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In order to sketch, why steganography is such an important topic, and has
received far too little attention from the hacker community in the past, let me
quickly challenge our view of cryptosystems as commonly built in the context of
military or commercial applications: Cryptosystems are designed to protect our
sensitive data from evil arbitrators. Wrong. Well, maybe not. But then again,
what is evil?

Basically one could say, hacker ethics is about protecting a good individual from
a bad society and this has some severe consequences in the construction of secure
communication systems. In particular, I would like to draw our attention to the
evil spy, we are envisioning, when we think about cryptosystems, who intercepts
sensitive military communication, and to the criminal who fakes banking transac-
tions. Most often, what we have in mind, when we build cryptosystems is a bad
individual in a good society, which is rather some instance of witch hunt ethics.

In practice this assumption has the simple incarnation, that cryptograms are
vulnerable to detection, since a good society would encourage the use of cryptogra-
phy as a means to protect everyone’s privacy. But under the assumption of a bad
society, would Alice and Bob be allowed to use cryptography? What would witch-
hunt ethics assert about people who use cryptography? Do they have something to
hide? Something evil?

The central shift in views that is necessary, is the fact that it is not Alice and
Bob who control their communication channel, so they can make sure, that evil
Wendy won’t be able to recover their communication, but evil Wendy controls the
channel and wants to make sure Alice and Bob can’t exchange unwanted messages.
This communication setup has first been stated by Gustavus J. Simmons, which he
popularly introduced via the prisoner’s dilemma.

In this scenario we assume Alice and Bob are arrested, and “their only means
of communication after they are locked up will be by way of messages conveyed for
them by trustees – who are known to be agents of the warden... However since he
has every reason to suspect that the prisoners want to coordinate an escape plan,
the warden will only permit the exchanges to occur if the information contained in
the messages is completely open to him – and presumably innocuous.” (Simmons
1984).

1 Alice and Bob Fool Wendy

We could now simply enumerate the set of innocuous messages accepted by the
warden, which might look like

C = { Midshires is a nice little city,

Midshires is a great little city,
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Midshires is a fine little city,

Midshires is a decent little city,

Midshires is a wonderful little city,

Midshires is a nice little town,

Midshires is a great little town, ...}.

Furthermore, there will be a set of suspicious messages that Alice and Bob
actually want to send to each other:

M = { Let’s escape tonight!,

We should escape tomorrow!,

Don’t try to escape tonight!,

There are 5 wardens at the main entry, ...}.

Whenever Alice and Bob submit a message m ∈ M , Wendy will see it and check
if m is one of the innocuous messages in C. If she finds out that m 6∈ C, she will put
Alice and Bob into high-security cells no one has ever escaped from. Clearly, what
Alice and Bob need, in order to use the channel, is a mapping E : M 7→ C and its
inverse E−1, so that, if Alice wants to send m ∈ M , she can send c = E(m) over the
channel. Wendy will see that c ∈ C, and Bob will be able to decode E−1(c) = m.

However, a construction that requires us to list all possible innocuous sentences,
and all possible messages to be sent between Alice and Bob, so that we can manually
establish a mapping between them, is obviously not very useful. So, in order to
simplify our handling of the set C, we note that it includes alternative ways of
putting the same sentence, using words that have synonyms. In a first approach we
might say that we never alter the meaning of a sentence when replacing a word by a
synonym. This is important to note, since the property of a message to be innocuous
is clearly semantic in nature, i.e. an innocuous sentence will remain innocuous
when applying meaning preserving transformations such as replacement of words
by synonyms. So, we can exploit the choice for one of many possible synonyms in
an innocuous natural language sentence as a carrier of hidden information.
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In order to find a more efficient way to deal with our message-space M , we
might say that any message that will ever be transmitted between Alice and Bob
can be encoded as a bitstring, so M = {0, 1}∗, and Alice and Bob have some useful
interpretation for these bitstrings. All we would need to do is to assign binary
codewords to each word choice, so Alice could make word choices according to
codewords in a secret message she wants to submit.
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Using this encoding rule, the secret message 101 would encode to Mitshires is a
fine town. The first problem with this simple approach gets obvious at that point:
If we rely on block codes, thereby assuming each word choice to encode for a fixed
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number of bits, we can only make use of a number of word choices that is a power of
two. For example, to encode one bit, we would need two words that can be replaced
for each other at a specific point in the document. To encode two bits, we need
four, and for three bits, we need eight choices, and so on. In the above case, we
have to leave some potential capacity unused, because we can never choose the word
wonderful, since we simply don’t have a fifth codeword in the binary block-code of
length two.

