
Towards Human Interactive Proofs in the

Text-Domain

Using the Problem of Sense-Ambiguity for Security

Richard Bergmair1 and Stefan Katzenbeisser2

1 Austrian Partner of the University of Derby
A-4060 Leonding, rbergmair@acm.org

2 Technische Universität München
Institut für Informatik

D-85748 Garching, skatzenbeisser@acm.org

Abstract. We outline the linguistic problem of word-sense ambiguity
and demonstrate its relevance to current computer security applications
in the context of Human Interactive Proofs (HIPs). Such proofs enable
a machine to automatically determine whether it is interacting with an-
other machine or a human. HIPs were recently proposed to fight abuse
of web services, denial-of-service attacks and spam. We describe the con-
struction of an HIP that relies solely on natural language and draws its
security from the problem of word-sense ambiguity, i.e., the linguistic
phenomenon that a word can have different meanings dependent on the
context it is used in.

Key words: HIP, CAPTCHA, text, natural language, linguistic, lexical, word-
sense ambiguity, learning

1 Introduction

As networking technology is making progress and society finds ever more efficient
ways of sending information around the globe, our attitude towards the way we
make information available is rapidly changing; this change is mainly taking
us into one direction: automation. If we want to make information or services
available on the net, then we actually use a computer that offers services to other
computers. When we gather information from the net, then we have a computer
that obtains this information for us from other computers. It is important to
recognize that the act of sending information to or receiving information from
the net is usually automated. This phenomenon lies at the heart of many highly
security-critical situations. Although automation drives the progress of the IT
industry, there are situations where too much automation is undesirable. For
example, consider the following scenarios:

– Abuse of web-services: While free e-mail services should be available to sub-
scribers, web bots that subscribe to thousands of accounts in order to send



spam are obviously unwanted guests. In a similar scenario, online polls should
only accept votes from humans, not from web bots aiming at manipulating
the poll by stuffing the ballot box with thousands of invalid votes [20].

– Fighting spam and worms: We want to accept e-mails from our friends and
colleagues, but not from automated mass-mailers distributing spam. For
this purpose, it would be highly desirable to have a device that can de-
cide whether an e-mail originated from a human or from an automated bot
(the company www.spamarrest.com is already marketing this idea) [12, 20].

– Privacy issues: Personal data can be made available to humans without high
risk if the recipients are trusted. However, we want to prevent sensitive data
from being replicated, indexed, or otherwise analyzed at a large scale, for
example by web-spiders of search-engines or web-advertisers.

– Denial-Of-Service: Online services have to process requests issued by legiti-
mate human users, but, in order to prevent denial-of-service attacks, they
need to refuse processing requests made by malicious scripts for the sole
purpose of putting load on the system [10].

– Dictionary Attacks: Computer systems could try to process only login at-
tempts by human users, but refuse to process login attempts originating from
a bot running a dictionary attack [13].

– Protecting Business Interests: Online shops may want to offer their services
only to humans, but not to bots for comparative shopping [12].

The core component that would be needed to protect against any of the
aforementioned security threats is a device allowing us to distinguish between
humans and computers in communication systems. This problem is investigated
in the context of Human Interactive Proofs (HIPs) [19]. The computer secu-
rity community only recently discovered the power of HIPs for solving practical
security problems.

To our knowledge, the earliest appearance of HIPs in the literature is an
unpublished manuscript by Moni Naor [12], dating back to 1997. He suggested
the inclusion of a test into a communication system that can easily be passed by
humans, but that cannot be passed by computers, similar in setup to Turing’s
test [18]. Turing’s test evaluates whether or not a machine shows intelligent
behavior by having an interrogator communicate to the machine and to another
human. In his test-setup both the computer and the human are hidden from the
interrogator, interacting with him through the same interface. If the interrogator
is unable to distinguish between the computer and the human when talking to
them over the interface, then we could in fact attribute intelligent behavior to
the machine. On the other hand, if we agree that the machine is not “intelligent”
enough (i.e., there are some questions of the interrogator that can be solved by
a human but not by the machine), we can devise a test that distinguishes the
human from the machine—in essence, this amounts to an HIP.

In January 2002, the First Workshop on Human Interactive Proofs was held
at Xerox PARC [22]. One year later, von Ahn et. al. [20] proposed the notion of
the “Completely Automated Public Turing Test to Tell Computers and Humans
Apart” (captcha). While Turing’s original version of the test requires a human



interrogator to judge the answers received from the testee, the “completely auto-
mated” Turing test substitutes the human interrogator for a computer program,
which is able to automatically generate and grade the tests passed on to and
received from the testee. Furthermore, adhering to Kerckhoffs’ principle, this
computer program is assumed to be public knowledge.

