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Monte Carlo Semantics
Robust Inference and Logical Pattern Processing

with Natural Language Text

Richard Bergmair

Abstract

This thesis develops several pieces of theory and computational techniques which can
be deployed for the purpose of allowing a computer to analyze short pieces of text (e.g.
‘Socrates is a man and every man is mortal.’) and, on the basis of such an analysis, to decide
yes/no questions about the text (‘Is Socrates mortal?’). More particularly, the problem is
seen as a logical inferencing task. The computer must decide whether or not a logical
consequence relation ‘therefore’ holds between the two pieces of text. (‘Socrates is a man

and every man is mortal, therefore Socrates is mortal.’)

This problem is a pervasive theme in logic and semantics but has also been subject over
the last five years to a wave of renewed attention in computational linguistics sparked by
the Recognizing Textual Entailment (RTE) challenge. A critical reevaluation of this line
of work is presented here which demonstrate several problems concerning the empirical
methodology used at RTE and the results derived from it. This thesis is thus more theory-
driven, but nevertheless inspired by RTE in that it addresses problems raised by RTE
which have not previously received sufficient attention from a theoretical viewpoint,
such as the problem of robustness.

With this goal in mind, two of the results on Natural Language Reasoning (NLR) estab-
lished here become particularly important: (1) Assuming the syllogism as a benchmark
fragment of NLR, the model theory which underlies NLR is not necessarily a two-valued
logic, but it can be the many-valued Łukasiewicz logic. (2) Despite the fact that the
syllogism is a logical language of less expressive power than natural language as a whole,
a good approximation to NLR can still be obtained by using the method outlined here
for rewriting natural language text into syllogistic premises.

These two properties of NLR enable the approach to robust inference and logical pattern
processing called Monte Carlo semantics, which, in turn, demonstrates that a single
logically based theory can account for the semantic informativity of deep techniques
using theorem proving and for the robustness of bag-of-words shallow inference.
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1. Introduction & Motivation

In this thesis, we will develop several pieces of theory and computational techniques
which can be deployed for the purpose of allowing a computer to analyze short pieces of
text (e.g. ‘Socrates is a man and every man is mortal.’) and, on the basis of such an analysis,
to decide yes/no questions about the text (‘Is Socrates mortal?’). More particularly, we
approach the problem as a logical inferencing task. The computer must decide whether
or not a logical consequence relation ‘therefore’ holds between the two pieces of text.
(‘Socrates is a man and every man is mortal, therefore Socrates is mortal.’)

There are currently two prominent approaches to this problem: (1) In the shallow bag-
of-words approach, a piece of text is represented as a vector, each dimension representing
a word count. This translates into an inference technique which scores candidate infer-
ences, for example based on the size of the bag-of-words overlap as a proportion of the
length of the consequent. (2) In the traditional deep approach, text is represented as a
formula, and logical theorem proving techniques are then applied to draw inferences.

The problem with these is that the shallow approach is robust but not semantically in-
formed, while the deep approach is semantically informed but not robust. Our goal
herein will be to contribute to the development of reasoning techniques which improve
over the shallow approach in terms of semantic informativity and over the deep approach
in terms of robustness. We will define what exactly we mean by semantic informativity
and robustness in chapter 5. Although deep/shallow integration has come a long way
in the domain of semantic representation (see e.g. Copestake 2007), the problem is rel-
atively new on the agenda as far as logical inference is concerned. One other approach
which attempts this, however, is the one by Bos & Markert (2005a,b, 2006a,b), which
we will have more to say about in chapter 5.

1.1. Aims & Methodology

A New Paradigm: Relationalism

The notion which will remain centre-stage herein is that of logical consequence as a re-
lation between pieces of natural language text. In adopting this view, we align ourselves
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with a recent paradigm shift in computational semantics which parallels an earlier de-
velopment in the field of formal logic, when consequence relations (Tarski 1930) were
recognized as a basic abstraction over logic alongside denotations (Frege 1879, 1892).

For computational semantics, the denotationalist paradigm has in practice meant that
pieces of text are translated to formulae of FOPC, the first-order predicate calculus.
The problem of drawing inferences on the basis of text can thereby be reduced to the
more well-understood problem of drawing inferences on the basis of FOPC formulae.
This strategy was adopted by Montague (1970a,b, 1973) and has also been at the heart
of other influential treatments on semantics, such as the monograph by Kamp & Reyle
(1993) and that of Blackburn & Bos (2005), nowadays often cited as a standard textbook
on computational semantics. But this raises the question of just what representation
language and what logic it is that is most appropriate for drawing inferences with natural
language text, and whether FOPC is anything more than an arbitrary choice resulting
from the lack of a practicable alternative. When considered in isolation, this problem
seems intractable.

The paradigm shift towards relationalism, however, has meant that the emphasis is now
on trying to infer the logic which is used in connection with a natural language from a
set of acceptable candidate inferences in much the same way as a linguist would infer
its grammar from a set of acceptable expressions. This parallels the approach of Tarski
(1935), to whom a logic was simply whatever it needed to be in order to model the in-
ferences properly, rather than starting with the rather abstract question “What is truth?”
and then assigning truth-functional denotations to expressions.

A Synthetic Approach: Theory-Driven but Empirically Grounded

Within the relationalist paradigm, one can distinguish two kinds of methodology: (1)
One can adopt the same kind of empiricism which underlies corpus linguistics. This idea
motivated the methodology of the RTE recognizing textual entailment challenge (Dagan
et al. 2005) and of related evaluation schemes like the AVE answer validation task at
QA@CLEF (Peñas et al. 2007). (2) One can rely on introspection in much the same
way as a linguist would, when using carefully chosen examples and counterexamples to
substantiate a given set of working hypotheses. This kind of methodology was adopted
for the FraCaS project (Cooper et al. 1996) in its testset-based evaluation methodology.
– It is this latter methodology which we adopt for this thesis, and, given certain intuitions
derived from such a method of introspection, we connect the dots by formal methods.

In addition to being theoretically-driven, our approach will also be synthetic in nature.
Thus, our theory will inherit properties from the component theories from which it has
been synthesized. This, in particular, includes certain properties concerning its power to
describe empirically observable phenomena. For example: We will establish traditional
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deep inference as a special case of our theory which represents one limit case, and we
also establish bag-of-words shallow inference as another special case which represents
another limit case on the opposite end of the deep/shallow spectrum. To the extent that
both of these special cases have previously been studied empirically, we have nothing
to add concerning the validation of these results, but neither do we do anything to the
theory which would invalidate the results. – Our own work will be concerned primarily
with the generalization itself.

Finally, we arrive at certain claims. Here one must distinguish two different types: (a)
A priori claims relate to definitions, conventions, and theory (‘Water is wet’). (b) A
posteriori claims relate to descriptions of empirical facts (‘Sea water contains salt’). – In
this thesis, we will arrive at claims of the former type. So our work is not a description
of language by means of logic, but rather an extension of logic inspired by language.

The distinction is not of merely philosophical interest. Someone sufficiently indoctri-
nated into the ways of mainstream computational linguistics might feel compelled to
ask: “Where is the empirical validation for all this?” But asking such a question of logic,
as Łukasiewicz pointed out, would be like asking for empirical validation of the fact that
2�2 � 4, making a survey, and concluding that, on average, 2�2 equals 4.12. Conversely,
if one has written a computer program to implement arithmetic, one might fallaciously
conclude its correctness from the testcase 2�2 � 4. Thus, it is important to note from the
outset one thing about the claims which we will ultimately arrive at in this thesis: They
all state the that we have successfully constructed a mathematical structure of some form
or another which reflects certain intuitions which one may hold about language. They do
not say anything about the empirical validity of these mathematical structures as models
of observable phenomena.

The fact that we do not engage in an empirical study, however, is not to say that such
empirical study is impossible. Quite to the contrary: we will have much to say about
how one would go about it in practice, particularly in chapter 2. And it is the very fact
that our theory is amenable to empirical study which makes it a scientific theory.

1.2. Related Work

Due to its abstract goals, this thesis draws on a large body of related work, with each
particular piece of previous work contributing only a small piece to a large puzzle. For
example, now that the main task of the RTE recognizing textual entailment challenge
was run for the sixth and last time, the number of publications which have made it into
that forum alone is over a hundred, not counting related evaluations like the RTE-3
pilot or AVE. In an attempt to account for this work, we will, in chapter 2, look at
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RTE-4 systems in particular and reduce each system to a point in a geometrical space of
results. This will make it possible to draw several interesting conclusions from patterns
observable in that space, thus dealing with a large body of literature quantitatively rather
than discussing each approach qualitatively.

As far as logic, natural logic in particular, is concerned, the relevant pieces of theory are
so fundamental that we will frequently have to refer to them and that they are better dealt
with in the particular contexts in which they become relevant in chapters 3, 4, and 5. The
approach of syntactic pattern rewriting relates largely to the problem of representation,
and will therefore be dealt with in chapter 4.

Then, of course, each chapter will also bring with it a particular body of relevant liter-
ature which we build on: Chapter 3 will draw heavily on the work of Jan Łukasiewicz
on many-valued logic (Łukasiewicz & Tarski 1930) and on the syllogism (Łukasiewicz
1951). Chapter 4 on decomposition will build on the approach to semantic composi-
tion put forward by Copestake et al. (2001, 2005), Copestake (2007, 2009), as well as
the grammar by Flickinger (2000) and related grammars. And, finally, in chapter 5, we
will pay particular attention to the textual inference engine by Bos & Markert (2005a,b,
2006a,b), which represents a previous approach at logically-based textual inference with
robustness properties.

