
Some Experimental Results on

Feed-Forward Networks for Text-Classification

Richard Bergmair

August 15, 2004

Abstract

One well-known design principle guiding the construction of neural
networks is that a feed-forward network will be able to filter noise when
few hidden units are used. Another design principle states that a network
will be able to solve more complex problems when many hidden units
are used. The experimental setup presented herein aims at analyzing this
tradeoff in the situation where both the noise in the input increases and

the problem grows more complex, at least in the problem-domain of text-
classification by unigram-frequencies.

Contents

1 Introduction 2

2 Problem Representation 3

3 Problems and their Difficulty 4

4 Experimental Setup 9

5 Interpretation of Results 9

6 Further Experiments 11

7 Conclusions 12

1

Project Proposal

Type of project Original Research

Research strategy Experimentation

Resource requirements Nothing will be needed beyond my own personal
computing equipment at home.

Literature, and Engineering-tools required The Stuttgart Neural Net-
work Simulator (SNNS) is readily available and has been confirmed to work in
my computing environment. Useful literature included Zell (1994) and Zell et
al. (n.d.).

Background and Related Research The study of feed-forward networks
and the influence of hidden layer neurons to network performance for different
problem-classes has been an important topic studied in the ANNE-module as
taught at UDA in the summer-semester of 2004. In the course of the final year
project I handed in to HTL-Leonding last year and the COL-module taught at
UDA this year, I studied topics from Computational Linguistics in detail, and
in the course of the final year project I handed in to UDA this year I studied
cryptography and steganography in detail. The research-material presented
herein relies on these disciplines as well.

Aims and Objectives In accordance with this year’s coursework specifica-
tion, my main objective was to learn how to design neural networks and to
implement them (in my case using SNNS).

1 Introduction

As neural networks are successfully applied to ever more problems, we gain
experience about network-topologies and their implications on the performance
of neural networks in specific problem domains. In the experiment described
in this report, neural networks have been successfully applied to problems of
text-classification. It aims at pointing out some relations between a network’s
topology (in particular: about the number of hidden units) and a network’s
accuracy in classifying a given natural language text.

One well-known design principle used in the construction of neural networks
concerns the complexity of classification tasks: The more complex a problem
grows in terms of linear separability of output classes of points in the input-
space, the more hidden layer neurons are required for a network to successfully
distinguish between these classes. Another principle concerns noisy input: The
more noise is expected in a network’s input, the fewer hidden layer neurons
should be used, so the noise does not distract the classification.

This makes the situation straightforward for the designer of a network: If
the problem is complex, use many hidden layer neurons, if the input is noisy

2

use few hidden layer neurons. However there are situations where this decision
is not that straightforward. What if both the problem is complex and the input
is noisy? Which design principle should be given precendence in this case?
Text-classification is one problem-domain, where this dilemma arises. As text-
classification tasks grow more difficult, both the noise in the input and the
problem-complexity increase. Evidence for this will be provided later in this
report.

The aim of the experiment described herein is to resolve that conflict, and to
give advice on a suitable number of hidden layer neurons for text-classification
problems. Therefore, a number of text-classification tasks of varying difficulty
have been defined and a number of feed-forward-networks with different num-
bers of hidden-layer neurons have been built. The overall accuracy of all the
networks, performing any of the classification tasks was measured, thereby col-
lecting evidence for a possible correlation between problem-difficulty and opti-
mal number of hidden-layer neurons.

2 Problem Representation

The overall problem domain studied herein is text-classification by unigram
frequencies (see Jurafsky & Martin (2000) or Charniak (1996) for good descrip-
tions about corpus linguistics with n-grams). The text we will always operate
on is taken from the King James version of the Bible. In order to keep down
processing times during experimentation, the Torah (only the first five books
of the bible) was chosen as the corpus of interest. A python-script was im-
plemented, that converts plaintext from to a format that can be handeled by
SNNS. It breaks up the whole text into verses, so that each verse can be used
for one pattern. Given an ASCII-string representing one verse with letters con-
verted to upper case, the python script counts how often each of the 26 English
alphabetic characters occurs.