Von Ahn et. al. [20] implemented, and investigated in further detail, image-
based captchas. Generally, their systems rely on the difficulty of recognizing
the semantic content of images. For example, their OCR-based captcha, called
GIMPY, produces images by typesetting words from a dictionary in the gen-
eration phase. BONGO draws geometric shapes, and PIX employs a public
database of images labeled by humans with an identification of their content. In
any case, the output of this phase is an image, and a symbolic representation
of the semantics that would be assigned to it by a human. The image is then
distorted in such a way that humans would still be able to recognize the image
content, but state-of-the-art algorithms known to the AI-community would not.
Although all programs and databases used by these systems are assumed public
knowledge, the distortion depends on a private source of randomness. During
the testing phase, the testee is asked to identify the content of the image (e.g.,
read a word typeset by GIMPY ); the syntactic representation of this content is
then checked against the representation of the intended semantics produced in
the generation phase. Other treatments of OCR-based captchas can be found
in [3, 17].

The security of the system depends heavily on the assumption that a com-
puter program cannot “pass” the test. This assumption is usually justified by
the lack of appropriate AI algorithms for this purpose. However, this does not
mean that such algorithms cannot exist in general. For example, Malik and Mori
[11] have developed a program that can recognize GIMPY images with a success
rate of 92%. This shows that a constant evaluation of the security of existing
HIPs as well as the construction of various new HIPs is an important topic. In
particular, it is important to have captchas operating on many different kinds
of media, for example ones that can be used by the visually impaired. captchas
concentrating on the sound-domain, for example, were investigated by [1, 2].

The medium of interest in this paper will be natural language text. We discuss
the major problems that arise when constructing an HIP in the text domain in
Sections 2 and 3. Constructions for HIPs are proposed in Sections 4 and 5.
We will show that it is indeed possible to construct an HIP based on natural
language texts. Finally, future research directions are outlined in Section 6.

2 HIPs in the Text-Domain

The idea of HIPs operating in a text-domain is near at hand, since computa-
tional linguistics is one of the most prominent research disciplines in artificial
intelligence. The construction of an HIP (or captcha) in the text-domain is
often cited as an important open problem [20, 21, 14, 8]. To our knowledge, the
only attempt to create text-based captchas was made by Godfrey [8].



In his first approach, he randomly selected a word from a piece of text taken
from a datasource of human-written text, and substituted it by another word
selected at random, in the hope that it would be easy for humans to pick that
word (because it didn’t fit in the context), but difficult for computers. However
he could write a program that had considerable success-rates in “cheating” the
test by taking into account statistic characteristics of natural language.

In a second approach, he used a statistic model to generate essentially mean-
ingless text in order to get a “bad” sentence, and selected a “good” sentence from
a repository of human-written text. The idea was that, after applying random
transformations to both, a human should still be able to distinguish between the
good and the bad sentence, which turned out not to be the case.

Godfrey concluded his contribution with a discussion of why text was so much
more problematic a medium for the construction of captchas than images or
sounds. He attributed this to the fact that humans are more often exposed to
distorted images and sounds than to distorted text, and, as a result, it is more
difficult for humans to recognize distorted text. However, we believe that the
problem is actually due to the types of text-manipulations studied so far.

A linguistic HIP cannot work if, on one hand, we rely on a human’s ability
to assign meaning to a meaningful text as the very distinction between humans
and computers, and, on the other, we carry out semantically significant distor-
tions, thereby presenting meaningless text to the testees. It is not surprising
that a human has no true advantage over a computer in handling text, where
semantic content has been destroyed, e.g. by randomly replacing or shuffling
words or otherwise manipulating the text by statistical models that treat words
as meaningless symbolic black-boxes.

In this paper we will present a kind of text-manipulation that uses a model of
natural language semantics to ensure that semantic content is preserved though-
out all distortions applied to a text. In particular, we will use lexical semantics to
construct an HIP that draws its security from the problem of word-sense ambigu-

ity, i.e., the phenomenon that a single word can have different meanings and that
different words can have the same meaning, depending on the context in which
a word is used. This issue has been thoroughly studied both in computational
and theoretical linguistics. Computer Science has been facing this problem, ever
since the first computers were to be used for natural language translation in the
early 1950s, but it has remained a major gap between humans’ and computers’
ability to understand natural language.