2 Wendy Strikes Back

Alice and Bob can now use that scheme to exchange secret bitstrings, but the
approach has one fundamental weakness: Say Alice and Bob are simple farmer-
kids. Of course, Wendy will find their messages suspicious, if they start using
words like decent or wonderful, that would not normally be part of their everyday
vocabulary. So we have to take into account possible statistic characteristics of
natural language, and mimic not only the words a native speaker would use by our
steganographic technique, but also the likeliness of choosing any single word.

At this point we will make use of the assumption that Alice and Bob have tools
available that offer for perfect compression, so we can assume the bitstrings in M

to be uniformly distributed, which means that any single bitstring m ∈ M is just as
likely to be chosen as any other, i.e. the choice for an m ∈ M appears completely
random.

Say we used the simplistic technique demonstrated above to encode secret bit-
strings which are uniformly distributed, then the probability that this bitstring will
be prefixed by 00 is 0.25, since we know that a bitstring can have one of exactly
four possible prefixes of length two, namely 00, 01, 10, and 11. So the probability
that our encoder will use the word decent is exactly 0.25, and the probability that it
will use the word great is also 0.25. However, native speakers of natural languages
tend to use some words more frequently than others, so if Wendy observes, in any
text, that the word decent is used just as frequently as great, thereby uncovering
the uniform distribution underlying the word choices, then she has witnessed secret
messages being exchanged, and has thereby broken the stegosystem.

3 Alice, Bob, and Huffman

Both fundamental weaknesses discussed so far, are due to the use of block codes
to translate from bitstrings to sequences of word choices. However, as long as no
codeword is a prefix of another, a variable-length code wouldn’t harm the coding
technique as a bijective mapping, so we would still be able to uniquely decode
whatever we have encoded with it. One prominent way to construct prefix-free
variable-length codes is the Huffman code (Huffman 1952), which is widely used for
file compression. Peter Wayner (Wayner 1992) demonstrated the use of Huffman
codes for steganography, and other important theoretical results on the topic.
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The above example shows how we can use a Huffman code in our stegosystem.
The first advantage gets obvious immediately: We can assign codewords, regardless
of the number of word choices. In this case we have five word choices, and could
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assign a codeword to each one of them, lifting the restriction for the number of word
choices to be a power of two, and thereby making more efficient use of the possible
word choices.

The second advantage can be seen when we turn back to our uniformly dis-
tributed bitstring that we want to encode. Clearly, the probability that such a
bitstring is prefixed by 0 is 0.5 (since there are only two prefixes of length one,
namely 0, and 1), and therefore the word nice is chosen most of the time. The
probability that a bitstring is prefixed by 110, and consequently that the word fine
is chosen is much smaller, since there are eight possible prefixes of length three,
resulting in the probability 0.125 for this word choice. This is why this mechanism
provides a way to mimic the likeliness of words to be chosen by a native speaker,
thereby defending against the attack described in the previous section.

4 Wendy’s Cryptographic Problem

What we have demonstrated so far is what Wayner calls a mimic function. We can
think of mimicry as that part of a stegosystem that can turn a secret message (i.e. a
message m ∈ M) into a message that looks innocuous (i.e. a cover c ∈ C). However,
just because a stegosystem produces messages that look innocuous, doesn’t mean
that it is secure. The central question is, if it is trivial for Bob to decode a cover,
then why can’t Wendy do the very same thing? Fortunately, this problem is well-
known to cryptographers.

