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1 Introduction & Motivation

It may well be one of the major themes of our modern industrialized society that we have been, and
are continuing to be, dependent on ever increasing amounts of information to run our corporations,
institutions, and daily lives. When information technology first set out to solve this problem by
computerized means, it promised a fountain of wisdom. What has been delivered is a flood of data.
Obviously, the major new issue being addressed now in almost every discipline of data processing
is the evaluation of data in terms of the intuitive notions of correctness, completeness, conciseness,
confidence, quantity, relevance, etc. All of these features are vague in nature. Therefore, as we
move on from talking about the truth of a given piece of data in a classical sense, to talking about
features like the relevance of a given piece of data, we can no longer organize them in terms
of strict binary partitioning. Instead, all of these features impose weak orderings of relevance,
quantity, confidence, conciseness, and so on.

A search engine is not successful just because all of the 300 results it produces to a given
query are truthful matches of the search expression entered. It is successful only if the first 10
results happen to be the most relevant. This is what PageRank enabled Google to do, and possibly
the reason why they have become so successful. Operating system manufacturers have recently
recognized the pressing need to provide users with similar levels of access to the floods of data
accumulating on their own harddisks nowadays. Apple has already introduced its Spotlight desk-
top search, and Microsoft will include a similar mechanism with the upcoming system release of
Vista.

From our point of view there are two major questions to be answered in the construction of
such search systems: (a) How do everyday users wish to express what is relevant to them? (b)
What model can a computer employ to respond to such a query in terms of an ordered result set?
In the opinions of the authors the most straightforward answers are as follows. (a) Users want to
express what is relevant to them in the same way they express every abstraction that might be on
their minds: by means of natural language. (b) A given model that infers from a query expression
a crisp result set can straightforwardly be turned into a model that infers a ranked result set by
moving on from bivalent logic to fuzzy logic.

This might perhaps be true for every data organizing system. We, however, will consider the
more specific problem of natural language query processing herein, in an attempt to provide an
intelligent query facility for database systems. Consider, for example, a fictional database of the
California registration office, holding data about its citizens, its cities, the distances between cities
and about where citizens reside in a relational form following a model, such as the one defined in
section 4.

How do we find a record in such a database, telling us whether or not Carol lives in a small
city near San Francisco? [1]. Traditionally this would have been the most trivial application of
a standard database. However, with the masses of data that populate today’s databases this is
becoming seriously non-trivial. What would a traditional interface to this database look like? It
would probably allow a user to search for residency records either by name or by city, and for
cities by population or by their distances from other cities. Unfortunately none of these query
masks is of any use, when there are too many people called “Carol” in California, too many small
cities and too many cities near San Francisco.

An SQL query would do slightly better, but still not solve the problem, as it is not straight-
forward how to translate concepts like “small city” or “near San Francisco” to SQL. Furthermore,
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experience with modern information retrieval systems has shown that users are not willing to learn
special query languages and formulate non-trivial boolean queries. Thus, even something like a
fuzzy SQL might still not be a full solution to the problem (see, for example, [2, 3, 4, 5, 6, 7] and
many others).

The query language we will propose in section 5 is a first step towards a precisiated natural
language [8], in the sense that expressions in this query language ought to be expressions in Eng-
lish and that the results of any such query ought to match the intuition a human will have about this
English expression. Our approach to the information access problem described is therefore to have
a user enter the expression “Carol lives in a small city near San Francisco” in natural language.

In the present work we outline our approach by pointing out the major ideas, making them
formally explicit, and providing a proof-of-concept construction. The present paper picks out the
highlights of a more detailed exposition [9].

2 History of Prior Work

Although the importance of everyday expressions for the mathematical analysis of vague concepts
was recognized quite early, for example in the domain of quantitative research methodology [10],
not much has been done in the way of applying fuzzy logic [11] on a broader scale for the analysis
of natural language. Although there was an attempt at defining a “fuzzified” formal language
theory in the late 60s [12], it did not receive much attention, when fuzzy systems were only just
beginning to be successfully applied to simple control tasks and formal language theory was of
interest only to fields like compiler construction that naturally had little use for vague concepts.