Thereby the following bible-verse:

033:002

And he said, The LORD came from Sinai, and rose up from Seir

unto them; he shined forth from mount Paran, and he came with

ten thousands of saints: from his right hand went a fiery law

for them.

would first be filtered to give

AND HE SAID THE LORD CAME FROM SINAI AND ROSE UP FROM SEIR

UNTO THEM HE SHINED FORTH FROM MOUNT PARAN AND HE CAME WITH

TEN THOUSANDS OF SAINTS FROM HIS RIGHT HAND WENT A FIERY LAW

FOR THEM

and then the letters counted to give the frequencies which serve as input pat-
terns. The following would then end up in the pattern-file:

0.079545 0.000000 0.011364 0.022727 0.085227 0.045455 0.005682

3

0.085227 0.039773 0.000000 0.000000 0.011364 0.051136 0.051136

0.079545 0.005682 0.000000 0.062500 0.056818 0.056818 0.011364

0.000000 0.017045 0.000000 0.017045 0.000000

Note that input patterns consist of 26 numeric values between 0 and 1. The
patterns are given in alphabetic order. If, for example, the letter A occurs a

times, and there are l letters in this verse, the probability that a randomly
chosen letter X is A is given by P (X = A) = a

l
, in this case 0.079545. Since A

is the first letter in the alphabet, this is the activation for the first input neuron,
and appears first in the input pattern for the network.

Since the problem always amounts to distinguishing text from the King
James version of the Bible from other text, the output-layer of the network
always contains two neurons, one to encode for King James text, one to encode
for other text. Therefore the output patterns are always encoded as 1 0 (King
James) respectively 0 1 (other text). Actually one output-neuron would have
been sufficient, to encode for the problem, instead of these pairs of antivalent
outputs, but this way it was easier to compare the results to those of networks
with more than two output-classes (which were only used in early phases of the
prototyping).

3 Problems and their Difficulty

All tasks were simple binary classification-tasks, where inputs from one referece-
class (the King James Bible) had to be distinguished from another class, in
particular:

1. ROT: ROT-5 encrypted Torah from the King James Translation

2. Lut: Torah from Luther’s Translation

3. BNC: Random sample from the British National Corpus

4. WEB: Torah from the World English Bible

Throughout the rest of the report we will refer to the different classification-
tasks that were studied by these abbreviations.

These test-setups could be seen as representative for the following kinds of
text classifications:

1. ROT: distinguish human language from machine language.

2. Lut: distinguish between English and German language text.

3. BNC: distinguish between old-fashioned biblical English and modern ev-
eryday English.

4. WEB: distinguish between the rather old-fashioned English found in the
King-James Bible and the rather modern English found in the World
English Bible.

4

The above lists are ordered by linguistic difficulty of the classification task.
Whereas it is easily possible for anyone to tell plaintext from ciphertext, the
distinction of “King-James-style” and “World-English-style” would sometimes
pose difficulties even to linguists. The performance of the networks also reflects
this ordering of difficulty.

In order to gain a deeper understanding of the problems being investigated,
I wrote a python-script to count letter-frequencies in the used corpora. Figures
1 and 2 show the results.

Note that the ROT frequencies are the same as the KJV frequencies, when
shifted five units to the right.1 This is why it is possible, observing the frequency
of any single letter to tell ciphertext from plaintext. For example, observing the
letter E one can easily conclude that the present text is plaintext, if it occurs
most often, and that the text is ciphertext if it hardly ever occurs (because it
originates from a plaintext Z which occurs seldomly in English). The problem
is more difficult in the case of distinguishing English from German. Most of the
letters do not offer good evidence for such a distinction any more. However, by
selectively picking the right letters, one can still classify texts quite well. For
example Y occurs much more frequently in English than in German. The same
applies to the British National Corpus. The letters H, I, and S provide some
evidence, but the other frequencies hardly deviate. The situation is, of course,
even worse for the World English Bible.

The issue of problem complexity could be related to combinatorial consider-
ations. While the ROT-task can be solved by observing (almost) any one letter
in the input, the Lut.-task must be solved by picking the right letter to observe.
As the letter-frequencies get more similar, for the BNC and WEB tasks, the
network has to observe, not only the right letter, but the right combinations of
letters.