For example, we might assume that Alice and Bob have exchanged keys for a
cryptosystem, before imprisonment. Wendy has to distinguish between covers that
do and covers that do not contain secrets. In order to make sure Wendy won’t
be able to do so, Alice can now simply use the cryptosystem to encrypt a secret
message and recode the resulting cryptogram using the mimicry technique, so that
both Bob and Wendy can invert the mimicry, but only Bob will be able to invert
the encryption as well – because he has the key, and Wendy doesn’t.

This works, because a perfect cryptosystem turns a secret message chosen at
random from a message space into a cryptogram that appears to be chosen at
random from a space of possible cryptograms. The inverse of a perfect mimic
function always turns an innocuous-looking cover into something that appears to
be chosen at random, because it is either the cryptogram chosen “at random” by
the cryptosystem or meaningless randomness (because the cover does not contain
any secret at all).

So in any case, what Bob and Wendy see after extracting anything that is sub-
mitted over the untrusted channel, no matter whether it does or does not contain
a secret, is a uniformly distributed bitstring. The advantage that Bob has over
Wendy, is that Bob can use his key with the cryptosystem to decrypt this bitstring
to yield the original secret message, whereas Wendy would have to break the en-
cryption, before she can see the message (and therefore tell whether the original
cover contained a secret or not).

Unfortunately, no perfect stegosystem has been built so far. The problem
with the above construction is that there is no perfect cryptosystem, no perfect
compression and no perfect mimicry. However Christian Cachin demonstrated
an information-theoretic metric (Cachin 1998) that can be used to estimate the
“amount of security” we can expect from a stegosystem, even though it might not
be perfect.
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5 Wendy’s Linguistic Problem

The assumption of Alice and Bob exchanging cryptographic keys before imprison-
ment is only one way to go about the analysis of security. Another useful approach
is to assume Alice and Bob to be human, whereas Wendy is a computer. Cryptosys-
tems operating under such circumstances are of increasing importance, and have
gained prominence because of the practical applications of devices distinguishing
between humans and computers, such as the well-known CAPTCHAs (von Ahn et
al. 2003) that prevent web-bots from subscribing for free e-mail accounts over the
web.

For example in the case of Internet censorship, the practical motivation of this
approach for steganography is that there are vast masses of data, transmitted over
the internet in even a short period time, and steganalysis is a highly complex task.
It is simply impossible for humans to analyze internet traffic for unwanted commu-
nication on-line, so censors have to rely upon computers to do it for them. (However
note that steganalysis of archived messages or surveillance concentrating on a spe-
cific target is a different topic).

Natural language understanding is clearly one of those areas computers have al-
ways been very weak at, when compared to humans. Many linguistic problems that
are trivial even for children, have been under investigation from a computational
point of view for many decades, with still no solution in sight. One such problem
that can be exploited for lexical steganography is that of word-sense ambiguity.
Details of a construction that provides a means to distinguish between humans and
computers by their competence in resolving word-sense ambiguities will be given
later in this paper.

Say, for example, Alice replaces the word go in the sentence The article has to go
through several more drafts to encode secret information. She knows that she can
replace go by run or move and the sentence would still make sense, after encoding
the secret information. For example, she might send the message The article has
to move through several more drafts. Wendy intercepts the message and inspects
it for possible hidden information. Clearly, in order to invert the encoding, Wendy
will need the original set of alternative substitutions, so she can find out about the
secret bits they encode. She will do so, by looking up move in a thesaurus, listing
possible synonyms which will confront her with multiple alternatives. The word
move might have been replaced for run or go, but it might also have been replaced
for motion or movement.