Linguists, on the other hand, remained widely unaware of fuzzy logic and its potential for the
formal treatment of vagueness in natural language, until Lakoff picked up the idea of fuzzy logic in
the mid 1970s [13, p. 196]. Unfortunately, although most linguists have had little trouble accepting
the idea of vague concepts, its impact on semantic theory has remained only of secondary interest
to linguists, following the tradition of Chomsky [13, p. 50].

During the same period computer science saw the rise of artificial intelligence and its his-
torically unparalleled interest in meaning representation. Considerable work on fuzzy meaning
representation schemes was carried out by Goguen [14], who also attempted to build a fuzzy
SHRDLU, a robot capable of carrying out commands input in natural language in the domain of a
fuzzy microworld [15]. Zadeh proposed a fuzzy meaning representation scheme for natural lan-
guages as well [16]. However, these representation schemes were mainly concerned with meaning
as such, rather than meaning in relation to natural languages. Later, Zadeh presented test-score se-
mantics [17, 18] in an approach to bridge the gap between natural language representation and his
fuzzy meaning representation. However his technique was never deployed in an actual grammar.
A decade later, Novak presented what is probably the only work really concerned with the nuts
and bolts of natural language from the point of view of fuzzy logic [19, 20].

Today it might be fair to say that, despite the many successes fuzzy logic has had since the 70s,
it has failed to live up to the high expectations artificial intelligence enthusiasts once had, when
they set out to deploy the technology to make machines understand the categories of reasoning
that humans use to successfully communicate to each other vague ideas and concepts.
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Only recently, Zadeh took up renewed interest in this line of research, addressing the main
shortcoming when he observes that “progress has been, and continues to be, slow in those areas
where a methodology is needed in which the objects of computation are perceptions—perceptions
of time, distance, form, direction, color, shape, truth, likelihood, intent, and other attributes of
physical and mental objects” [1]. The key point Zadeh has to make about perceptions is that they
are inherently fuzzy, and that humans use natural language representations where machines use
numeric measurements. Thus, the paradigm shift that takes Zadeh into his “new direction of artifi-
cial intelligence” is one that takes him “from computing with numbers to computing with words”
[21]. The representations of fuzzy concepts employed in his computational theory of perceptions
are linguistic in nature. They are expressions of a language he refers to as precisiated natural
language [8]. Such a language would have to be natural, in the sense that it is a formal language
weakly equivalent to a subset of a natural language, and precisiated, in the sense that every such
expression can automatically be translated to a form suitable for approximate reasoning.

At this point we would like to highlight one rather questionable assumption underlying the
more visionary end of Zadeh’s ideas: that a reduction from the problem of “computing with words”
to the strong AI problem is straightforward or even possible. For example Zadeh often cites
applications such as parking a car, driving in city traffic, playing golf, or cooking a meal [1]—
problems that actually do involve perceptions of time, distance, form, direction, color, or shape,
and not just perceptions of language as such. His approach therefore presumes that representations
of such perceptions in natural languages such as English or German pay justice to the actual objects
of cognition, which assumes a flavor of Whorfianism possibly too strong for most contemporary
linguists to savor.

Nevertheless, a technology as envisioned by Zadeh, that enables the computational manipu-
lation of linguistic expressions describing fuzzy concepts remains highly desirable. In fact, for
the technology described in this paper in particular, we can think at least of two immediate ap-
plications: Natural language interfaces to flexible query processing systems [22, 23, 24], and
software tools supporting the implementation of fuzzy controllers in a linguistically intuitive way
[25, 26, 27]. More remote applications of such technology may possibly include information
extraction and retrieval and document classification.

These are, of course, textbook examples for applications of natural language processing, which
is why the idea of using fuzzy logic in natural language processing seems obvious. Thus we found
it rather surprising that, after an extensive search for the use of fuzzy technology in this field’s
literature, this work seems to be the first to draw this connection.