While the complexity of the task increases, the noise increases as well. Noise
in this input channel is due to sparse data. Recall that an input to the network
always consists of the letter-frequencies observed in a single Bible-verse. Since
Bible-verses are rather short, they do not always accurately reflect the letter
frequencies of the whole corpus. This is not yet a significant problem for simple
tasks. For example if the verse has 30 letters, then we can observe 30 repetitions
of the “choose a letter experiment” which has 26 possible outcomes. However, if
we need to classify the text by combinations of three letters, then the 30 letters
will provide for

(

30

3

)

= 4060 repetitions of the “choose three letters experiment”
which has 263 = 17576 outcomes.

This is why, as the tasks grow more difficult, both the noise and the problem-
complexity increase, which confronts us with the dilemma explained before: If
few hidden layer neurons are used (to filter noise from the input) the problem
cannot be represented accurately, and if many hidden layer neurons are used
(to reflect the problem complexity) the noise in the input will distract the
classification-system.

1It is interesting to note that this is how monoalphabetic substitution ciphers have tradi-

tionally been broken in military cryptography.

5

Figure 1: Letter-Frequencies in the used corpora (chart).

6

KJV WEB BNC Lut. ROT

A .0889 .0859 .0800 .0617 .0085
B .0163 .0161 .0162 .0192 .0172
C .0170 .0168 .0287 .0234 .0005
D .0496 .0423 .0387 .0717 .0178
E .1259 .1246 .1245 .1693 .0006
F .0289 .0301 .0220 .0115 .0889
G .0163 .0166 .0205 .0262 .0163
H .0875 .0833 .0565 .0533 .0170
I .0549 .0596 .0715 .0739 .0496
J .0016 .0015 .0015 .0025 .1259
K .0063 .0068 .0080 .0092 .0289
L .0434 .0450 .0420 .0368 .0163
M .0233 .0249 .0251 .0281 .0875
N .0721 .0637 .0679 .1081 .0549
O .0766 .0827 .0759 .0275 .0016
P .0129 .0132 .0194 .0067 .0063
Q .0002 .0002 .0011 .0000 .0434
R .0534 .0544 .0586 .0747 .0233
S .0572 .0612 .0654 .0668 .0721
T .0979 .0856 .0942 .0526 .0766
U .0254 .0261 .0284 .0424 .0129
V .0085 .0095 .0100 .0082 .0002
W .0172 .0222 .0211 .0153 .0534
X .0005 .0005 .0021 .0000 .0572
Y .0178 .0265 .0201 .0007 .0979
Z .0006 .0006 .0006 .0103 .0254

Figure 2: Letter-Frequencies in the used corpora (table).

7

4 Experimental Setup

In order to provide evidence to resolve this conflict, a number of patterns has
been prepared, by processing the respective corpora with the program described
in the section about problem representation. Each of these patternsets was then
divided into a training- and a testing-set by randomly sampling one tenth out
of the pattern for testing. The result was a training-set of about 12600 patterns
and a testing-set of around 1400 patterns for each of the four tasks.

Simple feed-forward networks were built, differing only in the number of
hidden layer neurons. Networks of 3, 4, 8, 16, 32, 64, 128, and 256 neurons
were built. The smallest network had 3 neurons, because a network of only 2
hidden layer neurons, could not be trained on the problems any more. Since
26 ∗ log2(12600) = 354 hidden units could simply learn the training-set “by
heart” it did not make sense to use larger numbers of hidden layer neurons. The
numbers in between were chosen as powers of two, to reflect linearly increasing
information-content. All the networks used the logistic activation function and
unity as output-function.

Each of these 32 combinations of networks and classification tasks was then
examined, by

1. initializing the network with random weights in [−1 : +1]

2. training a network using the training-pattern compiled for the task us-
ing backpropagation with momentum for a learning-constant η = 0.3, a
momentum term µ = 0.2, a flat spot elimination value c = 0.1 and a
maximum difference between teaching value and output value dmax = 0.1
in topological order for 1000 cycles.

3. testing the network using the testing-pattern compiled for the task creat-
ing a result-file

4. analyzing the results for correct and incorrect classifications. A classifi-
cation is considered correct if the activation for the right class has the
highest activation. For example if the class is 0 1, and the test-values are
0.1 0.9, then the classification is considered correct. If the test-values
are 0.55 0.45, then the classification is considered incorrect.

The result of each of these analyzing-steps is given in Figure 3. The table
on the top shows the number of incorrect classifications and the total number
of patterns in the testing-set. The table on the bottom shows the error-rate as
a percentage of incorrect classifications. Results minimizing the error for each
task were highlighted.