Since Bob is human, it is trivial for him, to decide for one of these alternatives,
because The article has to motion through several more drafts is completely non-
sensical. However, since Wendy is a computer, she cannot, in general, decide this,
without solving the problem of automatic word-sense disambiguation, which is a
deep problem of computational linguistics. It has been under investigation since
the first attempts at machine-translation were made in the 50s, and is still a major
field of research within computational linguistics and machine translation. Current
word-sense disambiguators perform at a precision of up to 72.9% (Mihalcea et al.
2004), whereas humans agree about word-sense in about 90% of the cases. The
advantage that humans have, over machines, is that they can understand a text,
whereas computers have to rely upon probabilistic decisions, powered by simple
models that do not require common-sense knowledge.

6 Word-Sense Ambiguity

Now that we’ve seen the practical value of word-sense ambiguity, in the construction
of secure communication systems, let me elaborate a bit, on the problem of word-
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Figure 1: Ambiguity of words in the space of meanings.

sense ambiguity and its use as a security primitive. In order to explain that problem,
we will have to take a deeper look at the linguistic phenomenon of synonymy.

“According to one definition (usually attributed to Leibniz) two expressions are
synonymous if the substitution of one for the other never changes the truth value of
a sentence in which the substitution is made.” (Miller et al. 1993) For example we
might say that the words move, run and go are synonymous, since we can replace
them for each other in a sentence like The article has to move through several more
drafts. More formally, we call

syn(move) = {move, run, go}

a synset, a set of words all of which are synonymous to each other.
Furthermore we observe that {move, impress, strike} acts as a synset, because

these words can be replaced for each other in a sentence like I hope this sermon will
move the people. But could we put a synset like

syn(move) = {move, impress, strike, run, go}

into our dictionary, so the computer knows these words can always be substituted
for each other? Unfortunately we can’t, since *The article has to impress through
several more drafts or *I hope this sermon will go the people are clearly incorrect.
According to our definition, we haven’t found any true synonyms for move so far.

“By that definition, true synonyms are rare, if they exist at all. A weakened ver-
sion of this definition would make synonymy relative to a context: two expressions
are synonymous in a linguistic context C if the substitution of one for the other in
C does not alter the truth value.” (Miller et al. 1993) According to this definition
we can include, into our computer dictionary two synsets, both of which contain
the word move:

syn(move, c1) = {move, run, go}

syn(move, c2) = {move, impress, strike}

Figure 1 shows this graphically. If we think of words as sets of meanings they
express in a fictional “space of meanings”, then the semantic regions where different
words overlap give rise to synonymy. This is what we can capture by a formal model
such as a computer dictionary, but clearly there remains a semantic ambiguity, if we
know nothing but a word, and to resolve this ambiguity we would need knowledge
of the text’s meaning, which drives us right into the very core of almost every deep
AI-problem: representation of meaning and large-scale formalization of common-
sense.
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7 An “AI-complete” Security Primitive

We have introduced the problem of word-sense ambiguity by making intuitive use
of a function syn : W × C 7→ 2W , that maps a word w ∈ W and a context c ∈ C

to the set of words in W that are correct replacements for w in c. Furthermore we
have presented evidence to suggest that no computer can automatically reproduce
large portions of this syn-mapping. However, what we can do is to enter a mapping
sa ⊂ syn to a computer, such that |sa| � |syn|.

The observation, that the handcrafting of sa widely parallels the selection of a
key sa from a keyspace 2syn clearly identifies the role of the word-sense mapping
in a cryptosystem: The word-sense mapping can be viewed as a cryptographic key
that is known to every human, as a part of their natural linguistic competence and
common-sense knowledge, but that can only be “guessed” by a computer, similar in
concept to the assumption that large prime factors of a numeric message can only
be “guessed” but not efficiently determined by a computer (or by a human).

This security-primitive is not only useful for linguistic steganography systems
that are secure against computerized wardens, but can also be used in the con-
text of Human Interactive Proofs (HIPs). Details for the construction of such a
device to automatically tell computers and humans apart are given in Bergmair &
Katzenbeisser (2004).