3 Ordering-Based Semantics

From the bird’s eye’s view, the major problem we will concern ourselves with in this paper is that
of attributing ordering-based semantics to the expressions of a precisiated natural language. The
notion of semantics we employ presumes a model in which a set of data Dat = {d1,d2,d3, . . . ,dn}
represents a collection of the possible worlds these expressions can denote. Any expression can
then be taken to denote a constraint Con on these records. Such a constraint can be represented by
an n-ary relation Con ⊆ Datn on Dat for some n.

In standard query languages (such as SQL) the semantics of query expressions are taken to be
partition based.



5

Definition 1. The crisp or partition-based semantics of a query expression, with respect to a set
of records Dat is given by a unary relation Conc ⊆ Dat on Dat.

Such a relation Conc partitions Dat into a set True of records in Dat that fulfill the constraint,
and a set False of records in Dat that do not fulfill the constraint. This can be seen by letting
True = Conc and False = Dat \Conc or vice-versa.

In contrast to this crisp approach, we will take a fuzzy approach by taking the semantics of
query expressions to be ordering-based:

Definition 2. The fuzzy or ordering-based semantics of a query expression, with respect to a set
of records Dat is given by a binary relation Conf ⊆Dat×Dat on Dat which is reflexive, transitive
and complete (i.e. a weak ordering).

Such a relation Conf can establish a weak ordering on Dat such that Conf (d1,d2) if and only
if d1 satisfies the constraint “at least as well as” d2.

4 The Semantic Model: A Relational Database

The domain we operate in is defined in terms of a crisp data model that allows us to reason about
cities, about distances between cities, about people, and about who of the people lives in which of
the cities.

Our scheme involves the following relations:

Person(p): The primary key p refers to a person.

Person_Name(p,x): The person referred to by primary key p has name x.

Place(p): The primary key p refers to a place.

Place_Name(p,x): The place referred to by primary key p has name x.

Place_Pop(p,x): The place referred to by primary key p has population x.

Place_Distance(p,q,x): The places referred to by primary keys p and q are at a distance
x from each other.

Lives_In(x,y): The tuple (x,y) is a primary key referring to a person x living in a place y.

In an industrial setup these relations will typically be database tables, or XML-files, but they
might just as well be sets of PROLOG facts, or data from a lexicon represented in some special
format. Figure 1 shows an entity-relationship diagram.

Definition 3. A relational scheme Sch = (Dom,Rel) consists of

A finite set Dom which establishes the data domain for all atomic values that appear through-
out the database.

A finite set Rel, of tuples rel ∈ Rel of the form rel = (R,n, p), where
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Figure 1: An entity-relationship diagram of our relational model

• n ∈ N\{0} is the arity of the relation.

• R⊆Domn is an n-ary relation on Dom, i.e. R is a set of tuples of the form (d1,d2, . . . ,dn)
where each di ∈ Dom.

• p ∈ {1,2, . . . ,n} identifies a primary key, which is unique within a relation, i.e. if
r′ ∈ R is of the form r′ = (r′1,r

′
2, . . . ,r

′
n) and r′′ ∈ R is of the form r′′ = (r′′1 ,r′′2 , . . . ,r′′n),

then r′p = r′′p implies that r′ = r′′.

5 The Syntactic Model: A Context-Free Language

Our query language is defined by a context-free grammar. As a point of departure note that we
want the following expressions (S) to be in our language:

S→ Carol lives in a city near SF,

S→ Carol lives in the large city near SF,

S→ Carol lives in a very small city near SF,

S→ Frank lives in San Francisco.

We observe that each of these sentences contains a verb (V).

V→ lives,

and some noun-phrases (NP).

NP→ Carol,

NP→ San Francisco,

NP→ a city near San Francisco.
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We can now redefine S by stating that S is of the form

S→ NP V NP.

We observe that our new definition of S now contains a number of expressions that were
not in our original definition of S such as Frank lives in a very small city near San

Francisco. The fact that our new definition now generalizes to other expressions that perfectly
match our intuition of what can be a query indicates that we are on the right track. Unfortunately
it will also contain a number of expressions that were not in our original definition of S for a good
reason, such as *Frank lives Frank. However, as we assume that we will use this grammar
only for analyzing sentences that are well-formed sentences of English, we can neglect this for the
moment.