3 The Problem of Sense-Ambiguity

The problem of word-sense ambiguity is closely linked to the notion of synonymy,
defined by Miller et. al. [9] in the following way:

“According to one definition (usually attributed to Leibniz) two ex-
pressions are synonymous if the substitution of one for the other never
changes the truth value of a sentence in which the substitution is made.



move impress strike motion movement work go run test

s1 1 1 1 0 0 0 0 0 0
s2 1 0 0 1 1 0 0 0 0
s3 1 0 0 0 0 0 1 1 0
s4 0 0 0 0 0 1 1 1 0
s5 0 0 0 0 0 0 0 1 1
. . .

Fig. 1. A lexical matrix.

By that definition, true synonyms are rare, if they exist at all. A weak-
ened version of this definition would make synonymy relative to a con-
text: two expressions are synonymous in a linguistic context C if the
substitution of one for the other in C does not alter the truth value.”

Roughly, a linguistic context can be seen as the surrounding of a word in the
text in which it appears, helping to determine the word’s meaning. We can use
this definition of synonymy to organize words into synonymy-sets or synsets for
short. A synset contains words that can sometimes (i.e., in a linguistic context)
be substituted for each other. Using this approach, we can infer the meanings of
words from their organization into synsets (such models for meaning are called
differential theories of semantics). The association between a word and its mean-
ing is referred to as word-sense.

For example, move, in a sense where it can be replaced by run or go, has a
different meaning than move, in a sense where it can be replaced by impress or
strike. If we wanted our dictionary to model semantics explicitly, we would have
to formulate statements of the form “use move interchangeably with run or go if

you want to express that something goes through a process” or “use move inter-
changeably with impress or strike if you want to express that something has an
emotional impact on you”. However, in differential approaches to semantics, as
adopted in this paper, we do not represent meaning explicitly, because represent-
ing the “if you want to express that...”-part of the above phrases is very difficult,
if not impossible. All we do is to formulate statements of the form “there exists
one sense for move, in which it can be interchanged by run or go” and “there
exists another sense for move, in which it can be interchanged by impress or
strike”. This yields two synsets {move, run, go} and {move, impress, strike}.

Miller et. al. [9] used the lexical matrix to demonstrate the relation between
words and their senses; an example is given in Figure 1. If we wanted to look
up the meaning of a word, say run, we would get multiple senses s3, s4, and
s5. This ambiguity is called polysemy. Inversely, if we want to look up the word
for a specific meaning we have “in mind”, say s2, we would get multiple words:
move, motion and movement. This ambiguity is called synonymy. Alternatively,
we can represent the phenomenon by a VENN diagram in the space of word-
meanings (see Figure 2), displaying words as sets of meanings they express.
Sense-ambiguity is the phenomenon that these sets overlap.



move

test

work

go

run

impress strike

movement

motion

Fig. 2. Ambiguity of words in the space of meanings.

The problem of sense-ambiguity in natural language texts can be used in an
HIP to tell computers and humans apart. As expressed by Miller et. al. in the
paragraph quoted earlier, we have to think of word-sense as being resolved by a
linguistic context, i.e., by clues inherent to the actual use of a word in a sentence
or paragraph. An interesting property of linguistic context is that humans seem
to have no problem in using it to resolve sense ambiguity, whereas computers
have constantly struggled with the issue.

In order to clarify the role of context, we turn back to our example. In a
sentence like Today’s sermon really moved me, the word move can be replaced by
impress or strike. When we use the same word in a sentence like The speech has to

move through several more drafts, then we use it in a linguistic context, where it
can be replaced by go or run. The sentences Today’s sermon really ran me or The

speech has to impress through several more drafts are clearly incorrect. However it
will be very difficult for a computer—using differential models for semantics—to
judge whether these sentences are correct, as the word move appears in the two
synsets {move, run, go} and {move, impress, strike}. Unless a computer is able
to solve the problem of sense-ambiguity, it cannot decide which synset contains
the correct substitutions of the word move. Therefore the test shown in Figure
3 will be very difficult for a computer, but trivial for a human native speaker of
the language.

A human can tell from the context which of the words are correct replace-
ments, and which of the words are not. Making a computer do so is studied in
the context of Word-Sense Disambiguation (WSD). Current approaches to WSD
are nowhere near completely solving the problem of lexical ambiguity. State-of-
the-art WSD systems operate at a precision of up to 65% [16], whereas human
annotators agree about word-sense in 90% of the cases [15, 4]. We believe that
the gap of 25% is large enough to construct a reliable HIP if we repeat the test
several times independently in order to reduce the error probability. In addition,
the performance of 65% is achieved only for test-scenarios that capture typical



Pick the sentences that are

meaningful replacements of each other:

© The speech has to move through several more drafts.