The strategy we use to analyze the security of such a scheme widely paral-
lels that used for other cryptosystems. For example, to analyze the security of
RSA, we rely on our experience from number theory, and trust in the fact that
an adversary can not efficiently factorize products of large primes. Analogously,
to analyze the security of lexical steganography, we rely on our experience from
lexical linguistics, and trust in the fact that an adversary can not synthesize human
language-understanding at the word-level.

So the problem of prime factorization is by no means the only computational
problem that we know is hard to solve. Of course the term “hard” is subject to
debate, and there will clearly not be much debate going on in the case of prime
factorization, since we have a very deep understanding of problems in numeric
computation, and can rely upon complexity-theory to estimate the hardness of
problems. If we prove a problem to be NP-complete, then we can rely on its
complexity-theoretic hardness, and analogously we might think of a problem to
be “AI-complete”, so we can rely on its ontologic hardness.

AI-complete /A-I k*m-pleet’/ [MIT, Stanford: by analogy with ‘NP-
complete’ (see NP-)] adj. Used to describe problems or subproblems in
AI, to indicate that the solution presupposes a solution to the ‘strong
AI problem’ (that is, the synthesis of a human-level intelligence). A
problem that is AI-complete is, in other words, just too hard.

Examples of AI-complete problems are ‘The Vision Problem’ (building
a system that can see as well as a human) and ‘The Natural Language
Problem’ (building a system that can understand and speak a natural
language as well as a human). These may appear to be modular, but
all attempts so far (1999) to solve them have foundered on the amount
of context information and ‘intelligence’ they seem to require. See also
gedanken. (Raymond 2000)

It is interesting to note that the term already appeared in the jargon, before
the use of problems in artificial intelligence as security primitives was first pro-
posed, as the above quote from the Jargon File shows. (The first appearence of
this term in the context of security applications, to my knowledge, was an article
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about CAPTCHAs in c’t (Schwellinger 2003)). However the word-game on “AI-
completeness” and NP-completeness gives a suprisingly accurate account of the
analogous roles of these notions in the analysis of secure communication systems.

8 Concluding Remarks

It is out of question, that we will have a long way to go, until we can encode our
favourite MP3-files to t-shirt slogans, and distribute them by wearing them on the
streets with the music industry unable to prove that something like an information
exchange is taking place, but hopefully this article showed why research in natural
language steganography is worth the effort. Some major ideas from steganography
and computational linguistics were introduced and it was shown how they can be
drawn together for security purposes. We lined up our technique with the more
general picture of using “AI-complete” problems as security primitives, hopefully
leaving an inspiration to the hacker-community for many new creative security
technologies.

9 Bibliographic Notes

A comprehensive investigation of linguistic steganography has been presented earlier
by the author (Bergmair 2004). The main objective of the present contribution was
to summarize some of the most important aspects of that work. Good introductory-
level textbooks that draw a more complete picture of the field of steganography
and the issues involved were written by Stefan Katzenbeisser and Fabien Petitcolas
(Katzenbeisser & Petitcolas 2000) and by Peter Wayner (Wayner 2002).

Currently, the field of steganography is dominated by systems using digital im-
ages, sound, and video as cover channels since these formats usually offer for plenty
of redundancy, and often need to be protected by watermarks. The few linguis-
tic steganography systems developed so far can be found in Chapman & Davida
(1997), Winstein (n.d.), and Atallah et al. (2003). The theoretical results presented
by Wayner (Wayner 1992, 1995) are of central importance for linguistic steganog-
raphy.

Future research in linguistic steganography will have to rely heavily upon results
from the field of natural language processing. A good introduction to the topic has
been written by Daniel Jurafsky and James Martin (Jurafsky & Martin 2000).
The most important linguistic resource for lexical steganography is the lexicon that
contains synonymous words. George Miller’s WordNet lexical database (Miller et
al. 1993) is one lexicon of this kind.
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