Recognizing Textual Entailment

The Recognizing Textual Entailment Challenge (RTE)1 has gained some prominence as
an evaluation framework on textual inference, so it is worth devoting some attention to
the methodology implied before delving into a new treatment of the subject. Another
noteworthy piece of related work is the FraCaS project, which as previously introduced
a testsuite (Cooper et al. 1996) similar in its intent to the RTE dataset. Figure 1.1 shows
some candidate inferences which might be included in these. We will always write candi-
date inferences in a form where we first state an antecedent (‘Socrates is a man and every

man is mortal’), and then a consequent (‘Socrates is mortal’), the candidate inference itself
being the proposition which states that the latter follows from the former.

RTE datasets are constructed by sampling candidate inferences from large corpora using
a model-free methodology which is meant to reflect the needs of several different applica-
tions such as information extraction (IE), information retrieval (IR), question answering
(QA), and summarization (SUM). The candidate inferences would then be judged by
naı̈ve annotators, who attach their inference decisions on purely intuitive grounds (sec-
tion 2.1.2). The problem of constructing an inference engine is then a model-fitting

1RTE-1: Dagan et al. (2005), RTE-2: Bar-Haim et al. (2006), RTE-3: Giampiccolo et al. (2007),
RTE-3 pilot: Voorhees (2008), RTE-4: Giampiccolo et al. (2008), RTE-5: Bentivogli et al. (2009)
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An Italian became the world’s greatest tenor.


 Was there an Italian who became the world’s greatest tenor?
(F.1)

Every European has the right to live in Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.


 Can every European travel freely within Europe?

(F.18)

Some delegates finished the survey on time.

~
 Did any Irish delegates finish the survey on time?
(F.70)

Just one accountant attended the meeting.


  Did no accountants attend the meeting?
(F.105)

(a) FraCaS examples (Cooper et al. 1996)

By the end of 2002, approximately 300,200 persons were reported as HIV-

positive in the 15 countries of the former USSR, with the rate of HIV infection

increasing rapidly. Throughout Eastern Europe, the period 2000-01 saw a sharp

increase in infections, especially among intravenous drug users.


 AIDS victims increase in Europe.

(R4.5)

AIDS could cut population numbers in some of the worst-hit African countries

- the first falls attributable to disease since bubonic plague ravaged Europe.

~
 AIDS victims increase in Europe.

(R4.7)

Reports from other developed nations were corroborating these findings. Eu-

rope, New Zealand and Australia were also beginning to report decreases in

new HIV cases.


  AIDS victims increase in Europe.

(R4.8)

(b) RTE examples (RTE-4 data, task: IE)

Figure 1.1.: some example inferences from standard datasets

exercise with the implicit aim of maximizing a statistic which measures the agreement of
system decisions with the gold standard reference decisions.

The FraCaS testsuite, on the other hand, can be understood as a relationalist rendering
of logical-semantic phenomena in the form of manually constructed textbook example
inferences. The creators of the FraCaS testsuite leave open the question of how to eval-
uate a given set of decisions as assigned by a model to the gold standard decisions. Yet,
the testsuite clearly lends itself to the kind of methodology which would also be em-
ployed by a linguist or grammar engineer when constructing a syntactic grammar, while
observing and describing the overgeneration and undergeneration behaviour of a specific
grammar w.r.t. specific phenomena by means of well-chosen examples. – This implies a
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more theory-driven approach.

The ideological divide between the two approaches has previously given rise to some con-
troversy: For example Zaenen et al. (2005) have taken a critical view on RTE methodol-
ogy in its most empirical interpretation, eliciting a defense from Manning (2006), which,
in turn, received a rebuttal (Crouch et al. 2006). In chapter 2 we will, among other
things, undertake a theoretical investigation to shed some more light on this topic, while
trying, as far as possible, to steer clear of dogma.

Recall, in this context, that, concerning the deep/shallow debate, we align ourselves
with neither school of thought but are, rather, trying to hybridize both approaches and
achieve a kind of deep/shallow integration which draws on the strengths of both. Our
stance on evaluation is a similar one: The practice of RTE-style evaluation on one hand
and FraCaS-style testing on the other, in terms of their methodological underpinnings,
are taken herein as complementing, rather than contradicting, each other.

Especially concerning the RTE evaluations, we will highlight many fundamental prob-
lems which exist with the current implementation of the methodology underlying it. But
such shortfalls in implementation are only to be expected of a young and evolving field
and should not distract from the fact that the underlying idea is sound: In particular:
RTE evaluations have brought relationalism into the spotlight within computational lin-
guistics and natural language processing, and, for the first time, they have applied an
empirical methodology to a problem that has been previously thought of only in theo-
retical terms. Furthermore, the fact that Harabagiu & Hickl (2006) have been able to
successfully deploy an RTE engine to improve the performance of a question answering
system seems promising.

Fuzzy Logic

Why is it necessary for us to devote an entire chapter to the rather foundational topic of
logic in a thesis such as this, where we have quite specific aims that do not immediately
refer to this area? After everything that has been said elsewhere about fuzzy logic, the
so-called probability logic, Bayesianism, etc. is there anything substantially new which
we need to say about this topic in order to justify our approach to textual inference?

The answer is yes, and it is precisely the fact that so much has been said about this
topic which has made the body of related work so difficult to navigate. Especially the
AI-motivated treatment of fuzzy logic which was popular in the 1970s has done a great
disservice to the cause of fostering a more widespread understanding of many-valued
logic on the interdisciplinary stage. – Refer to Elkan (1994), and the debate which
ensued thereafter in IEEE Expert for a case in point. – For example, Hájek (1998), in
one of the most groundbreaking contributions to the field, feels it necessary to refer to
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that legacy and make explicit the claim that “fuzzy logic is neither a poor man’s logic,
nor a poor man’s probability”.

I have found myself confronted with similar misconceptions when I first started pre-
senting my ideas on a many-valued model theory for natural language to computational
linguists. Negative opinions were widespread, citations to back up those opinions were
generally rare, and even in the literature, confusion has often prevailed. For example, the
misconception “I have heard that fuzzy logic is a bad idea, as it is provably incomplete”
could be a reference to Morgan & Pelletier (2004), who construct a particular class of
fuzzy logics, claiming the impossibility of a proof-theoretic account of it, while failing to
discuss Hájek (1998) and other pertinent earlier work establishing classes of fuzzy logics
which do come with proof theories and completeness results.

The only defence against prejudice of this sort is formal rigour, which is why, in chapter
3, we will establish from first principles a model theory, a proof theory, and an algebra,
together with the relevant completeness proofs, for the particular logics which we use.

Aside from the question whether fuzzy logic has something to contribute to computa-
tional semantics to improve over classical logic, fuzzy logic has, in the past, also been
contrasted with other more wildly non-classical logics which have been proposed for the
purpose of modelling natural language semantics, one case in point being Pinkal (1985).
None of these alternative proposals, however, have been nearly as well developed as
fuzzy logic, and there now seems to be a more widespread recognition of the fact that
fuzzy logic in computational semantics deserves another chance. For example, where van
Deemter (1995, p. 82) previously stated that “systems resulting from” fuzzy logic “seem
as badly disposed to solve the Sorites paradox as classical logic”, he has now adopted
an approach similar to my earlier proposal (Bergmair 2006a), and is actively advocating
the use of fuzzy logic in computational semantics (van Deemter 2010a,b), particularly as
a model for vagueness.

Here, we will not be interested in fuzzy logic as a model for any natural language phe-
nomena at all, although such investigations might well benefit from the results we are
about to establish. Rather, what motivates our use of a many-valued logic is the fact that
this will turn out to be useful in chapter 5 computationally.

Finally, another possible pitfall is to misunderstand probability as logic: The formula
P�aaabbb� � P�aaa�P�bbb� expresses the probability of the cooccurrence of two stochastically
independent events aaa and bbb. This is not the same as a logical conjunction, as it refers to
the notion of stochastic independence, and is therefore not truth-functional. Conversely,
the notion of stochastic independence would have no interpretation in a logic. Despite
the fact that there are many deep relationships between probability and fuzzy logic, it is
important not to confuse them from the outset.
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In this thesis, we will take the viewpoint that logic and probability are models for dif-
ferent kinds of phenomena, and so they complement, rather than contradict, each other.
Logic is primarily about language. It establishes the language of proof and it assigns, in
a compositional manner, truth values to expressions in a formal language. Probability
is primarily about knowledge and the lack thereof, i.e. uncertainty, and so is not a the-
ory of formal language but a theory of formal epistemology. This is how we will put
these theories to use in this thesis, despite the fact that advocates of fuzzy logic have not
always drawn this distinction. Chapter 3 will be concerned with logic and its formal
language, while chapter 5 will be concerned, among other things, with probability as a
model of formal epistemology to approach the problem of uncertainty. So, in response
to the question “Fuzzy logic or probability?”, our answer is “both”.

Natural Logic

Another body of literature which is important to us is what, for lack of a better term,
often comes under the heading of “natural logic”. This term, however, means many
different things to many different people. Of particular relevance to us is that work
within natural logic which studies fragments of the predicate calculus corresponding to
fragments of natural language, given the usual style of predicate calculus representation
for natural language. In particular this includes work by van Benthem (1986, 1991),
McAllester & Givan (1992), Zamansky et al. (2006), van Eijk (2007), Pratt-Hartmann
(2003, 2004), Pratt-Hartmann & Third (2006), Pratt-Hartmann & Moss (2009).

These fragments of the predicate calculus are usually studied in terms of their metatheo-
retic properties, i.e. proof-theoretic, model-theoretic and algebraic formalizations thereof
and corresponding completeness theorems, computational properties etc.

Of these fragments of logic, we consider only two very basic fragments which are of
special interest to us: (1) The syllogism, as we will outline shortly, plays a central role in
providing the interface between our model theory (chapter 3) and our theory of semantic
decomposition (chapter 4). (2) A fragment of natural logic which we will call substitu-
tion logic has an important role to play in competing approaches to textual inference.