We could proceed with this kind of analysis, until we arrive at the grammar given in the left
column of Figure 2. At this point we have to stress the fact that, from a linguistic point of view,
this grammar is far too simplistic to actually describe a substantial fragment of English. However
it serves demonstrative purposes quite well, as it is not entirely unreasonable from a linguistic
point of view and its workings are readily accessible.

Definition 4. A context-free grammar G = (V,T,P,S) consists of

A finite non-empty set V of non-terminal symbols.

A finite non-empty set T of terminal symbols.

A set P of production rules, each of which is of the form A→ a1a2 . . .an where A ∈ V is a
grammar variable, and each ai is a symbol, either terminal or non-terminal, i.e. ai ∈ (V∪T).

A start-symbol S ∈ V.

Definition 5. Fix a grammar G = (V,T,P,S). We say that a non-terminal symbol X ∈ V yields a
string α = t1t2 . . .tn of terminals ti ∈ T if and only if X→ x1x2 . . .xm is a production in P where
for each xi

xi ∈ V and xi yields the string of terminals αi, or

xi ∈ T , in which case we take αi to be xi

and α is the concatenation α1 ·α2 · · · · ·αm.

6 The Logical Tool: Fuzzy Sets and Relations

Assuming that readers are already familiar with the basics of fuzzy logic, we will only quickly go
through some relevant definitions to straighten out the notation. Throughout the paper, let X denote
an arbitrary non-empty set. For convenience we will not explicitly distinguish between fuzzy
sets and their corresponding membership functions (i.e. X → [0,1] mappings). Consequently
uppercase letters will be used for both synonymously. Fuzzy relations (i.e. X1×·· ·×Xn → [0,1]
mappings) are handled in the same way. As usual, we denote the set of all fuzzy sets on X with
F (X).
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Definition 6. [28] A function T : [0,1]× [0,1] 7→ [0,1] is a triangular norm, if and only if it satisfies:

T (x,y) = T (y,x) (commutativity) (1)

T (x,T (y,z)) = T (T (x,y),z) (associativity) (2)

x ≤ y ⇒ T (x,z)≤ T (y,z) (non-decreasingness) (3)

T (x,1) = x (neutral element) (4)

Definition 7. A fuzzy set H ∈F (X) is the intersection of two fuzzy sets F ∈F (X) and G∈F (X)
with respect to a triangular norm T , denoted H = F ∩T G, if and only if H(x) = T (F(x),G(x)).

Definition 8. If R is an n-ary fuzzy relation on X1×X2×·· ·×Xn, and A is a fuzzy subset of X1,
then the image of A with respect to R, denoted R(A), is given by the characteristic function

R(A)(x2,x3, . . . ,xn) = sup
x1∈X1

{T (A(x),R(x1,x2, . . . ,xn)}

for a particular choice T of a triangular norm.

Intuitively, the image R(A) of A with respect to an n-ary relation R reduces the arity of R by
binding one (in our definition the first) element in the n-tuple by an existential quantifier. Thus,
(x2, . . . ,xn) ∈ R(A) if and only if x2, . . . ,xn are R-related to some x1 ∈ A.

7 The Linguistic Tool: Syntax-Driven Semantic Analysis

Syntax-driven semantic analysis is the predominant approach to semantic analysis, widely ac-
cepted throughout the communities of computational linguistics and compiler construction. Its
fundamentals can be traced back to [29] in the domain of natural languages, and [30] in the do-
main of programming languages. At its heart lies the assumption of a homomorphism between the
models capturing a language’s syntax and its semantics. More specifically, we could think of any
grammatical production rule p as serving two functions: a syntactic, and a semantic one.

Definition 9. A semantic context-free grammar G = (V,T,P,S,Dom) consists of

A finite non-empty set V of non-terminal symbols.

A finite non-empty set T of terminal symbols.

A start-symbol S ∈ V.

A finite non-empty set Dom establishing the semantic domain.