5 Interpretation of Results

Figure 4 shows a possible interpretation of these results. The table on the
top highlights the global minima. With increasing noise and complexity the
number of hidden-layer neurons resulting in the best accuracy is increasing as

8

WEB BNC Lut. ROT

3 526/1352 257/1413 17/1386 0/1357

4 525/1352 258/1413 16/1386 0/1357

8 518/1352 176/1413 12/1386 0/1357

16 522/1352 261/1413 13/1386 0/1357

32 519/1352 163/1413 14/1386 0/1357

64 521/1352 246/1413 12/1386 0/1357
128 516/1352 255/1413 14/1386 0/1357

256 502/1352 170/1413 15/1386 0/1357

WEB BNC Lut. ROT

3 38.905% 18.188% 1.227% 0.000%
4 38.831% 18.259% 1.154% 0.000%

8 38.314% 12.456% 0.866% 0.000%
16 38.609% 18.471% 0.938% 0.000%

32 38.388% 11.536% 1.010% 0.000%
64 38.536% 17.410% 0.866% 0.000%

128 38.166% 18.047% 1.010% 0.000%

256 37.130% 12.031% 1.082% 0.000%

 1
 1.5

 2
 2.5

 3
 3.5

 4
problem-difficulty 2

 4
 8

 16
 32

 64
 128

 256

number of hidden layer neurons

 0
 5

 10
 15
 20
 25
 30
 35
 40

error-rate

Figure 3: Error of the networks for the different Tasks.

9

increasing num
ber of

hidden−layer neurons

increasing error??

decreasing noise and complexity

increasing num
ber of

hidden−layer neurons

decreasing noise and complexity

increasing error??

Figure 4: Possible correlations.

10

well, which reflects the design principle, that more hidden-layer neurons are
needed to represent more complex problems. This is opposed to the design
principle that states that fewer hidden layer neurons must be used, in order to
compensate for increasing noise.

This could lead to the possible conclusion that, as opposed to noise, prob-
lem complexity is the predominant factor guiding the design of feed-forward
networks for text-classification. Unfortunately the results do not support this
claim at a very high confidence. For example for the WEB-task the error actu-
ally increases from 8 to 16 and from 32 to 64 hidden layer neurons. Errors for
the BNC task increase from 3 to 4, and from 8 to 16 neurons and decrease from
128 to 256. For the Lut task, error decreases from 32 to 64 neurons. All of these
are, evidence against the above hypothesis. The ROT task does unfortunately
not provide any evidence at all.

The table on the bottom shows an alternative interpretation. Here some
local minima have been highlighted that reflect the design principle about noise-
filtering, i.e. minima where the number of hidden layer neurons decreases with
increasing noise.

Therefore the results of the present experiment demonstrate quite well the
design principles about noise and problem complexity, but unfortunately they
do not provide significant evidence to support claims about which of these prin-
ciples should be predominant for design-considerations about text-classification
networks.

6 Further Experiments

A lot of effort went into finding good classification-tasks, and carrying out
the experiment explained in the previous section. First I had anticipated to
classify the text by bigram and trigram frequencies, feeding coded characters to
a recurrent network keeping track of characters read before. These letters would
then be fed to a hidden layer. I had expected activations, that are logically
equivalent to bigram and trigram frequencies to emerge on that layer, so they
could be combined on another hidden layer to classify the texts. Unfortunately
this did not work out. After a lot of unsuccessful experimentation with recurrent
networks I gave up on feeding variable length sequences of coded characters to
the network and performed the letter-counting in the python-script preparing
the input and feeding unigram frequencies to feed-forward networks.

However it was not yet clear which kind of text-classification could offer for
a representative account of problem-difficulty. My first idea was to use differ-
ent kinds of substitution ciphers. First I experimented with different rotation-
ciphers. I included into one pattern-file plaintext as well as ciphertext originat-
ing from ROT-7, ROT-9, ROT-13, and ROT-17 ciphers. The network had to
classify the patterns into one of these five categories, thereby breaking a cryp-
tosystem with a keyspace of size five. Since the network never made a single
error, I turned to a more complex cipher, using a random-number generator to
generate random permutations of the alphabet. The neural network still broke
all the codes I tried.