Minimal Recursion Semantics and the English Resource Grammar

Some substitution-based approaches to textual inference attach substitution rules directly
to surface form patterns, rather than patterns of syntactic or semantic deep structure.
This means that they would have to extract, for example, active/passive alternations as
logical rewrite patterns, rather than treating them as an element of grammatical analysis.
– The main thrust of our argument here is as follows: When it comes to textual infer-
ence, one either deals explicitly with problems of grammar, i.e. syntax and compositional
semantics, or there is a theory of grammar which is implied by one’s approach to textual
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inference with surface patterns.

In this thesis, we will deploy the former approach and frequently refer to prior work
surrounding the English Resource Grammar (Flickinger 2000) with its implementation of
compositional semantics based on Minimal Recursion Semantics (Copestake et al. 2001,
2005, Copestake 2007, 2009), a metalanguage and algebra for semantic composition
based on a predicate calculus-style object language with abstract predicate and quantifier
symbols.

The advantages of using MRS, as opposed to using the language of the predicate calculus
directly, are its ability to facilitate inference and composition in the face of quantifier
scope ambiguity, as well as a higher degree of canonicity with regard to certain linguistic
tranformations which are logico-semantically invariant. The ProtoForm language which
we will introducte in section 4.1 is heavily inspired by the MRS language. In section 4.2,
we discuss MRS-style semantic composition which is the same composition process that
could, in principle, be applied for semantic composition with ProtoForms. – As far as our
prototype is concerned, it uses the English Resource Grammar and obtains ProtoForms
by translation from MRS.

The design of MRS has also inspired our particular approach to textual inference more
abstractly: Themes such as deep/shallow integration, underspecification of scope ambi-
guities, dependency-style interpretation of semantic forms etc. are cornerstones of MRS,
and they appear in many places throughout this thesis, particularly in chapters 4 and 5.

Bos & Markert’s Nutcracker system

Our approach has much in common with that of Bos & Markert (2005a,b, 2006a,b) in
that it is a logically-motivated treatment of textual inference based on translation of text
into predicate calculus, and that it attempts deep/shallow integration.

The main point of difference is that NUTCRACKER uses standard FOPC reasoning tools,
such as a theorem prover and model builder, and that its semantic composition uses a
CCG-based grammar and DRT as a semantic representation formalism. We will discuss
this approach in greater depth in chapter 5.

1.3. Overview

We approach two important questions about natural language reasoning (NLR). (1)
Assuming the syllogism as a benchmark fragment of NLR, is the model theory which
underlies NLR necessarily a two-valued logic, or can it be a many-valued logic? In chap-
ter 3, we will develop the many-valued Łukasiewicz logic into such a model theory for
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NLR. (2) Given the syllogism as a logical language of far less expressive power than
natural language itself, can we still obtain a good approximation to NLR using the syl-
logism? In chapter 4, we will develop such a method of rewriting natural language text
into syllogistic premises. Our approach to these These two results on NLR then enable
the particular approach to robust inference and logical pattern processing which we call
Monte Carlo semantics (chapter 5) and which aims at combining the semantic informa-
tivity of deep, logically based approaches to language processing with the robustness of
shallow approaches such as bag-of-words representations.

Empirical Review & Methodology

Chapter 22 proposes a new empirical methodology for studying textual entailment which
is inspired by the RTE recognizing textual entailment challenge3. However, it deviates
from RTE methodology in a number of ways, and should thus be seen as an alternative
to the RTE scheme, rather than an extension thereof.

The problems with RTE methodology which our treatment addresses start with the fact
that it is not sufficiently clear what logical distinction between candidate inferences is
actually being drawn by RTE judges: The distinction ENTAILED vs. UNKNOWN vs. CON-
TRADICTION could either correspond to a question of logical validity or a question of
relevance or logical determinacy. We will see why the distinction is a crucial one to make.

We will also discuss in greater detail the evaluation criteria implicit to the methodology
as part of the statistical scores used at RTE, such as accuracy and average precision,
questioning their suitability and proposing mutual information as an alternative.

Having established, in section 2.1, a set of formal definitions which improve in various
ways over the theory of evaluation which is implicit to the RTE scheme, we then go on, in
section 2.2, to build on those theoretical foundations and use statistics on RTE inference
data and submissions to conduct an empirical metaevaluation of the RTE evaluation
scheme and reevaluation of the submitted systems.

From this investigation, we derive another result contradicting an idea which is consti-
tutive of the task itself: Statistically, the task does not appear as a coherent abstraction
over the different applications (question answering, information extraction, etc.)

Finally, our reevaluation of RTE systems shows that only a very small number of systems
at the top of the ranking show any evidence of having successfully addressed the task.
We derive this conclusion from the observation that the bag-of-words baseline performs
relatively well on the task, and that the vast majority of systems exhibit error character-

2Some of the material in this chapter was previously published (Bergmair 2009).
3see Bentivogli et al. (2009), Giampiccolo et al. (2008), Voorhees (2008), Giampiccolo et al. (2007),

Bar-Haim et al. (2006), Dagan et al. (2005)
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istics which suggest that their labellings differ from the baseline randomly rather than
trending towards the gold standard.

 Lukasiewicz Logic & Syllogistic Semantics

Traditionally, one would think of natural language reasoning as being based on a bivalent
model theory in which propositions are always either false or true, always either 0 or 1.
Chapter 34 takes a different viewpoint.

Here, we establish that we can instead use the many-valued logic proposed by Łukasiewicz
(Łukasiewicz & Tarski 1930), in which truth values are drawn from the entire unit inter-
val �0,1�, so that a proposition could be true, for example, to a degree 0.7.

In section 3.1, we will summarize the relevant literature to establish the propositional
logic of Łukasiewicz and its associated proof theory and completeness result. The note-
worthy property of this formal system is that an M -valued Łukasiewicz logic can be
derived for any M , with the limit case of M � 2 reducing to standard propositional logic.
Of particular interest to us will be the other limit case of ¯0-valued logic, which has in-
finitely many truth values and thus gives us a generalization of standard logic. This is
a generalization in that it never proves a theorem which 2-valued logic does not prove.
But there are also theorems which 2-valued logic proves which ¯0-valued logic does not.

In section 3.2, we will then move on to define a reduction of the language of the predicate
calculus to the language of propositional logic. For example, if we have

¦x � man�x�� mortal�x�,

we would rewrite the universal quantifier, traditionally taken to range over an infinite
domain, as a conjunction over a domain of three individuals

�man�c1�� mortal�c1�� , �man�c2�� mortal�c2�� , �man�c3�� mortal�c3��,

where c1, c2, c3 are constants referring to those three individuals. So this is now simply
a conjunction over three implications, each of which contains only predications over
constants. But such predications over constants are simply propositional atoms, so we
can rewrite this in propositional logic as

�man1 � mortal1� , �man2 � mortal2� , �man3 � mortal3�.

We are now deviating from standard logic in two regards: We move from 2-valued to
¯0-valued logic, and we change the interpretation of quantification. The question then
arises whether this new logic is now any less adequate as a model for natural language

4Some of the material in this chapter was previously published (Bergmair 2008).
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reasoning than standard logic. We will address this in section 3.3, where we take the
syllogism as a benchmark for natural language reasoning. This approach was motivated
by the central role which the syllogism plays in natural logic, and is further justified by
our own results (chapter 4). Again, it is Łukasiewicz (1951) who pioneered the relevant
foundations by establishing the syllogism as a formal logic.

The problem with his formalization, however, is that it relies on bivalent logic. This
is why, in section 3.3, we will present a completeness proof which establishes that the
fragment of our logic corresponding to the syllogism proves all and only those syllogisms
traditionally considered valid. This completeness proof makes it necessary to develop
some basic algebraic identities in the algebra of Łukasiewicz logic (section 3.1).

With this completeness result in place, it appears that, with our particular logic, despite
the fact that it is slightly non-standard, we do not lose the ability to support the same kind
of reasoning with natural language which standard logic would impose on the language.

This result turns out to be highly relevant in chapter 5. In particular, the fact that this
model theory is ¯0-valued will be useful for compuational purposes. Furthermore, one of
the two conjunction operators in Łukasiewicz logic, the strong conjunction, is commuta-
tive and associative but not idempotent. This amounts to a bag aggregation operator, and
we will see that it can be used to reproduce the robustness effects of bag-of-words infer-
ence within a proper logical framework (chapter 5). But even aside from its importance
to this thesis, this result on the many-valued semantics of natural language is interest-
ing in and of itself. For example, many-valued logic might be useful for search, natural
language interfaces to databases, and as a model for vagueness in natural language (see
Bergmair 2006a,b, Bergmair & Bodenhofer 2006, van Deemter 2010a,b).

Semantic Decomposition

Having established a logical interpretation for the syllogism, the question now arises how
to translate natural language to the language of the syllogism. This is the problem we
address in chapter 4. We will arrive at a solution to this problem by means of a new kind
of semantic representation scheme which supports semantic composition and semantic
decomposition. Semantic composition is the well-understood problem of arriving at a
semantic representation structure given a piece of text, and semantic decomposition is
the problem of arriving at a logical formula suitable for purposes of inference given a
semantic representation structure.

So, we begin the chapter in section 4.1 by establishing the semantic representation lan-
guage of ProtoForms. Figure 1.2 shows an example of such a ProtoForm structure. The
ProtoForm language is closely related to Hole Semantics (Bos 1996) and MRS (Copes-
take et al. 2005), but differs from these schemes in that it is recursive: A ProtoForm can
be the subform of another ProtoForm. In particular, the recursive structure which we
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sentence:

Every representative of a company saw a sample.

