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Desiderata for a Theory of RTE

I Does it describe the relevant aspects of the
systems we have now?

I Does it suggest ways of building better
systems in the future?



A System for RTE

I informativity: Can it take into account all available
relevant information?

I robustness: Can it proceed on reasonable assumptions,
where it is missing relevant information.



Current RTE Systems

A spectrum between
I shallow inference

(e.g. bag-of-words)
I deep inference

(e.g. FOPC theorem proving, see Bos & Markert)
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Informative Inference.

predicate/argument structures

> >
The cat chased the dog.

→ The dog chased the cat.

monotonicity properties, upwards entailing

Some (grey X ) are Y
→ Some X are Y

≥ >

> >
Some X are Y

→ Some (grey X ) are Y



Robust Inference.

monotonicity properties, upwards entailing

Some X are Y
→ Some (grey X ) are Y

>
Some X are Y

→ Some (clean (grey X )) are Y

graded standards of proof

Socrates is a man
→ Socrates is a man

>
Socrates is a man

→ Socrates is mortal
Socrates is a man

→ Socrates is mortal
>

Socrates is a man
→ Socrates is not a man



. . . classically

(i) T ∪ {ϕ} |= ψ and T ∪ {ϕ} 6|= ¬ψ;
ENTAILED / valid

(ii) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} |= ¬ψ;
CONTRADICTION / unsatisfiable

(iii) T ∪ {ϕ} |= ψ and T ∪ {ϕ} |= ¬ψ;
UNKNOWN / possible

(iv) T ∪ {ϕ} 6|= ψ and T ∪ {ϕ} 6|= ¬ψ.
UNKNOWN / possible
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. . . instead

(i) T ∪ {ϕ} |=1.0 ψ and T ∪ {ϕ} |=0.0 ¬ψ;
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(a) t > t ′

(b) t < t ′

More generally, for any two candidate entailments
I T ∪ {ϕi} |=ti ¬ψi ,
I T ∪ {ϕj} |=tj ¬ψj ,

decide whether ti > tj , or ti < tj .
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Model Theory: Classical Bivalent Logic

Definition
I Let Λ = 〈p1, p2, . . . , pN〉 be a propositional language.
I Let w = [w1,w2, . . . ,wN] be a model.

The truth value ‖ · ‖Λ
w is:

‖ ⊥ ‖Λ
w = 0;

‖pi‖Λ
w = wi for all i ;

‖ϕ→ ψ‖Λ
w =


1 if ‖ϕ‖Λ

w = 1 and ‖ψ‖Λ
w = 1,

0 if ‖ϕ‖Λ
w = 1 and ‖ψ‖Λ

w = 0,
1 if ‖ϕ‖Λ

w = 0 and ‖ψ‖Λ
w = 1,

1 if ‖ϕ‖Λ
w = 0 and ‖ψ‖Λ

w = 0;

for all formulae ϕ and ψ over Λ.



Model Theory: Satisfiability, Validity

Definition
I ϕ is valid iff ‖ϕ‖w = 1 for all w ∈ W.
I ϕ is satisfiable iff ‖ϕ‖w = 1 for some w ∈ W.

Definition

JϕKW =
1
|W|

∑
w∈W

‖ϕ‖w.

Corollary

I ϕ is valid iff JϕKW = 1.
I ϕ is satisfiable iff JϕKW > 0.
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Bag-of-Words Inference (1)

assume strictly bivalent valuations;
Λ = {socrates, is,a,man, so,every}, |W| = 26;

(T) socrates ∧ is ∧ a ∧man
∴ (H) so ∧ every ∧man ∧ is ∧ socrates

;

ΛT = {a}, |WT| = 21;

ΛO = {socrates, is,man}, |WO| = 23;

ΛH = {so,every}, |WH| = 22;

21 ∗ 23 ∗ 22 = 26;



Bag-of-Words Inference (2)

How to make this implication false?
I Choose the 1 out of 24 = 16 valuations from WT ×WO

which makes the antecedent true.
I Choose any of the 22 − 1 = 3 valuations from WH which

make the consequent false.
...now compute an expected value. Count zero for the
1 ∗ (22 − 1) = 3 valuations that make this implication false.
Count one, for the other 26 − 3. Now

JT → HKW =
26 − 3

26 = 0.95312,

or, more generally,

JT → HKW = 1− 2|ΛH| − 1
2|ΛT|+|ΛH|+|ΛO|

.
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Language: Syllogistic Syntax

Let
Λ = {x1, x2, x3, y1, y2, y3};

All X are Y =(x1 → y1) ∧ (x2 → y2) ∧ (x3 → y3)

Some X are Y =(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ (x3 ∧ y3)

All X are not Y =¬Some X are Y ,
Some X are not Y =¬All X are Y ,



Proof theory: A Modern Syllogism

∴ All X are X
(S1),

Some X are Y
∴ Some X are X

(S2),

All Y are Z
All X are Y

∴ All X are Z
(S3),

All Y are Z
Some Y are X

∴ Some X are Z
(S4),

Some X are Y
∴ Some Y are X

(S5);



Proof theory: “Natural Logic”

∴ All (red X ) are X
(NL1), ∴ All cats are animals

(NL2),

Some X are (red Y )

∴ Some X are Y
,

Some X are cats
∴ Some X are animals

,

Some (red X ) are Y
∴ Some X are Y

,
Some cats are Y

∴ Some animals are Y
,

All X are (red Y )

∴ All X are Y
,

All X are cats
∴ All X are animals

,

All X are Y
∴ All (red X ) are Y

,
All animals are Y

∴ All cats are Y
;



Natural Logic Robustness Properties

Some X are Y
∴ Some X are (red Y )

>
Some X are Y

∴ Some X are (big (red Y ))
,

Some X are Y
∴ Some (red X ) are Y

>
Some X are Y

∴ Some (big (red X )) are Y
,

All X are Y
∴ All X are (red Y )

>
All X are Y

∴ All X are (big (red Y ))
,

All (red X ) are Y
∴ All X are Y

>
All (big (red X )) are Y

∴ All X are Y
.



Preliminary Conclusions

(a) “. . . you must be very naive to believe you can reason
about language in logic. Even if you could, you’re missing
the knowledge to prove things. Even if you had that, logic
would still be too computationally complex.” WRONG!

(b) “. . . you must be rather ignorant to believe a machine
learner will get you anywhere, if all you do is to feed it bags
of words. It’s just wrong from the point of view of logic,
epistemology, linguistics, and whatever other theory you
should care about.” WRONG!
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Model Theory: Satisfiability, Validity, Expectation

Definition

JϕKW =
1
|W|

∑
w∈W

‖ϕ‖w.

How do we compute this in general?

Observation
I Draw w randomly from a uniform distribution over W.

Now JϕK is the probability that ϕ is true in w.
I If W ⊆ W is a random sample over population W, the

sample mean JϕKW approaches the population mean JϕKW
as |W| approaches W.
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