© The speech has to run through several more drafts.

© The speech has to go through several more drafts.

© The speech has to impress through several more drafts.

© The speech has to strike through several more drafts.

Fig. 3. A task that is difficult for a computer but trivial for a human.

text in everyday written-language. By selecting word-senses that are especially
difficult to disambiguate, eventually checking whether a test can be passed by
any of the well-known techniques before presenting it to the testee, we can make
work much harder for WSD systems.

4 Constructing HIPs

For the construction of an HIP based on sense-ambiguity, we need a corpus C,
which is a collection of correct natural language sentences. Furthermore we need
a lexicon consisting of the set of words W and the organization of these words into
synsets S1, . . . , Sn with Si ⊆ W for 1 ≤ i ≤ n. Denote the set of all synsets by
S = {S1, . . . , Sn} ⊆ 2W . Both the corpus and the lexicon can safely be assumed
public wisdom. However we need to rely on a private database establishing a
mapping sa : C × W 7→ S, which we will refer to as the secret annotation.

The Public Lexicon: The set W is a table containing words, represented by
character-coded strings. The set S is stored as a table associating words and
symbolic tokens in such a way that each group of words assigned to the same
symbolic token is a semantic equivalence-class relative to some linguistic context
(similar to the intuitive picture of synsets presented in the previous section).

The Public Corpus: Each sentence c ∈ C contains at least one word wc that is
contained in at least two distinct synsets Sa, Sb ∈ S, so that wc ∈ Sa ∩Sb. Thus,
looking up the word wc in the table representing S yields multiple symbolic
tokens, indicating that wc has different meanings.

The Secret Annotation: If two synsets Sa and Sb contain word wc, the annotation
sa resolves this conflict from the linguistic context. For example, if Sa contains
the correct replacements for wc in the sentence c, we have sa(c, wc) = Sa. This
mapping will have to be established by a table, or by tagging the sentences in C

via control-symbols, but in any case it needs to be based on data that (initially)
has been entered by humans. The security of the scheme presented herein relies
on the fact that no computer will be able to compute the annotation using
state-of-the-art WSD algorithms with low error probability.



A database containing such knowledge could be initialized from available
word banks, such as WordNet. Princeton’s WordNet [7, 9] is a lexicon containing
139 786 English words organized into 111 222 synsets. 15 892 of these words are
useful for our purposes, because they are contained in multiple synsets, each of
which contains multiple words1. WordNets for most other important languages
are readily available or currently under construction. If they were not public,
the sample sentences contained in the WordNet glossaries or the SemCor [5, 6]
corpus could be used to initialize the corpus.

We can now characterize the set R(c) which contains correct replacements of
a sentence c, and the set Q(c) containing sentences that cannot be distinguished
from correct replacements of a sentence c without solving the problem of sense-
ambiguity. Let the function subst(c, wc, ws) denote the result of substituting the
word wc in the sentence c for another word2 ws. We write wc ∈ c if wc occurs in
c. Formally, we define Q(c) and R(c) for any c ∈ C as follows:

Q(c) = {subst(c, wc, ws) | wc ∈ c, Sc ∈ S, wc ∈ Sc, ws ∈ Sc},

R(c) = {subst(c, wc, ws) | wc ∈ c, Sc = sa(c, wc), wc ∈ Sc, ws ∈ Sc}.

In other words, given a sentence c ∈ C and synonymy-sets S, the sentences
originating from correct substitutions are given by R(c); here, a sentence c′ ∈
R(c) originates from c by substituting a word wc ∈ c with one of those synonyms
which are contained in the annotated synset. In Q(c) the word wc is replaced
with a word ws that appears in any synset that also contains wc. Note that an
automated adversary can correctly reproduce R(c) only if he can solve the WSD
problem.

The human interactive proof is carried out in several phases:

1. In the generation phase, the tester composes n test instances t1, . . . , tn, where
n acts as security parameter. Each instance ti consists of all sentences in Q(c)
for a randomly selected sentence c ∈ C in random order. All test instances
are then presented (in a human-readable form and in a random arrangement)
at once to the testee.

2. In the testing phase, the testee solves the problem, by selecting the sentences
that are meaningful replacements of each other in each test-instance. The
testee returns the selections to the tester.