Underspecified ProtoForm:

<@@@@@@@@@@@@@@@@@@@@@>

SeveryS �x1� 1 ,

2

<@@@@@@>

SrepresentativeS �KEY � x1 �,
& ,

Sof S �KEY � ~e2~, arg1 � x1, arg2 � x2 �

=AAAAAA?
,

SaS �x2� � ScompanyS �KEY � x2 �� ,

SsawS �KEY � e1, arg1 � x1, arg2 � x3 �,
SaS �x3� � SsampleS �KEY � x3 �� ,

1 h 2

=AAAAAAAAAAAAAAAAAAAAA?

.

SNF, logical form:

<@@@@@@@@@@@@@@@@@@>

<@@@@@@@@@@@@@@@>

<@@@@@@>
SeveryS �x�

<@@@@@@>

SrepresentativeS �KEY � x �,
& ,

Sof S �KEY � ~e2~, arg1 � x �

=AAAAAA?
� SsawS �KEY � ~e1~, arg1 � x ��

=AAAAAA?

,

<@@@@@@>
SaS �x� � ScompanyS �KEY � x ��

<@@@@@@>

SrepresentativeS � �,
& ,

Sof S �KEY � ~e2~, arg2 � x �

=AAAAAA?

=AAAAAA?

=AAAAAAAAAAAAAAA?
, � SaS �x� � SsampleS �KEY � x �� � SsawS �KEY � ~e1~, arg2 � x ���

=AAAAAAAAAAAAAAAAAA?
SNF, dependency notation:

( every [ representative of ] ) ( a company ) saw ( a sample )

§ §

¦

SNF, McDonald’s decomposition:

• F: Every representative saw � something.

Q: Who ~ saw? A: Every representative ~ saw.

• F: They were � representatives of a company.
Q: Who were they � representatives of? A: Representatives of � a company.

• F: Somebody ~ saw a sample.

Q: What ~ was seen? A: A sample ~ was seen.

Figure 1.2.: example SNF structure
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will impose on ProtoForms is the one used by Koller et al. (2009) for scoping purposes.
As we will see, this is useful for semantic decomposition in a number of ways.

In section 4.2, we will summarize how ProtoForm composition is possible on the basis
of a simplified MRS-based toy algebra. So, despite the fact that we will make some
changes to the representation language, nothing fundamental changes about the process
of composition. We will, however, have a number of things to say about decomposition.

In particular, section 4.4 discusses a decomposition process which produces from a Proto-
Form what we call a syllogistic normal form (SNF). An SNF is a logical formula which
is a conjunction of syllogistic premises (SPs). An example is shown in Figure 1.2.

We take the view that SNFs are not merely artefacts of our decomposition process, but
that they have an interesting interpretation from a linguisic point of view. This can best
be seen by considering the dependency notation used in Figure 1.2.

Section 4.3 considers substitution logic as an inference framework based on rewrite pat-
terns. Here, we will find that, by using rewrite patterns over the bracketed structures
of Figure 1.2, we can get a more accurate logic than by using rewrite patterns over syn-
tax trees or syntactic dependency structures. However, this section will also show that
rewrite patterns themselves run into limitations which can be overcome by using the full
logic of the syllogism, rather than just substitution patterns.

Finally, in section 4.5, we will show that SNF dependency structures also adhere to the
metatheoretical principles of grammar outlined by Harris (1982, 1991), which other
kinds of dependency structures do not.

Monte Carlo Semantics

We thus have a way to translate natural language into the language of the syllogism
and a reduction of the syllogism to propositional logic. So this immediately reduces the
problem of natural language inference to that of inference with propositional logic. We
could now use standard reasoning tools. But can we do better? This is the question we
address in chapter 55.

Our requirements in an inference mechanism are as follows: (1) semantic informativity,
the ability to take into account all available information; and (2) robustness, the ability
to proceed on reasonable assumptions where such information is missing. – In section
5.1, we will substantiate these notions with some example inferences and delimit the
scope of the inferences we can address.

As we will see, out-of-the-box reasoning tools and the traditional notions of satisfiability
and validity are inadequate when it comes to the robustness properties we require. Note,

5Some of the material in this chapter was previously published (Bergmair 2008).
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in this context, that a candidate inference ϕ � ψ is valid iff it is true for all valuations,
i.e. iff the minimum truth value minw>W Yϕ � ψYw across all model-theoretic valuations
w is C 1. Similarly, it is considered classically satisfiable, iff the maximum truth value
maxw>W YχYw across all w is A 0.

But validity is too strong a criterion and satisfiability too weak for the purposes of open-
domain NLP, where inferences will often hinge on common sense, real world or domain
knowledge. In such a situation, it is to be expected that the vast majority of candidate
inferences will be contingencies, i.e. formulae which are satisfiable but not valid. The
classical validity and satisfiability notions do not allow one to draw distinctions between
different grades of validity, so we cannot say which, of a given pair of candidate infer-
ences, is closer to being valid, when none of them is strictly valid.

Our approach to the problem will be to use a statistic in between the minimum and the
maximum: We use an arithmetic mean. In particular, we will denote by

Jϕ� ψKW �
1

SWS Qw>W

Yϕ� ψYw

the degree of validity of the candidate inference ϕ � ψ. In section 5.2.1, we discuss
this definition and how, as a result of this definition, our degrees of validity relate to the
validity and satisfiability notion of standard logic on one hand and to probability theory
on the other.

In the case of deep linguistic analysis and a complete theory of background knowledge,
our approach reduces to standard logic, which demonstrates semantic informativity (sec-
tion 5.2.1). On the other hand, the definition also implies robustness properties, which
we will show by establishing bag-of-words inference as another limit case (section 5.2.2).

In section 5.3 we will then show how one might approach the problem of estimating
Jϕ � ψKW in the general case. Our algorithm is based on the naı̈ve approach to in-
ference in propositional logic where one generates model-theoretic valuations w > W

exhaustively and runs a model checker on each to check the truth value Yϕ � ψYw of the
candidate inference. The problem with this approach in general is that SW S � 2N, when
N is the number of atomic propositions in the formula, and that, in order to estimate a
minimum truth value, one must generate all of them in the worst case. An arithmetic
mean, however, is better behaved when it comes to statistical estimation.

So, we will not attempt to determine its exact value and will instead take a random
sample W b W and use Jϕ � ψKW as an estimator for Jϕ � ψKW . By statistical sam-
pling theory, we know that the former will approach the latter as the sample size SWS
approaches the population size SW S. The sampling itself can be automated by means of a
Monte Carlo method.
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2. Empirical Review & Methodology

How well does a given theory of natural language inference describe empirically observ-
able phenomena? Given two natural language inference engines which implement such
theories, what are their characteristics when it comes to describing such phenomena, and
how do they differ from each other?

We will formalize a theory of such evaluation and will discover several problems with the
RTE evaluation scheme in the process of this formalization. We will then use the theory
to conduct a new evaluation of systems previously submitted for the RTE challenge, as
well as an empirical metaevaluation of previous RTE evaluations.

2.1. Theoretical Foundations & Review of Methodology

In this section, we will introduce some theoretical foundations which underly empirical
work in textual inference. We will generalize over the definitions given in the past and
go into greater analytic detail, so as to accommodate our criticism of the RTE evaluation
scheme and our newly proposed methodological framework. The ideas also translate to
a certain extent to the AVE answer validation exercise at QA@CLEF1.

Here, we will only highlight as such those theoretical properties which arise from our
definitions and which contradict incorrect intuitions and unjustified tacit assumptions
underlying the RTE evaluation scheme. We will leave it for the next section (section 2.2)
to discuss the limitations of the RTE evaluation scheme in more general terms and to
show how our new methodology improves over it.

2.1.1. Fundamentals

In order to describe inference decisions, we need to impose some structure on the labels
which can be assigned either by a model or by the gold standard to a candidate inference.

1. Inference decisions are drawn from the following set of atomic decisions:

D � �t,p,|,x�.
1AVE-1: Peñas et al. (2007), AVE-2: Peñas et al. (2008), AVE-3: Rodrigo et al. (2009)
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Note the two-dimensional structure of this notation: One fundamental dimension we will
be interested in throughout the rest of this chapter will be the distinction � vs. �, the other
dimension will be j vs. n. The atomic decisions arise from writing the corresponding
symbols on top of each other.

2. We will call the following subsets of D structured labels:

t � �t�,
p � �p�,
| � �|�,
x � �x�,

� � �t,|�,
� � �p,x�,
j � �t,p�,
n � �|,x�.

Q � �t�,
S � �|,x,p�,

3. We define labelsets, which are sets of structured labels and partitions of D:

C4 � �t,p,|,x�,
C3 � �t,n,p�,

C�,� � ��,��,
Cj,n � �j,n�.

CQ,S � �Q,S�,

A few comments are in place about how these labelsets correspond to the labelsets used
elsewhere in the literature. The labelset CQ,S corresponds to the two-way distinction
which has been used at the RTE since its inception and which was labelled ENTAILED

vs. NOT ENTAILED at RTE-4 and RTE-5. The labelset C3 corresponds to the three-way
distinction which was first introduced at the RTE-3 pilot, and subsequently used at RTE-
4 and RTE-5 and which was labelled ENTAILED vs. UNKNOWN vs. CONTRADICTION.
This is the same labelset which was also used for FraCaS, where the labels were YES vs.
DON’T KNOW vs. NO.

Our own scheme is inspired by that of Wang & Zhang (2009), where the inference
decision is reached by a two-stage process, the first stage deciding “relatedness” (j vs.
n), and the second stage deciding “entailment” (� vs. �).2

4. For any labelset C and any atomic decision d > D, we define the equivalence class �d�C
as that c > C for which d > c. As an additional notational convenience, we may write �d��
instead of �d�C�.