11

For me it was very intersting to observe that simple feed-forward-networks
can be applied that successfully to codebreaking, but unfortunately if the net-
work never made a single mistake, it was difficult to make statements correlating
network-topology and problem difficulty.

Then I turned back to computational linguistics, examining unigram-frequencies
in natural language texts. I used the Bible because it was the only multilin-
gual corpus I could think of, that is available for free from the internet. Of
course the texts contained some formatting, which I had to filter out in the
python-script preparing the input-patterns. I then compared the performance
of networks with 3, 40 and 500 hidden layer neurons, which turned out not be a
good choice, since 500 hidden layer neurons are more than enough to learn the
input-patterns by heart, and the network with 40 hidden layer neurons alone
does not yet provide for any evidence about a correlation. In this first experi-
ment I compared the performance of the networks for WEB, LUT and ROT-5.
Since the results about ROT-5 are not representative for any correlation I had
to find a third task.

This is where the BNC came in. Unfortunately, preparing patterns from the
BNC turned out to be rather difficult, since this corpus is SGML-annotated.
I had to write another python-script to pull a random sample from the BNC-
texts, and preprocess the text to take out all the SGML-annotation. Since
everyday written text is not grouped in verses, I used a random-number gener-
ator to pick 2-5 sentences and include them into one “verse”. Another difficulty
was the fact that the BNC also contained spoken-language text, so I had to run
the program several times. Finally I was left with the BNC-patterns and could
train the networks. This time I chose the numbers of hidden-layer neurons more
wisely.

In my previous experiments I had always used the XGUI to SNNS. Training
and testing networks nine times using the graphical interface already turned out
a long and tedious task. This is why I used shell-scripts with SNNS’ command-
line tools and the SNNS batch-interpreter to automate the tasks this time,
avoiding the use of the graphical interface to do the essentially same thing 32
times. The results were presented above.

7 Conclusions

An experiment was described to collect evidence about the tradeoff between a
network’s capability to represent complex problems and to filter out noise. The
setup aimed at relating these to the number of hidden layer units needed to give
a minimal error in classification tasks of varying difficulty. The results turned
out to reflect these design-principles quite well but unfortunately they do not
provide significant evidence to support claims about which of the above design
principles should be considered predominant in the construction of networks for
text-classification.

12

Appendix A: Programs

Preparing Bible-Text as Input Patterns

#!/usr/bin/python

import sys;

import string;

import pickle;

import random;

import copy;

inchars=string.letters+’ ’;

outchars=string.ascii_uppercase;

def getRandCode():

code={};

plain=[];

for k in outchars:

plain.append(k);

cipher=copy.copy(plain);

random.shuffle(cipher);

for i in range(0,len(plain)):

code[plain[i]]=cipher[i];

code[’ ’]=’ ’;

return code;

def getRotCode(rot):

code={};

for c in outchars:

i=string.find(outchars,c)+rot;

if i>=len(outchars):

i-=len(outchars);

code[c]=outchars[i];

code[’ ’]=’ ’;

return code;

def readPattern(filename,mark,code):

f=open(filename);

i=1;

13

a=[];

line=f.readline();

while line!=’’:

block=’’;

xline=’’;

while xline!=’ ’:

tmpline=’’;

if string.find(line,’{’)!=-1:

i=string.find(line,’}’);

tmpline=line[i+1:];

line=line[:i];

xline=’’;

for c in line:

if string.find(string.letters+’ ’,c)!=-1:

xline+=string.upper(c);

xline=’ ’+string.strip(xline);

block+=xline;

if tmpline!=’’:

line=tmpline;

tmpline=’’;

break;

else:

line=f.readline();

block=string.strip(block);

if block!=’’:

tmp=’’;

for c in block:

tmp+=code[c];

a.append((tmp,mark));

f.close();

return a;

def printPattern(filename,pats):

out=open(filename,"w");

maxl=0;

for pat in pats:

l = len(pat[0]);