A set P of production rules, each of which is of the form (A → a1a2 . . .an,eval) where
A ∈ V is a grammar variable, and each ai is a symbol, either terminal or non-terminal, i.e.
ai ∈ (V∪ T). Let u be the number of symbols in a1a2 . . .an that are non-terminal, so that
n− u is the number of symbols that are terminal. Then eval : Domu 7→ Dom is a mapping
from Domu to Dom. In the special case where u = 0, eval is taken to be a constant value
eval ∈ Dom.
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In section 8 we will use this definition to construct a semantic context-free grammar that deals
with fuzzy relational semantics.

Definition 10. Fix a semantic context-free grammar G = (V,T,P,S,Dom). We say that a non-
terminal symbol X ∈ V assigns a string α = t1t2 . . .tn of terminals ti ∈ T the meaning X ∈ Dom
in G if and only if (X→ x1x2 . . .xm,eval) is a production in P where for each xi

xi ∈ V and xi assigns the string of terminals αi the meaning xi, or

xi ∈ T , in which case we take αi to be xi

and α is the concatenation α1 ·α2 · · · · ·αm and X = eval(x′1,x
′
2, . . . ,x

′
n), where 〈x′1,x′2, . . . ,x′u〉 is the

sequence 〈x1,x2, . . . ,xn〉 with all the elements removed that represent meanings of non-terminals.
In the special case where u = 0, eval() is taken to evaluate to a constant value eval ∈ Dom, as
defined in the production rule.

In section 9 we will use this notion of semantic composition to derive a fuzzy set captur-
ing the meaning of Carol lives in a small city near San Francisco using our semantic
context-free grammar.

8 The Syntax/Semantics Interface: Making Ends Meet

Figure 2 gives semantic rules for all syntactic productions of our example grammar to capture
their fuzzy semantics with respect to our example data model. The basic idea is that we can view
the meaning of any phrase or word in this grammar as a fuzzy relation, and that we can determine
such a fuzzy relation for each phrase from fuzzy relations describing its sub-phrases or from data
we have in our database.

In the following sections we will go through the most important rules of the resulting semantic
grammar. Applying the technique of syntax-driven semantic analysis to this grammar, we can then
derive fuzzy sets resembling the meanings of any grammatically correct expression.

8.1 The Semantics of Nominals

Our definition of the meanings of nominals relies on our database containing data about the names
of entities we wish to refer to by nominals. The relation Person_Name, for example, associates
a name to a person. We can then describe the meaning of any nominal by means of a set of entities
x, such that the Nom(x) condition is fulfilled. Recall that Nom(x) is the characteristic function of
a fuzzy set, in this case (rules 16-18), of all entities x in our domain that are called Carol, Frank,
or San Francisco.

Note that, in our first naive approach, we have assigned crisp meanings to all nominals. There-
fore, in our grammar, it makes sense to state that someone’s name is Carol, but it does not make
sense to state that someone’s name is Carol to a degree of 0.7.
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syntax semantics

(1) S→ NP VP S(x) := supy{T
(
NP(y),VP(x,y)

)
}

(2) VP→ V PP VP(x,λy) := supz{T
(
V(x,λy,z),PP(z)

)
}

(3) VP→ V NP VP(x,λy) := supz{T
(
V(x,λy,z),NP(z)

)
}

(4) NP→ Nom NP(x) := Nom(x)
(5) NP→ Det N' NP(x) := N’(x)
(6) N'→ N N’(x) := N(x)
(7) N'→ AP N N’(x) := T

(
AP(x),N(x)

)
(8) N'→ N' PP N’(x) := T

(
N’(x),PP(x)

)
(9) AP→ Adj AP(x) := Adj(x)

(10) AP→ very AP AP(x) :=
(
AP(x)

)2

(11) PP→ in NP PP(x) := NP(x)

(12) PP→ near NP PP(x) := supy{T
(
NP(y),max(min( 50km−d

50km−20km ,1),0
)
| Place_Distance(x,y,d)}

(13) V→ lives V(x,λy,λz) := 1.0 if Lives_In(x,λy,λz), 0.0 otherwise

(14) Adj→ small Adj(x) := max
(

min( 20000−p
20000−10000 ,1),0

)
| Place_Population(x, p)