These equivalence classes express the idea that the NOT ENTAILED label at RTE is sub-
divided into UNKNOWN vs. CONTRADICTION. In our formalism, we can write out this
relationship as follows: �p�Q,S �S, and �n�Q,S �S, while �t�Q,S �Q.

Now that we have defined the labels and the structure of labelsets, we need to attend to
the candidate inferences themselves.

5. By X , we denote the inference language of interest, the set of all candidate inferences
that can be formed over some natural language, such as English.

2Note that the terminology we are about to adopt is different.
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Note that each candidate inference x > X is internally of the form ϕ � ψ, a structure
which we will make use of heavily throughout the rest of this thesis. For the purposes of
this chapter, however, the internal structure of a candidate inference will not concern us.

Given this infinite language of candidate inferences, we can move towards a statistically
more tangible notion:

6. An inference sample is a finite subset X b X of X , containing SXS candidate inferences

X � �x1,x2, . . . ,xSXS�.

So, we take a dataset, such as the RTE-4 dataset, to be a finite sample of candidate
inferences drawn from an infinite language of possible candidate inferences. Here, our
notion of sample includes not only statistically sampled datasets such as the ones used at
the RTE challenge, but also analytical testsuites such as the FraCaS testsuite.

Having defined labelsets and inference samples, we can now move on to consider assign-
ments of labels to candidate inferences.

7. The model space H is a set of mappings X ( D from the inference language X to the
set of atomic decisions D. Each such mapping H > H is an inference model.

In the context of RTE-4, we can think of systems as inference models. In principle, the
specifications of such systems as computer programs should allow them to assign an
inference decision for any candidate inference in the language. This is why we have spec-
ified the inference model as applying to the infinite domain given by the entire inference
language, despite the fact that we only observe inference decisions for finite samples.

For the sake of completeness, let us also mention the rankings which, besides labellings,
are also used at the RTE evaluations as part of the assignment of inference decisions to
inference samples:

8. Let X be an inference sample. We call a strict total order ib X �X a ranking of X.

We will have more to say about how these rankings enter into the evaluation when we
define the evaluation measures which operate on them in section 2.1.4.

2.1.2. Decision Criteria & Decision Structure

Having defined a theoretical language for talking about samples of candidate inferences
and their associated structured labels, we can now think about the meaning of such
a relationship. We distinguish three criteria which may lead us to make a particular
inference decision given a candidate inference: logical inference, intuitive inference, and
application-oriented inference.
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Logical Inference

We can obtain a criterion for making inference decisions on the basis of any logic which
supports the inference language of interest and which is capable of assigning to any
candidate inference ϕ� ψ a truth value Jϕ� ψK (see definition 90).

The following definitions give a criterion which is suitable to a large class of logics,
including traditional bivalent FOPC and our particular logic which we define in the next
chapter (chapter 3).

9. Let x > X be a candidate inference of the form ϕ � ψ. We say that x is logically a

j-instance or that x is logically determined iff

J�ϕ� ψ� ~� �ϕ�  ψ�K A 0,

and that x is logically a n-instance or that x is a logical contingency otherwise.

10. Let x > X be a candidate inference of the form ϕ � ψ. We say that x is logically a

�-instance or that x is logically valid iff

Jϕ� ψK � Jϕ�  ψK A 0,

and that x is logically a �-instance or that x is logically unsatisfiable otherwise.

Note that these definitions generalize over the traditional definitions of the notions of
logical validity and satisfiability (definition 39). The generalization does not, however,
have a role to play yet. We will estbalish it in due course.

Intuitive Inference

11. Let x > X be a candidate inference. We say that x is intuitively a j-instance or that x

is intuitively relevant iff, in response to question Q1 in the questionnaire in Figure 2.1, a
naı̈ve subject answers “YES”. Otherwise, we say that x is intuitively a n-instance or that
x is intuitively irrelevant.

12. Let x > X be a candidate inference. We say that x is intuitively a �-instance or that
x is intuitively valid iff, in response to question Q2 in the questionnaire in Figure 2.1, a
naı̈ve subject answers “H is true”. Otherwise, we say that x is intuitively a �-instance or
that x is intuitively unsatisfiable.

Although the RTE judges were never presented with a questionnaire like this, the method-
ology did depend on intuition. Just like any other decision criterion which relies on the
subjective intuitions of naı̈ve judges, it is, in this context, important to observe whether
judges agree on their decisions, as this can be taken as evidence in support of the con-
tention that they must have similar intuitions, and that therefore there is some universal-
ity to the intuitive criterion being captured.
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T � AIDS could cut population numbers in some of the worst-hit African coun-

tries – the first falls attributable to disease since bubonic plague ravaged

Europe.

H � AIDS victims increase in Europe.

(R4.7)

Q1. Given only common sense and the information provided in T, would
you be willing to bet on whether or not the information provided in
H is true? (YES / NO)

Q2. If you were forced to take such a bet, what would be your bet?
(H is true / H is false)

Figure 2.1.: intuitive inference questionnaire

For RTE-1, annotations were replicated independently of each other, and independently
of the RTE organizers by Bos and Markert, Vanderwende et al., and Bayer et al. (Da-
gan et al. 2005). For RTE-2 and RTE-3, the organizers themselves carried out cross-
annotation (Bar-Haim et al. 2006, Giampiccolo et al. 2007). For RTE-3, the annnota-
tion was independently replicated by NIST for use in the RTE-3 3-way pilot evaluation
(Voorhees 2008). In all cases, this led to agreement-levels of around 90% for the two-
way distinction and 83% in the case of the 3-way distinction in the RTE-3 pilot.

As part of the sampling methodology, instances about which there was disagreement
were discarded from the dataset, which is a controversial but not uncommon practice
(Beigman-Klebanov & Beigman 2009). For RTE-4 and RTE-5, agreement levels were not
officially reported.3 Note, however, that the agreement statistics are subject to problems
with bias and degradation in much the same way as accuracy scores for models, about
which we have some reservations (section 2.1.6).

Application-Oriented Inference

The third and final criterion which we consider is the application-oriented criterion,
motivated primarily from an engineering perspective. Here, we assume that the textual
inference system is a component of a larger system, for example a question answering
system which has an answer validation module based on textual inference. The inference

3Danilo Giampiccolo (in personal communication): “In RTE-4 and RTE-5, we decided not to report the
data on the agreement, as it referred to the preliminary pair creation phase, and the actual agreement
for all the pairs in the datasets was 100%. [. . . At RTE-5] out of 2538 pairs produced, 640 (25,22%)
were discarded due to disagreement (all pairs being judged by three annotators).”
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sample X of interest is then made up by the candidate inferences which are input to the
inference subcomponent. We can then consider the inference model G assigned by the
inference subcomponent as a variable, and try to optimize it in such a way as to maximize
the measured end-to-end system performance.

13. Let GA > H be an inference model. Let the function f map any given inference
model G > H to some ordered domain, so that f�G� is an application-oriented measure
of end-to-end system performance. We call GA an f-induced application model, iff

GA � argmaxG>Hf�G�.

Note that the function f represents the particular application and its evaluation criteria,
and the particular system which is used as a model for how the performance of the
inference subcomponent relates to the end-to-end system performance. So, while the
criterion is attractive from an engineering perspective, its usefulness from a research
perspective is limited by a lack of universality of any claim relating to an f -induced
application model for a specific f . – From the induced application model, we can then
derive the notions of validity and relevance.

14. Let x > X be a candidate inference and let GA be the f -induced application model for
some f . We say that x is a j-instance in f or that x is relevant in f iff, �GA�x��j,n � j,
and that x is a n-instance in f or that x is irrelevant in f otherwise.

15. Let x > X be a candidate inference and let GA be the f -induced application model for
some f . We say that x is a �-instance in f or that x is valid in f iff, �GA�x���,� � �, and
that x is a �-instance in f or that x is unsatisfiable in f otherwise.

Decision Criteria & Decision Structure at RTE

We have presented the inference decision as being composed of two dimensions repre-
senting independent aspects of the inference decision: relevance and validity.

At RTE-1 and RTE-2, some of the given example inferences hinge on negation to distin-
guish their labels, thus making it clear that their TRUE vs. FALSE distinction was not the
pure relevance decision (Cj,n). However, the definitions and overview papers remained
ambiguous in that their entailment notion could have corresponded either to the validity
decision (C�,�), or the logical conjunction of both validity and relevance (CQ,S). At the
RTE-3 pilot, a new idea entered the scene: the UNKNOWN label as a subdivision of the
negative class. Given that, we can assume that CQ,S is the decision which is being used
at RTE. What the annotators had in mind, of course, is hard to say in the absence of full
annotation guidelines.

In section 2.2.1, we will show that, in the RTE-4 dataset, the relevance distinction (Cj,n)
receives much greater statistical weight than the validity distinction (C�,�). In section
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2.1.3, we show that, on the other hand, some participants were explicitly addressing the
problem of validity distinction (C�,�).

2.1.3. Negation Properties of Inference Decisions

The distinction between relevance and validity is nicely demonstrated by the impact of
negation. We assume that any inference language X of interest will have a negation
operator  , so that, whenever ‘ϕ� ψ’ > X , we also have ‘ϕ�  ψ’ > X . To abbreviate this
notation, let us write  x to denote ‘ϕ�  ψ’ when ‘ϕ� ψ’ denotes x.

The ��,��-Symmetry & The �j,n�-Invariance

If x is valid, then  x is unsatisfiable, and if x is unsatisfiable, then  x is valid. For
example: ‘Socrates is a man and every man is mortal; Therefore Socrates is mortal.’ This
candidate inference is a �-instance. ‘Socrates is a man and every man is mortal; Therefore

Socrates is not mortal.’ This must then be a �-instance. This relationship is quite obvious
from a logical perspective, and it is, indeed, a corollary of definition 10. But it also seems
likely that this hypothesis would be supported by the intuitive criterion of definition 12.
More formally, we have for any atomic decision d > D:

� d��,� �

¢̈̈
¦̈̈
¨̈¤

� if �d��,� � �,

� if �d��,� � �.

