use

syntax-driven semantic analysis, but rather something like “information

retrieval in a parse-forest”.

• Morphological analysis of word-forms is “hardcoded”. It doesn’t use lin-

guistic rules as a basis for morphological analysis, since I couldn’t get hold

of suited linguistic material.

Most of these flaws in the prototype are due to a major misunderstanding I

had when I started programming it. I assumed that I could use linguistic data,

such as the lexical database WordNet or the English Resource Grammar, as a

basis for this project’s linguistic knowledge-base, which turned out to be too

difficult.

Given more time, I would have been able to use more of the great potential

of these core-components. Building up a more complete dictionary and grammar

and modelling a wider problem-domain would have made it a lot more “spectac-

ular”. It could then be a system talking to a human and answering questions

about the conversation, it could be a robot controlled by natural-language or

a talking car fighting for justice. Just about anything science fiction has ever

dreamed of . . . Perhaps.

Bibliography

Backus, J. W. (1959), The syntax and semantics of the proposed international

algebraic language of the Zurch ACM-GAMM Conference, in ‘Information Pro-

cessing: Proceedings of the International Conference on Information Process-

ing, Paris’, UNESCO, pp. 125–132.

Beckwith, R., Miller, G. A. & Tengi, R. (n.d.), ‘Design and implementation of

the WordNet lexical database and searching software’, http://www.cogsci.

princeton.edu/~wn/5papers.ps.

Chomsky, N. (1956), ‘Three models for the description of language’, IRI Trans-

actions on Information Theory 2(3), 113–124.

Copestake, A. (2002), Implementing Typed Feature Structure Grammars, CSLI

Publications.

Earley, J. (1970), ‘An efficient context-free parsing algorithm’, Communications

of the ACM 6(8), 451–455.

Fellbaum, C. (n.d.), ‘English verbs as a semantic net’, http://www.cogsci.

princeton.edu/~wn/5papers.ps.

Fellbaum, C., Gross, D. & Miller, K. (1993), ‘Adjectives in WordNet’, http:

//www.cogsci.princeton.edu/~wn/5papers.ps.

Jackson, P. C. (1985), An Introduction to Artificial Intelligence, Dover Publica-

tions, Incorporated.

232

BIBLIOGRAPHY 233

Jurafsky, D. & Martin, J. H. (2000), Speech and Language Processing, Prentice

Hall.

Lenat, D. B. (1995), Cyc: A large-scale investment in knowledge infrastructure,

in ‘Communications of the ACM’, number 11 in ‘38’, ACM.

Marcus, M. P., Santorini, B. & Marcinkiewicz, M. A. (1993), ‘Building a large

annotated corpus of English: The Penn treebank’, Computational Linguistics

19(2), 313–330.

McCarthy, J. (1958), Programs with common sense, in ‘Teddington Conference

on the Mechanization of Thought Processes’.

McCarthy, J. (1977), Epistemological problems of Artificial Intelligence, in ‘In-

ternational Joint Conference on Artificial Intelligence’.

McCarthy, J. (1987), ‘Generality in Artificial Intelligence’.

McCarthy, J. (1989), Artificial Intelligence, Logic and formalizing common sense,

in R. Thomason, ed., ‘Philosophical Logic and Artificial Intelligence’, Dor-

drecht; Kluwer Academic.

McCarthy, J. (1990), Formalization of common sense, papers by John McCarthy

edited by V. Lifschitz, Ablex.

McCarthy, J. & Hayes, P. J. (1969), ‘Some philosophical problems from the stand-

point of Artificial Intelligence’, Machine Intelligence.

Miller, G. A. (1993), ‘Nouns in WordNet: A lexical inheritance system’, http:

//www.cogsci.princeton.edu/~wn/5papers.ps.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D. & Miller, K. (1993), ‘In-

troduction to WordNet: An on-line lexical database’, http://www.cogsci.

princeton.edu/~wn/5papers.ps.

BIBLIOGRAPHY 234

Schank, R. (1971), Intention, memory, and computer understanding, Stanford:

Stanford Art. Intell. Proj.

Sterling, L. & Shapiro, E. (1994), The Art of Prolog, Series in Logic Programming,

second edition edn, MIT Press.

Tomita, M. (1987), ‘An efficient augmented-context-free parsing algorithm’, Com-

putational Linguistics 13(1-2), 31–46.

Weisler, S. E. & Milekic, S. (2000), Theory of Language, MIT Press.

Winograd, T. (1971), Procedures as a representation for data in a computer

program for understanding natural language, Technical report, MIT.

List of Figures

1.1 An oscillogram of the utterance Joe taught steve to play the guitar 10

1.2 A syntax tree based on the ERG 12

2.1 A tree showing the derivation of undrinkable 20

2.2 The subsystem handling plural-inflection 27

2.3 The subsystem handling babytalk-derivation 27

2.4 A more detailled version of figures [and [. 28

2.5 A model for basic input . 29

2.6 A model for basic and plural-inflected input 29

2.7 A model for basic input and derived babytalk-forms 30

2.8 A model for the whole system . 31

2.9 A dictionary as a tree . 34

2.10 The same dictionary as FST . 34

2.11 A syntactically correct FSA derived from figure [. 37

2.12 Getting rid of the indeterminisms from figure [. 37

2.13 A more accurate version of figure [. 38

3.1 Some grammar rules in tree-notation 49

3.2 Syntax trees . 49

3.3 A syntax tree for example 463.6463.2(b) 50

3.4 Another syntax tree for example 473.6463.3 52

3.5 Our complete sample-grammar 53

235

LIST OF FIGURES 236

3.6 A tree showing the derivation of undrinkable 55

3.7 A search-tree through the state-space of the three coins problem . 56

3.8 A search-tree through the state-space of a parsing-problem 60

3.9 A chart for a run of our Earley parser against example 573.6463.8 62

3.10 A chart for a run of our Earley parser on example 623.9623.9 . . . 66

3.11 A chart for a run of our Earley parser against example 633.6463.10,

this time with the parse-forest . 70

4.1 A parse-tree for example 744.1773.11 81

4.2 A black-box-view of sense . 89

4.3 Two senses of dark . 90

4.4 A Lexical Matrix . 94

4.5 A sample of WordNet’s hyponymy-structure 95

4.6 Compositional structure . 106

4.7 Tree-nodes and their syntactic and semantic content 107

4.8 grammatical production of the analysis-tree 107

4.9 A parse-tree for example 1034.81064.3.4 109

4.10 A chart for a run of our Earley parser on example 1064.81064.9

(Same as figure with backpointers added) 111

5.1 Kommissar Klug’s problem (version 1) 117

5.2 Kommissar Klug’s problem (version 2) 117

5.3 Permutations for boolean truth-values (version 1) 119

5.4 Running the program on Kommissar Klug’s problem (version 1) . 120

5.5 Running the program on Kommissar Klug’s problem (version 2) . 120

5.6 A big DON’T . 121

5.7 The most important modules . 122

6.1 A part of an FST containing the string ”xabcde” 160

6.2 A part of an FST containing the string ”xabcde” and ”xabfgh” . 161

LIST OF FIGURES 237

6.3 What our FST would look like without resetting output-signals . 164

6.4 What the additional line of code does to our transducer. 165

6.5 Product of the TXT-Loader. 167

6.6 An FST after joining. 173

6.7 An FST after concatenating paths. 176