(15) N→ city N(x) := 1.0 if Place(x), 0.0 otherwise
(16) Nom→ Carol Nom(x) := 1.0 if Person_Name(x,carol), 0.0 otherwise
(17) Nom→ Frank Nom(x) := 1.0 if Person_Name(x, frank), 0.0 otherwise
(18) Nom→ San Fr. Nom(x) := 1.0 if Place_Name(x,san francisco), 0.0 otherwise
(19) Det→ a Det(x) := 0

Figure 2: Our Example Semantic Grammar
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8.2 The Semantics of Nouns

As opposed to nominals, which pick out specific entities from the domain by referring to them by
name, nouns can be abstractions. Here we chose the simplistic approach of, again, constructing a
crisp set of all places in our database, to represent the set of all entities referred to as city (rule
15). In a less simplified treatment this might, however, already be a candidate for a fuzzy concept,
since one might want to employ certain criteria to decide whether something is a city, possibly
based on the density of population and urban infrastructure to distinguish a city from, say, a town
or a metropolis.

8.3 The Semantics of Adjectives

As our simple example grammar follows the approach of intersective semantics the meaning of an
adjective like small will be the set of all small things, in much the same way as the meaning of
the noun phrase small thing would be the set of all small things.

The adjective small serves as a good example for a fuzzy concept. What does it mean, as in
this particular domain for a city, to be small? A fuzzy set could easily be set up that takes into
account several measures of “smallness” such as population, area or density of infrastructure, etc.
In our simple approach we only use population as a measurement of the size of a city and define a
fuzzy decision boundary on this measure. Obviously smallness is a non-increasing function, and
we chose to use a piecewise linear membership function as an additional simplification.

Let x be a city with population p. Then rule 14 assigns a degree of fulfillment Adj(x) = 1.0 to
all cities x whose population p ≤ 10000, a degree of fulfillment 0.0 to all cities whose population
p ≥ 20000. For cities whose population is between 10000 and 20000 we interpolate linearly
between those points.

8.4 The Semantics of Adjectival Phrases

In our sample grammar, adjectival phrases can consist of nothing but an adjective. In this case it is
quite straightforward to assume that the meaning of the adjectival phrase will be exactly the same
as for the only adjective it contains, which is what rule 9 does.

To exemplify the case where the phrase consists of an adverb followed by an adjectival phrase,
we chose very which serves as a classic example in the fuzzy logic literature of what is called a
linguistic hedge there. Rule 10 implements the most simplistic technique to construct the meaning
for a fuzzy set resembling very AP from the meaning of a fuzzy set resembling AP, which is
to square the degrees of fulfillment. We stick with this solution once proposed by Zadeh for its
simplicity. However, the reader should note that a much more adequate treatment of the famous
hedges is given by [31, 32].

8.5 The Semantics of Prepositional Phrases

In consequence to our usage of intersective semantics, the meaning of a prepositional phrase like
in San Francisco will be the set of all things that are in San Francisco, and thus the same as



12 8 The Syntax/Semantics Interface: Making Ends Meet

the noun phrases thing in San Francisco or San Francisco on its own (this is implemented
in rule 11).

Things get more interesting considering the preposition near. The approach we chose was to
use geographic distance as a measurement of how close two cities are to each other, and to define
a fuzzy decision boundary on this measure as before.

Let city x be a distance d away from city y. Then rule 12 assigns a degree of fulfillment
PP(x) = 1.0 to all cities x whose geographic distance d from y satisfies d ≤ 20km, and a degree
of fulfillment 0.0 to all cities with d ≥ 50km. Again we interpolate linearly between those points.

8.6 The Semantics of Noun Phrases

Our grammar allows for noun phrases that either rewrite to a nominal (in which case the meaning
of the nominal is simply preserved in the noun phrase as defined in rule 4) or to a determiner
followed by a category we called N'. Here we take the simplistic approach that a determiner
doesn’t contribute to the meaning of a noun phrase, and pass up the meaning of the N' to the noun
phrase (rule 5). An N', in turn, can rewrite to a noun (in which case, again, we simply pass up the
noun’s meaning in rule 6), or be pre-modified by an adjectival phrase (rule 7) or post-modified by
a prepositional phrase (rule 8).