It is this logic which participants had in mind when implementing, for example, a counter
for negations, where an odd number of negations inverts the decision. Furthermore, this
is the treatment afforded to negation by standard theorem provers as used, e.g. by Bos
& Markert (2005a,b, 2006a,b).

On the other hand, if x is relevant, i.e. logically determined, then  x will still be relevant.
Conversely, if x is irrelevant, then  x is equally irrelevant. Again, this is a corollary of
the logical criterion of definition 9 and a hypothesis that seems likely to be supported by
the intuitive criterion of definition 12. We define for any atomic decision d > D:

� d�j,n �

¢̈̈
¦̈̈
¨̈¤

n if �d�j,n �n,

j if �d�j,n � j.

This notion of relevance can best be understood by considering the application of question-
triggered information retrieval: Here, we might have a question such as ‘Is Socrates

mortal?’ The sentence ‘Socrates is Greek’ does not provide an answer, and neither does
‘Socrates is not Greek’. However, the sentence ‘Socrates is mortal’ does provide an answer,
yet the same is true for its negation ‘Socrates is not mortal.’
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The difference is that the former answer is in the affirmative and the latter answer is in the
negative, a distinction which may or may not play a role within any given application.
If one is interested in retrieval applications, for example, one will often find that the
validity distinction is drawn by the human user, not the computer, so that the retrieval
model needs to handle only the relevance distinction.

The �Q,S�-Asymmetry

On the other hand, there are also applications where both relevance and validity plays a
role, such as paraphrasing, semantic similarity, and text clustering of the kind performed
in summarization. This problem has a straightforward formalization in the logical frame-
work. Given two pieces of text ϕ and ψ, we need to determine Jϕ � ψK.

In the logical framework, this is equivalent to saying that a candidate inference of the
form ϕ � ψ is both relevant and valid, and that its converse ψ � ϕ is also both relevant
and valid. This, again, is a corollary of definitions 9 and 10 of the logical criterion, and
a hypothesis likely to be supported by the definitions 11 and 12 of the intuitive criterion.
The relationship gives us a good idea of the notion of ϕ and ψ having the same meaning.

Let x > X be some candidate inference which is both a �-instance and a j-instance. Then
x is a t-instance and thus a Q-instance. What if x is a S-instance? This may either be
due to the fact that x is a �-instance, or due to the fact that x is a n-instance. So, if x is a
Q-instance, then  x is a S-instance, but if x is a S-instance, then  x may or may not be
a Q-instance. We cannot express for arbitrary atomic decision d > D the value of � d�Q,S

as a function of �d�Q,S, but we could express it as a function of both �d��,� and �d�j,n.

2.1.4. Comparison Scores

In the previous sections, we have discussed candidate inferences, the structure of infer-
ence decisions, and the criteria for assigning such inference decisions to candidate infer-
ences to arrive at empirical models. Within the empirical methodology, we also need to
be able to compare models. For example one model G could be a gold standard reference
model, and another model L could be that which a system has produced independently.
What we need is a measure of how well L agrees with G.

16. Let P�X � be the powerset of the inference language X . We say that α is a compari-

son score iff it is a mapping α � P�X ��HX �HX ( R mapping an inference sample and a
pair of inference models to a number. For any X > P�X �, we will generally use the nota-
tion αX�L,G� instead of α�X,L,G� to denote the numeric result obtained by comparing
model L to model G on sample X.
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17. Let C be a labelset, and let G,L > H be inference models. For any inference sample
X b X , we define the usual contingency table and associated probabilities

PX��G�C�G�C�G�C � g, �L�C�L�C�L�C � l� � 1

SX S Qx>X
1��G�x��C � g , �L�x��C � l�,

where 1 is a counter which takes on a numerical value of one when the logical expression
in its argument is true and zero otherwise. We also define the associated marginals and
conditionals as usual:

PX��G�C�G�C�G�C � g� �Q
l>C

PX��G�C�G�C�G�C � g, �L�C�L�C�L�C � l�,

PX��L�C�L�C�L�C � l� � Q
g>C

PX��G�C�G�C�G�C � g, �L�C�L�C�L�C � l�,

PX��G�C�G�C�G�C � g S �L�C�L�C�L�C � l� �
PX��G�C�G�C�G�C � g, �L�C�L�C�L�C � l�

PX��L�C�L�C�L�C � l�
,

PX��L�C�L�C�L�C � l S �G�C�G�C�G�C � g� �
PX��G�C�G�C�G�C � g, �L�C�L�C�L�C � l�

PX��G�C�G�C�G�C � g�
.

Mutual Information

The comparison measure which we use in section 2.2 is mutual information. This has
not been previously used as an evaluation measure at RTE.

18. Let C be a labelset, and let G,L > H be empirical models. For any inference sample
X b X , we define the prior entropyHX��G�C�G�C�G�C� and the mutual information IX��G�C�G�C�G�C; �L�C�L�C�L�C�:

HX��G�C�G�C�G�C� � �Q
g>C

PX��G�C�G�C�G�C � g� log �PX��G�C�G�C�G�C � g��;

HX��G�C�G�C�G�C S �L�C�L�C�L�C � l� � �Q
g>C

PX��G�C�G�C�G�C � g S �L�C�L�C�L�C � l� log �PX��G�C�G�C�G�C � g S �L�C�L�C�L�C � l��;

HX��G�C�G�C�G�C S �L�C�L�C�L�C� �Q
l>C

PX��L�C�L�C�L�C � l� HX��G�C�G�C�G�C S �L�C�L�C�L�C � l�;

IX��G�C�G�C�G�C; �L�C�L�C�L�C� �HX��G�C�G�C�G�C� �HX��G�C�G�C�G�C S �L�C�L�C�L�C�.

In what follows, we will consider evaluation measures which have been used as part of
the RTE evaluation scheme.

Accuracy

Accuracy is simply the probability that, upon choosing a candidate inference at random
from the sample, the model’s decision will be equivalent in the chosen labelset with the
gold standard decision. It was one of the measures used at RTE.
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19. Let C be a labelset, and let G,L > H be empirical models. For any inference sample
X b X , we define the accuracy AX

C
�G; L� as follows:

AX
C
�G; L� � 1

SX S Qx>X
1��G�x��C � �L�x��C�,�Q

c>C

PX��G�C�G�C�G�C � c, �L�C�L�C�L�C � c�.

Average Precision & Confidence-Weighted Score

The previous measures compared, for a given sample, a given empirical model G to
another model L. Average precision, however, compares an empirical model G to a
retrieval-style ranking i. Confidence-weighted score compares the inference model G to
another model L while taking into account i as a confidence ranking.

20. Let X b X be an inference sample. We define

�k x� � �x� > X S x� k x�.

21. Let X b X be an inference sample, let C be a labelset, and G,L > H be inference
models. Furthermore, let i be a ranking of X. We define the confidence-weighted score

CWSX
C �G; L,i� as follows:

CWSX
C �G; L,i� � 1

X
Q
x>X

A
�kx�
C

�G; L�.

This confidence-weighted score was used at RTE-1 but then discontinued. As the name
suggests, it is a weighted average of accuracy scores, where those weights come from a
confidence-ranking i. Let L be the empirical model represented by the system. Then, if
G � L, we will get a perfect score CWSC�G; L,i� � 1.0, regardless of i. The weighting
imposed by i is thus a proper confidence weighting, in the sense that we rank x higher
than x� iff we have higher confidence in hypothesizing that G�x� � L�x� than we do
in hypothesizing that G�x�� � L�x��. Whenever a model labels an instance such that
G�x� x L�x�, confidence-weighted score penalizes that model in a weighted fashion: The
higher up in the ranking the incorrect decision occurs, the higher the penalty.

22. Let X b X be an inference sample, let C be a labelset, and G,L > H be inference
models. Let i be a ranking of X. We define the average precision APC,c�G,i� as follows:

P��G�x�x�x���C � c S x�x�x� k x� � Px�>X 1��G�x���C � c� � 1�x� i x�
Px�>X 1�x� i x�

;

APC,c�G,i� �
Px>XP��G�x�x�x���C � c S x�x�x� k x� � 1��G�x��C � c�

Px>X 1��G�x��C � c�
.

This average precision measure was used from RTE-2 onwards. When using average
precision as an interpretation for the ranking i, this ranking becomes a retrieval-style
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ranking, not a confidence ranking as used by confidence-weighted score. Average preci-
sion directly compares this ranking i to the gold standard inference model G. Here, the
model represented by the system L does not enter the picture.

For the average precision score APC,c, we need to designate one label c > C as denoting the
positive class, all other labels then implicitly denoting the negative class. The retrieval-
style ranking i is considered to be in perfect agreement with the gold standard G, if
for every pair of instances x and x� for which G�x� � c and G�x�� x c, we have x i

x�. For example, the RTE evaluation scheme designates the label Q as positive, and a
perfect model as one which successfully ranks all Q-instances ahead of any S-instances.
Whenever a model ranks a S-instance at a rank where there is supposed to be a Q-
instance, average precision penalizes that model in a weighted fashion: The higher up
in the ranking the illegal insertion occurs, the higher the penalty. All a model needs
to do here is position instances somewhere in a continuum between Q-instances and
S-instances, without ever having to apply a decision boundary to that continuum.

Average Precision vs. Confidence-Weighted Score at RTE

There was some confusion at past RTE challenges about the distinction between con-
fidence rankings as imposed by confidence-weighted score at RTE-1 on one hand and
retrieval-style rankings as imposed by the average precision score from RTE-2 onwards
on the other.