14

if l > maxl:

maxl = l;

out.write("""SNNS pattern definition file V3.2

generated at Aug 3 00:00:44 1999

No. of patterns : %d

No. of input units : %d

No. of output units : 2

""" % (len(pats),len(outchars)));

i=1;

x=0.0;

cdict={};

for pat in pats:

out.write("#\n");

out.write("# " + pat[0] + "\n");

out.write("# Input pattern %d\n" % (i));

for c in outchars:

cdict[c]=0.0;

for c in pat[0]:

if string.find(outchars,c)!=-1:

cdict[c]=cdict[c]+1;

for c in outchars:

x = cdict[c] / len(pat[0]);

out.write("%f " % (x));

out.write("\n");

out.write("# Output pattern %d\n" % (i));

out.write(pat[1]+"\n");

out.write("#\n\n");

i=i+1;

out.close();

#

pats=[];

#

Random Codes

15

pats+=copy.copy(readbible("kjv/test.txt", "1 0 0 0 0", getRotCode(0)));

pats+=copy.copy(readbible("kjv/test.txt", "0 1 0 0 0", getRandCode()));

pats+=copy.copy(readbible("kjv/test.txt", "0 0 1 0 0", getRandCode()));

pats+=copy.copy(readbible("kjv/test.txt", "0 0 0 1 0", getRandCode()));

pats+=copy.copy(readbible("kjv/test.txt", "0 0 0 0 1", getRandCode()));

#

Rotation Codes

pats+=copy.copy(readbible("kjv/test.txt", "1 0 0 0 0", getRotCode(0)));

pats+=copy.copy(readbible("kjv/test.txt", "0 1 0 0 0", getRotCode(7)));

pats+=copy.copy(readbible("kjv/test.txt", "0 0 1 0 0", getRotCode(11)));

pats+=copy.copy(readbible("kjv/test.txt", "0 0 0 1 0", getRotCode(13)));

pats+=copy.copy(readbible("kjv/test.txt", "0 0 0 0 1", getRotCode(17)));

#

all=[];

all.append(copy.copy(readPattern("kingjames-torah.txt", "1 0", getRotCode(0))));

all.append(copy.copy(readPattern("luther-torah.txt", "0 1", getRotCode(0))));

all.append(copy.copy(readPattern("web-torah.txt", "0 1", getRotCode(0))));

all.append(copy.copy(readPattern("kingjames-torah.txt", "0 1", getRotCode(5))));

all.append(copy.copy(readPattern("bnc.txt", "0 1", getRotCode(0))));

test=[];

train=[];

for bible in all:

tst=random.sample(bible,len(bible)/10);

for x in bible:

if x in tst:

test.append(x)

else:

train.append(x);

random.shuffle(test);

random.shuffle(train);

printPattern("tsk01/test.pat",test);

printPattern("tsk01/train.pat",train);

printPattern("tsk02/test.pat",test);

printPattern("tsk02/train.pat",train);

printPattern("tsk03/test.pat",test);

printPattern("tsk03/train.pat",train);

printPattern("tsk04/test.pat",test);

printPattern("tsk04/train.pat",train);

16

BNC Preprocessing

#!/usr/bin/python

import sys;

import os;

import string;

import copy;

import random;

from sgmllib import SGMLParser;

class bncCollector(SGMLParser):

handler=0;

def handle_charref(self,ref):

self.handle_data(’&#’+ref+’;’);

None;

def handle_entityref(self,ref):

self.handle_data(’&’+ref+’;’);

None;

textact=0;

sents=[];

dta=’’;

x=2+random.random()*4;

def appen(self):

print string.upper(string.replace(self.dta,"\n",""));

if self.x<1:

print "";

self.x=2+random.random()*4;

self.x-=1;

self.dta="";

def start_s(self, attributes):

if self.textact==1:

self.appen();

self.textact=1;

def end_s(self):

self.textact=0;

self.appen();

def handle_data(self,data):

if self.textact==1:

17

self.dta+=data;

def printresults(self):

x=2+random.random()*4;

for sent in self.sents:

if x<1:

print "";

x=2+random.random()*4;

print sent;

x-=1;

BNC_HOME=’/massdata/bnc/’

TEXTS_HOME=BNC_HOME+’Texts/’

f=open("corpus.txt","r");

texts=[];

for line in f:

texts.append(string.replace(line,"\n",""));

f.close();

sample=random.sample(texts,16);

for stri in sample:

coll=bncCollector();

coll.feed((open(TEXTS_HOME+stri)).read());

coll.printresults();

Counting Letters in Corpora

#!/usr/bin/python

import sys;

import string;

import pickle;

import random;

import copy;

inchars=string.letters+’ ’;

outchars=string.ascii_uppercase;

count={};

for ch in outchars:

count[ch]=0.0;