3. In the verification phase, the hypothesis “For each test instance ti, the testee
could distinguish sentences chosen from Q(c), from sentences chosen from
R(c)” is confirmed or rejected by the tester. More precisely, the tester checks
for each test instance ti, whether the testee selected all sentences in R(c)
and no sentences in Q(c)\R(c). The tester accepts, if the testee answered all
instances ti correctly.

1 The actual number will be slightly smaller, because in WordNet, synsets are assigned
with regard to semantic considerations. A word can be assigned to multiple synsets,
that have distinct identifiers, but the same elements. Of course these should be
counted only once, for our purposes.

2 Strictly speaking, there could be multiple appearances of wc in c. In this case we
consider only the first occurrence of wc.



5 Learning HIPs

A basic problem is that any resource used by a machine to automatically gen-
erate test instances will allow an adversary to solve them. For example, using
WordNet-glossaries for C is not a good idea from a strategic point of view, since
they are public, and would therefore allow the adversary to solve the test in the
same way an answer to the test is evaluated. In particular, the annotation sa

must remain secret (which violates Kerckhoffs’ principle).
However, we believe that—in practice—relying on such a private datasource

is not a great limitation, if we see it as a dynamic component that grows as
the system is being used, and only needs to be seeded with initially private
hand-annotated data.

For any c ∈ C, let

P (c) = {subst(c, wc, wp) | wc ∈ c, wp ∈ W}

be the set of sentences originating from c by substituting wp for wc, where wp

is chosen randomly from the set of all words W .
We can use answers received from a human testee to learn new annotations.

For this purpose, we present sentences from Q(c) to the testee as above in order
to judge whether he is a human. In addition, we present randomly chosen sen-
tences p ∈ P (c) together with all the sentences from Q(p). This second batch of
sentences will be used to train the HIP for future tests.

For each group, pick the sentences that are

meaningful replacements of each other:

© We’ll send your order tomorrow. c

© We’ll ship your order tomorrow. c1 ∈ R(c)
© We’ll broadcast your order tomorrow. c2 ∈ Q(c)

© We’ll cough your order tomorrow. d ∈ P (c)
. . .

© We’ll take your order tomorrow. p ∈ P (c)
© We’ll accept your order tomorrow. p1 ∈ Q(p)
© We’ll hire your order tomorrow. p2 ∈ Q(p)

Fig. 4. The HIP can learn from these answers.

Figure 4 shows an example. By random choice we have replaced send by
cough, and the resulting sentence d makes no sense. However, we might just as
well end up with a replacement that yields a meaningful sentence, as is the case
with sentence p, where send has been replaced by take. Unfortunately, at this
point we don’t know which sense the word take is used in, since it is contained
in two synsets: {take, rent, hire} as in We took a sailing boat or {take, accept} as



in We will gladly take your orders. This is why the sentences from Q(p) need to
be presented as well. A human user will come to the conclusion that p2 makes
no sense; this allows the tester to conclude that the synset Sp = {take, accept}
contains the correct substitutions for the word wp = take in the linguistic context
imposed by p = We’ll take your order tomorrow. Thereby the tester can learn
a new annotation by remembering the sentence p together with its annotation
Sp = sa(p, wp) for future use. Of course, this should be done only if the tester
collected evidence in the verification phase that the testee was in fact human.

4. In the learning phase, sentence p ∈ P (c) can be added to the corpus C, if the
(human) testee considered it meaningful. An association sa(p, wp) = Sp can
be added to the annotation, if each sentence originating from the substitution
of wp by any wx ∈ Sp in p was considered a correct replacement by the testee.

If we think of large-scale scenarios such as free e-mail providers telling hu-
mans from web-robots that register for free email accounts, we know that such
a resource would grow very fast, and we could therefore rely on a highly sophis-
ticated lexical resource originating from a very well trained language learner. A
user in the scale of a business that relies on web-robots to sign up for free e-mail
accounts, on the other hand, is very unlikely to succeed in outperforming such
a linguistic resource.

6 Conclusions and Future Research

In this contribution we have identified word-sense ambiguity as a very promising
linguistic phenomenon to build a secure text-based HIP upon. We presented the
details of a construction, allowing us to distinguish computers from humans via
purely textual interfaces in a fully automatic way. We also showed that it is
possible to use answers provided by humans as part of the test for training the
linguistic model that serves as a back-end of the HIP.