For example, the average precision score of a submission by Padó et al. (2008) in RTE-4
goes up from .44 to .62 after reranking negatively-labelled instances to the bottom of
the ranking and inverting their order so as to be consistent with the proper interpreta-
tion of average precision. – Six of the 26 groups who participated at RTE-4 submitted
confidence-ranked three-way labellings, and four out of these six appear to have misun-
derstood the score in this way. Three of the four would have benefitted from reranking.

In the next section, we will have more to say about further unintuitive properties of
the average precision score which may help explain this confusion. At this point it is,
however, noteworthy that the problem applied only to ranked 3-way decisions, which
invites the following speculation about the deeper causes: Participants who submitted
ranked 2-way decisions may have been thinking about the task in terms of the retrieval
analogy, thus producing retrieval-style rankings over the relevance criterion. Participants
who submitted non-ranked 3-way decisions, on the other hand, may have been thinking
about the task in logical terms. The clash of the two paradigms was apparent with
those participants whose ranked 3-way decisions contradicted constraints implied by the
very definition of the RTE evaluation. But it stands to reason that this clash of the
retrieval analogy with the logical paradigm caused a more widespread misunderstanding

27



about the underlying interpretation. – This thesis is, to the best of my knowledge, the
first treatment of the RTE where this distinction between the logical paradigm and the
retrieval analogy is being rigorously drawn.

2.1.5. Relabelling Isomorphicity

One common theme from the previous section is that a label in and of itself is meaning-
less. All comparison scores, except average precision, apply meaning to labels only to the
extent that the labels serve to represent equivalence classes of candidate inferences. This
is a commonplace property of logical semantics. In this section, it will serve to further
substantiate the contrast between the logical paradigm of recognizing textual entailment
on one hand, and the retrieval analogy on the other.

23. Let X b X be an inference sample, C be a labelset, and f � D ( D be some function
on labels. We say that f is a C-relabelling morphism on X iff for all c, d > D we have
�f�c��C � �f�d��C only if �c�C � �d�C.
24. Let α be some comparison score. We say that α is relabelling-isomorphic iff, for
every inference sample X b X and for every labelset C, we have, for every C-relabelling
morphism f on X and for every pair of inference models L,M > H, that

αX�G,L� � α�f XG,f XL�.

One can easily check from the above definitions that accuracy, mutual information, and
confidence-weighted score are relabelling-isomorphic, but average precision is not. This
is due to the fact that none of the relabelling-isomorphic comparison scores’ definitions
refer to labels directly, only to comparisons of labels. Thus, they cannot intrinsically
make any distinctions between labels; labels are simply used as a symbolic representation
for equivalence classes over X .

This treatment of inference decision labels as equivalence classes on candidate infer-
ences agrees well with the negation properties of inference decisions we discussed before
(section 2.1.3). From this previous discussion, it follows that the function  � D ( D

is a C�,�-relabelling morphism, and also a Cj,n-relabelling morphism, but not a CQ,S-
relabelling morphism.

Now, let G be a gold standard, L be a model, and let α be a comparison score. Let’s say
we derive from the original sample another sample by negating all the consequents, so
that the new gold standard sample is  G, where � G��x� �  �G�x�� for all x. Further-
more, let’s say the model is perfect at detecting such negation, so that the new model is
 L. Now, if α is relabelling-isomorphic, this will ensure that the model retains its original
score, i.e. that α�G,L� � α� G, L�.
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In contrast to all the other comparison scores, average precision is not relabelling-isomorphic.
Its definition refers to a particular label c > C designated as the positive class. For exam-
ple the AP�Q,S�,Q evaluation measure used at RTE makes an intrinsic distinction between
the Q-label and the S-label by weighting errors that affect the rankings of Q-instances
more heavily than those affecting the S-instances.

Since the set of Q-instances and the set of S-instances of X are disjoint, the two average
precisions AP�G;i� and AP� G;i��, regardless of how i relates to i�, are independent.
– Note how this contradicts relabelling isomorphicity. Relabelling isomorphicity ensures
that, when we apply some function to relabel G, then, by simply applying that same
function to L also, a model can still satisfy the evaluation criterion. Average precision,
on the other hand, rules out the existence of such a functional relationship between i

and i� reflecting a given relabelling of G.

Average Precision & Relabelling Isomorphicity at RTE

So from the previous section it follows that average precision breaks up symmetries
between its labels. This is unsurprising, given that in its traditional applications, this
property is precisely what motivates its use. In information retrieval, for example, one
does not wish irrelevant, non-retrieved documents to enter into evaluation scores, since
they do not affect the user.

But this is a specific assumption which is made in information retrieval about the way in
which users interact with ranked retrieval user interfaces. At the Text REtrieval Confer-
ence (TREC)4, this property was particularly important, as scores were also subjected to
macro-averaging across topics with different numbers of documents in the collection.

To the extent that an RTE system is to be evaluated for its usefulness in the particular
context of a question-triggered retrieval system with a ranked-retrieval user interface, this
property may apply to RTE evaluation, but it is hard to see how this would generalize,
and how it would apply, for example, to information extraction or summarization.

In general, the retrieval analogy seems flawed. An RTE system must be evaluated not
only on its ability to recognize Q-instances, but also on its ability to recognize S-
instances. Nobody has, to the best of my knowledge, explicitly made an argument that
errors pertaining to the former problem should carry more weight than errors pertaining
to the latter, yet it has been adopted as an integral part of the evaluation methodology.

4For an overview on TREC, see Voorhees & Harman (2005).
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2.1.6. Prior Distribution Effects

In this section, we will study how the prior distribution P�GGG � g� affects the interpreta-
tion of scores α comparing some inference model G to other models L. In particular, we
will consider bias and degradation, two properties of accuracy and related scores which
contradict certain intuitions one may have about the RTE evaluation scheme. We will
show that these counter-intuitive properties do not apply to mutual information.

We will use as a running example the following prior: P�GGG � t� � 0.5, P�GGG � n� � 0.35,
P�GGG � p� � 0.15, which was the distribution of the 3-way gold standard labels both at
RTE-4 and RTE-5. Note that this means that P�GGG �Q� � 0.5, P�GGG �S� � 0.5.

Bias

To demonstrate the effects of bias, it is instructive to consider the inference models Lt,
Ln, and Lp produced by the constant choice baseline strategies which uniformly assign
the same label t, n, and p, respectively. Let us also consider the average case scores of
inference models L� which assign labels randomly.

We observe that A�G; Lt� � 0.5, that A�G; Ln� � 0.35, and that A�G; Lp� � 0.15. For
uniform random choice, we get A�G; L�� � 0.333. And we get A�G; L�

�
� � 0.395 for a

random choice model which correctly reproduces the prior from the gold standard but
assigns the labels to instances at random.

This already shows that it is potentially misleading to view accuracy as a one-dimen-
sional projection of how good a model is in the context of an evaluation scheme. The
three constant choice models and the random choice models are all equally uninformed
about how to make inference decisions on the basis of candidate inferences, since, in all
three cases, the candidate inferences themselves do not at all enter the picture. Yet, the
accuracy score already favours certain inference models over others.

In fact, accuracy scores of up to 0.5 for such zero-information baselines seem like large
numbers in the context of the RTE 3-way task. Both at RTE-4 and at RTE-5, one third
of all submissions for the 3-way task scored lower. At the RTE-3 3-way pilot (Voorhees
2008), scores were even worse, with two thirds of all systems scoring lower than the
constant choice baseline.

This seems counter-intuitive: Whenever one of these zero-information baselines happens
to assign a label that turns out to be the correct label, this must be, by definition, a lucky
guess. We would want a comparison score to quantify the extent to which a model can
make distinctions between labels on the basis of candidate inferences beyond this level
of lucky guessing.

30



20 25 5 P�GGG � t�

(45) (0) � .5

9 18 9 P�GGG �n�

(27) (0) � .36

1 7 6 P�GGG � p�

(8) (0) � .14

P�LLL � t� P�LLL �n� P�LLL � p�

� .3 � .5 � .2 N � 100
(.8) (0) (.2)

�H�GGG� � .5 log2�.5�

� .36 log2�.36�

� .14 log2�.14�

� �1.4277

�H�GGGSLLL � t� �
20
30

log2�
20
30

�

�
9
30

log2�
9
30

�

�
1
30

log2�
1
30

�

� �1.0746

�H�GGGSLLL �n� �
25
50

log2�
25
50

�

�
18
50

log2�
18
50

�

�
7
50

log2�
7
50

�

� �1.4277

�H�GGGSLLL � p� �
5
20

log2�
5
20

�

�
9
20

log2�
9
20

�

�
6
20

log2�
6
20

�

� �1.5395

�H�GGGSL�L�L� � t� �
45
80

log2�
45
80

�

�
27
80

log2�
27
80

�

�
8
80

log2�
8
80

�

� �1.3280

H�GGGSLLL� � .3 � 1.0746

� .5 � 1.4277

� .2 � 1.5395

� 1.3441

H�GGGSL�L�L�� � .8 � 1.3280
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Figure 2.2.: example contingency table and entropy calculations

By referring to our trivial models as zero-information baselines, we have, however, al-
ready anticipated the solution to the problem: mutual information. In order to demon-
strate mutual information and how it deals with the problem of bias, let us consider the
example contingency table of Figure 2.2.

Here, the unconditional entropy H�GGG� serves as a convenient measure of the hardness
of the classification task itself, taking into account the number of labels and their prior
distribution. This example has, again, been chosen so as to reflect our example prior,
which is the one that was used for RTE-4 and RTE-5. It yields a value for H�GGG� of 1.4277

bits. This indicates that it is harder to guess the three-way gold standard label than it
is to guess the two-way label or the outcome of a toss of a fair coin, which would both
have an entropy of exactly 1 bit. On the other hand, it is easier to guess this outcome
with the given prior than it would be if the prior were uniform. In that latter case, we
would have an entropy of 1.5850 bits.