18

overall=0.0;

f=open(sys.argv[1]);

for line in f:

for ch in string.upper(line):

if string.find(outchars,ch)!=-1:

count[ch]+=1;

overall+=1;

f.close();

for ch in outchars:

print "%s %f" % (ch,count[ch]/overall);

Creating the Networks

#!/bin/bash

BIGNET=snns/ff_bignet

for VAL in 3 4 8 16 32 64 128 256

do

$BIGNET -p 1 26 Act_Logistic Out_Identity input \

-p 1 $VAL Act_Logistic Out_Identity hidden \

-p 1 2 Act_Logistic Out_Identity output \

-l 1 + 2 + \

-l 2 + 3 + \

nets/ff-26-$VAL-2.net

done

Creating an SNNS-batch for training and testing

#!/usr/bin/python

for task in [’tsk01’, ’tsk02’, ’tsk03’, ’tsk04’]:

for netw in [3, 4, 8, 16, 32, 64, 128, 256]:

print """loadNet("nets/ff-26-%(net)s-2.net");

loadPattern("%(tsk)s/test.pat");

loadPattern("%(tsk)s/train.pat");

setInitFunc("Randomize_Weights",1.0,-1.0)

initNet()

setLearnFunc("BackpropMomentum", 0.3, 0.2, 0.1, 0.1)

while CYCLES < 1000 and SIGNAL == 0 do

if CYCLES mod 10 == 0 then

19

print ("cycles = ", CYCLES, " MSE = ", MSE)

endif

trainNet()

endwhile

setPattern("%(tsk)s/test.pat")

testNet ()

saveResult("%(tsk)s/result-%(net)s.res",1,PAT,FALSE,TRUE)

delPattern("%(tsk)s/test.pat");

delPattern("%(tsk)s/train.pat");

""" % {"tsk":task,"net":netw};

Analyzing a Result-File

#!/usr/bin/python

import sys;

import string;

import pickle;

import random;

import copy;

f=open(sys.argv[1]);

wcorrect=0;

wincorrect=0;

ncorrect=0;

nincorrect=0;

soll0=0.0;

soll1=0.0;

ist0=0.0;

ist1=0.0;

l1=f.readline();

l2=f.readline();

while l1!=’’ and l2!=’’:

soll=string.split(l1,’ ’);

ist=string.split(l2,’ ’);

soll0=float(soll[0]);

soll1=float(soll[1]);

ist0=float(ist[0]);

20

ist1=float(ist[1]);

print "soll: %f %f / ist: %f %f" % (soll0, soll1, ist0, ist1);

if (((soll0>soll1) and (ist0>ist1)) or ((soll0<soll1) and (ist0<ist1))):

wcorrect+=1;

else:

wincorrect+=1;

if ((soll0>0.5) and (ist0>0.5)) or ((soll0<0.5) and (ist0<0.5)):

ncorrect+=1;

else:

nincorrect+=1;

l1=f.readline();

l2=f.readline();

print "by winner:"

print wcorrect;

print wincorrect;

print "by number:"

print ncorrect;

print nincorrect;

print "TeX:"

print "%d/%d (%2.3f\%%)" % (wincorrect,wcorrect+wincorrect,(float(wincorrect)/(float(wcorrect)+float(wincorrect)))*100);

Controlling the Analysis of all Results

#!/bin/bash

for VAL in ‘find -name ’*.res’‘

do

cat $VAL | grep -e ’^[01]’ > "${VAL}_"

rm $VAL

mv "${VAL}_" $VAL

echo

echo "-------- $VAL ---------- "

echo

./resanalyze.py $VAL | tee $VAL.analyze

done

21

References

Charniak, E. (1996), Statistical Language Learning, MIT Press.

Jurafsky, D. & Martin, J. H. (2000), Speech and Language Processing, Prentice
Hall.

Zell, A. (1994), Simulation neuronaler Netze, R. Oldenbourg Verlag München
Wien.

Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann,
K.-U., Soyez, T., Schmalzl, M., Sommer, T., Hatzigeorgiou, A., Posselt, D.,
Schreiner, T., Kett, B., Clemente, G., Wieland, J. & Gatter, J. (n.d.), SNNS

User Manual. Version 4.2.

22