Although we cannot claim to have solved the problem of creating a captcha

in the text-domain (in the sense of a facility that does not rely on any private
resources but a randomness-source), we showed that the learning nature of our
HIP helps us to overcome limitations arising from a private linguistic model.

Transformations that provide for a serious computational obstacle to any-
one trying to reverse them, paralleling the construction of current image-based
captchas, have not yet been found for the text-domain. However, we hope to
have identified a direction where to look for them, by pointing out the relevance
of natural language semantics to the topic. Lexical models provide only for the
tip of the iceberg of natural language semantics, so we believe it will be fruitful
to investigate the application of other linguistic models as well.

References

1. Tsz-Yan Chan. http://drive.to/research.



2. Tsz-Yan Chan. Using a text-to-speech synthesizer to generate a reverse turing test.
In Proceedings of the 15th IEEE International Conference on Tools with Artificial
Intelligence, page 226. IEEE Computer Society, 2003.

3. Allison L. Coates and Richard J. Fateman. Pessimal print: A reverse turing test.
In Sixth International Conference on Document Analysis and Recognition (ICDAR
’01), 2001.

4. Philip Edmonds. Introduction to Senseval. ELRA Newsletter, 2002. Available
electronically: http://www.senseval.org/publications/senseval.pdf.

5. Miller et. al. Semcor 1.6. ftp://ftp.cogsci.princeton.edu/pub/wordnet/

semcor16.tar.gz, 1998.

6. Miller et. al. and Rada Mihalcea. Semcor 2.0. http://www.cs.unt.edu/~rada/

downloads/semcor/semcor2.0.tar.gz, 2004.

7. Christiane Fellbaum, editor. WordNet, An Electronic Lexical Database. MIT Press,
1998.

8. Philip Brighten Godfrey. Text-based CAPTCHA algorithms. In First Workshop on
Human Interactive Proofs, 2002. Unpublished Manuscript. Available electronically:
http://www.aladdin.cs.cmu.edu/hips/events/abs/godfreyb_abstract.pdf.

9. George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine Miller. Introduction to WordNet: An on-line lexical database. http:

//www.cogsci.princeton.edu/~wn/5papers.ps, August 1993.

10. William G. Morein, Angelos Stavrou, Debra L. Cook, Angelos D. Keromytis, Vishal
Misra, and Dan Rubenstein. Using graphic turing tests to counter automated
ddos attacks against web servers. In Proceedings of the 10th ACM Conference on
Computer and Communication Security, pages 8–19. ACM Press, 2003.

11. Greg Mori and Jitendra Malik. Recognizing objects in adversarial clutter: Breaking
a visual CAPTCHA. In Conference on Computer Vision and Pattern Recognition
(CVPR ’03), volume I, 2003.

12. Moni Naor. Verification of a human in the loop or identification via the turing test.
Unpublished Manuscript. Available electronically: http://www.wisdom.weizmann.
ac.il/~naor/PAPERS/human.ps, 1997.

13. Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks.
In Proceedings of the 9th ACM Conference on Computer and Communications
Security, pages 161–170. ACM Press, 2002.

14. Bartosz Przydatek. On the (im)possibility of a text-only captcha. In
First Workshop on Human Interactive Proofs, 2002. Unpublished Ab-
stract. Available electronically: http://www.aladdin.cs.cmu.edu/hips/events/

abs/bartosz_abstract.pdf.

15. Philip Resnik. Selectional preference and sense disambiguation. In Proceedings of
the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What,
and How?, April 1997.

16. Senseval. http://www.sle.sharp.co.uk/senseval2/Results/all_graphs.xls,
2001. accessed March 6, 2004.

17. Patrice Y. Simard, Richard Szeliski, Josh Benaloh, Julien Couvreur, and Iulian
Calinov. Using character recognition and segmentation to tell computer from hu-
mans. In Seventh International Conference on Document Analysis and Recognition,
volume I, 2003.

18. Alan M. Turing. Computing machinery and intelligence. Mind, 49:433–460, 1950.

19. Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. Hips. http:
//www.aladdin.cs.cmu.edu/hips/.



20. Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA:
using hard ai problems for security. In Advances in Cryptology, Eurocrypt 2003,
volume 2656 of Springer Lecture Notes in Computer Science, pages 294–311, May
2003.

21. Luis von Ahn, Manuel Blum, and John Langford. Telling humans and computers
apart automatically. Communications of the ACM, 47(2):56–60, 2004.

22. Xerox PARC. First Workshop on Human Interactive Proofs, January 2002.