As we have explained before, intersective semantics treats any kind of modification as an
intersection. Therefore the meaning of a noun phrase like very small city is simply the set AP
of all things that are very small intersected with the set N of all things that are cities, and the
meaning of a noun phrase like a city near San Francisco is simply the set of all things that
are a city and the set of all things that are near San Francisco.

We have explained before why we can use triangular norms to capture intersections of fuzzy
constraints in a straightforward and intuitive way, and this is exactly what rules 7–8 make use of.

8.7 The Semantics of Verbs

So far we have only dealt with sets of entities. We have represented the semantics of phrases
headed by nouns, adjectives and prepositions by means of fuzzy sets and combined them by means
of intersection. In order to capture the semantics of verbs, we will need to make use of fuzzy
relations. For example the meaning of likes in our grammar, would be the relation V(x,y,z) that
holds between three elements from our domain x, y, z if, and only if, x is an eventuality involving
some person y liking some person z. (This is what rule 13 does for the verb lives).

Here we have, again, assumed that the eventualities that these verbs denote are not actually
fuzzy concepts. One can, however, imagine situations in which verbs refer to fuzzy concepts. For
example if we had a data model that contains facts about moving people, we might use the velocity
with which people are moving to determine whether someone strolls, walks, or runs.

8.8 The Semantics of Verb Phrases

Now that we know what it means for some eventuality x to involve some person λy liking some
other person λz (i.e. V(x,λy,λz)), what does it mean for x involve some person λy to like Carol?
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Clearly this can be the case if, and only if, there exists some person z such that x involves λy liking
z (i.e. V(x,λy,z)) and z refers to something described by Carol (i.e. NP(z)).

As mentioned earlier, we can translate an existential quantifier to the fuzzy domain, by means
of a supremum, and the conjunction by means of a triangular norm. Thus the meaning VP of a VP
given the meaning V of a V and the meaning NP of a NP will amount to the fuzzy image V(NP) of
NP with respect to V (rule 3) The meaning of verb phrases consisting of a verb and a prepositional
phrase, can be defined by V(PP) in analogy (rule 2).

8.9 The Semantics of Sentences

Now that we know what it means for some eventuality x to involve some person λy liking Carol
(i.e. VP(x,λy)), what does it mean for x to refer to the eventuality described by a full sentence
like Frank likes Carol? In analogy to our definition of the semantics of verb phrases, we go
about this by stating that Frank likes Carol if and only if there exists some person y such that x is
the eventuality of y liking Carol (i.e. VP(x,y)) and y refers to something described by the noun
phrase Frank (i.e. NP(y)).

Thus the meaning S of an S given the meaning NP of a NP and the meaning VP of a VP will
amount to the fuzzy image VP(NP) of NP with respect to VP.

8.10 Fuzzy Relational Semantics of Context-Free Languages

Definition 11. A context-free grammar with fuzzy relational semantics G = (V,T,P,S,SDom,Rel)
is defined by

a semantic context-free grammar (V,T,P,S,GDom),

a relational scheme (SDom,Rel)

where GDom =
S

i F (SDomi) over all i between zero and the maximal number of non-terminals
that appear in the body of any production rule in P.

Definition 12. Fix a context-free grammar with fuzzy relational semantics G =(V,T,P,S,SDom,Rel).
We say that X assigns a string α the meaning X in G if and only if X assigns α the meaning X in
(V,T,P,S,GDom) with GDom defined by SDom as above.

Definition 13. Fix a context-free grammar with fuzzy relational semantics G =(V,T,P,S,SDom,Rel).
The fuzzy semantics of a string α = t1t2 . . .tn of terminals ti ∈ T with respect to G is given by
the binary relation S(x)≤ S(y) on SDom×SDom where S assigns α the meaning S in G.

Note that, since the relation ≤ on the unit-interval is a weak ordering, so is the relation S(x)≤
S(y) on SDom×SDom.
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Figure 3: Derivation for the Carol example

9 The Carol Example

In order to demonstrate how exactly, one can arrive at a fuzzy set denoting a natural language sen-
tence by fully automated means, we will show how to determine the denotation of Carol lives

in a small city near San Francisco, by successively computing fuzzy sets denoting the
phrases subsumed by the nodes N1...N16 in the syntax tree shown in Figure 3. Here we denote
fuzzy sets by crisp sets of tuples (x,µ(x)).

The syntactic token Carol was found in the input, by rule 16. By the associated semantic
rule, we get. N1 = {(p1,1)} where p1 denotes Carol.

Rule 4 produces N2 = {(p1,1)}.
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The syntactic token lives was found in the input, by rule 13, which produces the set N3 =
{(((p1,c17),p1,c17),1), ...}, where p1 lives in c17.

...

The syntactic token small was found in the input, by rule 13, which produces the set N5 =
{(c17,0.7792), ...,}, where c17 is the city Half Moon Bay, which has population 12208.

...

Rule 8 is applied to construct a fuzzy set N12 denoting small city near San Francisco

from the fuzzy sets N8 denoting small city and N11 denoting near San Francisco.
This would produce, N12 = {(c17,0.566), ...}, where N11(c17) = 0.779, N8(c17) = 0.566,
using Tmin.

...

Rule 2 is applied to construct a fuzzy set N15 denoting lives in a small city near

San Francisco from the fuzzy sets N3 denoting lives and N14 denoting in a small...

producing N15 = {(((p1,c17),p1),0.566), ...}. This is due to the fact that we get a supremum
of T

(
V(x,λy,z),PP(z)

)
for z = c17.

Rule 1 is applied in the same way to get N16 = {((p1,c17),0.566), ...}.

We can then order the records by their degrees of fulfillment which would give us a ranking
that denotes the semantics of this sentence.

10 Concluding Remarks & Future Directions

In this paper a grammatical framework was shown that augments context-free production rules
with semantic production rules that rely on fuzzy relations as representations of fuzzy natural
language concepts. Furthermore, it was shown how the well-known technique of syntax-driven
semantic analysis can be used to infer from such a semantically augmented grammar the semantics
of a given expression, where the semantics of expressions are taken to be orderings on the possible
worlds they describe.

More specifically we were considering the application of natural language query processing
to motivate our studies. We assumed that we were given a relational scheme on a certain domain,
and showed how we could arrive at an ordering of that domain according to the degree to which its
elements satisfy a constraint specified by means of a natural language statement. We considered
the specific example of a relational database on a domain of people and places containing infor-
mation about which cities people live in, populations of cities, and distances between cities, and
showed how exactly our technique could be applied to arrive at an ordered sequence of records
satisfying the natural language query statement “Carol lives in a small city near San Francisco”.
In a technical report, we describe a Prolog prototype that does the same [9].

The primary aim of this paper was to demonstrate the overall approach by particular examples
and to make a first attempt at defining what exactly a fuzzy semantic grammar may look like,
and how it is to be interpreted. However, it raises a number of questions that were not covered
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herein. Most importantly: Will the approach scale to cover the full complexity of the semantic
microdomains that are of interest today, such as typical industrial or scientific knowledge bases,
and the full expressive power of natural languages?

On the semantic side this clearly raises questions about computational complexity and about
how inference mechanisms can best be incorporated into the system. On the syntactic side this cer-
tainly requires more sophisticated linguistic formalisms to be investigated in the context of fuzzy
semantics than plain context-free grammars. It seems promising to define the fuzzy semantics of
a natural language proposition in terms of a tectogrammatical analysis derived from a system that
is more state-of-the-art than the toy grammar we have used.

Considering the work that lies ahead, we can perhaps only claim to have contributed a small
first step towards the actual inception of a precisiated natural language as a basis of a computational
theory of perceptions. However, we also made clear why, in the light of modern applications, the
pursuit of this line of research is probably more rewarding today than ever before.
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