Similarly, we can calculate a conditional entropy H�GGGSLLL � l� over a conditional distribu-
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tion of gold standard labels observed, given that the model has assigned label l to our
randomly chosen candidate inference. In the example, we have calculated a value of
1.0746 bits for H�GGGSLLL � t�. So, while the hardness of guessing the correct label without
any additional knowledge is 1.4277, it will be easier to guess this label correctly once the
model-assigned label is known to be t. Our best guess would be to always assign label
t, which would be successful 50% of the time. But, among the cases where the model
has assigned label t, this would be an even better guess. It would now be correct 66%

of the time. We have gained information about the gold standard by taking into account
the model-assigned label.

The conditional entropyH�GGGSLLL� is the expected value of the conditional entropyH�GGGSLLL �

l� across all possible labels l, when, as before, we draw a candidate inference at random.

One very noteworthy property of this measure is that all of the baseline models we
considered, i.e. models assigning constant labels or models assigning labels at random,
would have H�GGGSLLL� � H�GGG�, since the distribution of gold standard labels given the
model labels, in all of these cases, is the same as the prior distribution. Furthermore,
H�GGG� � 1.4277 is, in fact, an upper bound on H�GGGSLLL�. All the trivial baseline models
would perform at this upper bound level, giving a mutual information I�GGG;LLL� of zero.

At the other extreme end of the spectrum, consider a perfect contingency table, where
all the non-diagonal cells are zero. In this case all the conditional entropies H�GGGSLLL � l�
would be entropies over delta distributions concentrating all probability mass on a single
label. This would yield a value of H�GGGSLLL� � 0, which is a lower bound for any entropy.

The model producing our contingency table performs worse than this ideal but better
than the baselines, at H�GGGSLLL� � 1.3441 which yields I�GGG;LLL� � 1.4277� 1.3441 � .0836 bits.
We have gained .0836 bits’ worth of information by looking at the model-assigned label.

Degradation

Accuracy also suffers from the problem of degradation, by which we mean the property
that accuracy may reward a model for collapsing distinctions between labels in its output.
The numbers in the example of Figure 2.2 have been chosen so as to illustrate this.

In the example, the conditional distribution P�GGG � gSLLL � Å� is the same as the uncondi-
tional distribution P�GGG � g�, so when it turns out that LLL � Å, no additional information
has been revealed about GGG. In information theoretic terms, one would argue that this is
a good thing. We have separated a less informative category from the more informative
ones, so we know what we know and what we don’t know.

What happens if we now conflate the labels Å and t in the model output? In Figure, 2.2,
the numbers in brackets illustrate this. Previously, the model assigned label t in 30% of
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Figure 2.3.: RTE-4 submissions reranked by Mutual Information

all cases. In those cases, the model’s choice was relatively well-informed, as t actually
turned out to be the correct gold standard label 66% of the time. But now, with the
labels conflated, the model chooses t in 80% of the cases; a choice which is now much
less well-informed, as it is correct only 45% of the time.

Mutual information shows a drop from .0836 bits down to .0262 as accuracy increases
from 44% to 51%. – Mutual information penalizes and accuracy rewards a model for
destroying information in this example by conflating a well-informed label with a less
well-informed label and thereby diluting the information content of the individual labels,
and obscuring the output to less certainty and more guesswork.

Reranking RTE-4

Given these various advantages of mutual information over accuracy, the question arises
how a move from accuracy to mutual information as an evaluation measure would affect
rankings at RTE. Figure 2.3 shows a reranking of submissions for the 3-way task, the
shaft of each arrow corresponding to the rank assigned to the submission by 3-way
accuracy and the tip corresponding to the rank assigned by mutual information.

We observe that movements at the top of the ranking are small, compared to much
larger movements towards the bottom of the ranking. This reflects the properties we
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have previously discussed, viz. that the move to mutual information is a recalibration
of the baseline so that a zero score means an uninformed or random labelling, not zero
agreement. For example, we have previously mentioned how models can end up per-
forming at worse levels of accuracy than the zero-information models. On the other
hand, the perfect model would have both a zero conditional entropy (maximal mutual
information) and a 100% accuracy.

However, it is noteworthy that, even towards the top of the ranking, we often see the
relative rankings of different runs from the same group inverting. For example, UMD

runs 1 and 2, AUEBNLP runs 1 and 2, STANFORD runs 2 and 3, BOEING runs 2 and 3,
and CERES runs 1 and 2 are cases where mutual information has different preferences
than accuracy. – This means that, to the extent that participants’ design choices and
empirical conclusions have been informed by accuracy, those would have to be reviewed
if the goal were to maximize mutual information rather than accuracy.

Weighting of Dimensions at RTE

Another immediate application of mutual information is in addressing the question we
previously raised on how the two independent dimensions of the inference decision affect
the structured labels. Recall, that the labelsets Cj,n and C�,� represent relevance and
validity, respectively, and that the labels CQ,S used at RTE are a logical conjunction of
those two indepenend criteria.

To that end, one can calculate that

I��G�Q,S�G�Q,S�G�Q,S; �G�j,n�G�j,n�G�j,n� � .6103,

and that
I��G�Q,S�G�Q,S�G�Q,S; �G��,��G��,��G��,�� � .5330,

assuming the 3-way prior from RTE-4 and RTE-5 and stochastic independence of the
two dimensions. So, we gain more information about the CQ,S-distinction by knowing
the Cj,n-distinction than we do by knowing the C�,�-distinction.

This is also reflected in accuracy. We get AQ,S�G; L� � .77 for a model L which always
correctly decides the Cj,n-distinction, but which decides the C�,�-distinction by assigning
labels randomly according to the correct prior. – This theoretical score was never beaten
by any RTE submission throughout the history of the challenge.

For a model L� which, conversely, decides the C�,�-distinction correctly and the Cj,n-
distinction randomly, we get a much lower theoretical accuracy of AQ,S�G; L�� � .59.

This supports the claim we made in section 2.1.2 that the relevance distinction has a
greater bearing on the RTE datasets than the validity distinction. The effect is in fact
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so pronounced, that it is unclear whether the validity distinction task has ever been
successfully addressed by any RTE submission at all.

2.2. Empirical Methodology & Review of Systems

Having established the necessary theoretical preliminaries in the previous section (section
2.1), we can now move on to put to use this theory to shed some more light on the results
obtained for the RTE-4 evaluation.

As we will see, some of our hypothesis tests are less powerful than one might hope or not
possible at all, due to limitations arising from the fact data collection practices employed
at past RTE evaluations are imcompatible with the theory of evaluation presented here.
Nevertheless, there are some interesting results which we can obtain from available data.

Note that, while referring to the RTE methodology as an evaluation scheme, I deliber-
ately avoid this terminology in connection with the empirical methodology used here.
The notion of evaluation employed in the context of recent competitive tasks in com-
putational linguistics carries the connotation of collapsing a complex picture to a one-
dimensional account. For a given shared task, the usual sort of one-dimensional evalu-
ation scheme would test only a single hypothesis of the form “system X is better at the
task than system Y ” for some usually less than well-defined and less than agreed-upon
interpretation of “better”.

Our methodology is rather aimed at putting forward a battery of hypotheses which are
collectively exhaustive and mutually independent in describing aspects of the data we
have available to us: We will therefore be guided by the data structures which arise from
the collection process itself: (1) The common matrix is the data structure obtained by
making comparisons between a fixed gold standard and different empirical models. One
dimension of the matrix compares different empirical models, the other dimension com-
pares different samples and measurement criteria. Measurement criteria, in particular,
include different ways of identifying and counting errors. (2) The concentration plot
goes one step further. Rather than just counting errors, it visualizes error characteristics.
Here, the gold standard and a designated baseline model are taken as reference points.
Distances of points representing other empirical models then correspond to agreements
and disagreements between labellings, making it easy to visually spot concentrations of
systems with similar behaviour.
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Figure 2.4.: schema of the common matrix

2.2.1. Data Collection & Analysis: The Common Matrix

Figure 2.4 visualizes the data structure which will be in the centre of attention for our
empirical methodology. This figure lends a visual interpretation to our conceptualization
of the RTE evaluation as one-dimensional. We propose a matrix of at least two dimen-
sions to take the place of the one-dimensional tables published by RTE organizers in
their overview papers. The traditional tables collapse the different data samples into one
and thus report summary statistics corresponding to only a single column of the matrix.
By reading off such a column from the matrix, one can compare the performance of dif-
ferent models. But, we believe it is equally important to be able to read off each row in
the matrix the performance of a given model when measured under different conditions.

In particular, columns in the matrix represent different choices of comparison scores α,
and, as part of that choice, different samples, different equivalence classes for labels, or
different scoring methods. In principle these might be independent, to a certain extent,
leading to a three- or four-dimensional matrix, but the choice of hypothesis to be tested,
and the design of the associated hypothesis tests will dictate some combinations which
are more useful than others.

Our main criticism with the RTE evaluations, in this context, is not so much with the
one-dimensional physical layout of the results tables published as part of the overview
papers, rather it is with the fact that not enough attention is being devoted to this second
dimension of the matrix, and the fact that community participation is invited only for
one dimension. Participants can submit systems, but they cannot submit data samples
for which they want to observe the behaviour of other participants’ systems.
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In the rest of this section, we will consider some columns of the matrix for which the
data has already been collected within past RTE evaluations, and we will then move on
to suggest new columns that could be added for similar future work in the context of a
community process.

Applications: QA vs. IR vs. IE vs. SUM

From an application-oriented point of view, textual entailment is widely understood as
an abstraction over the central decision procedures in a number of different applications.
In particular, the RTE organizers have advocated the viewpoint that textual entailment
systems can be put to work in question answering (QA), information retrieval (IR), in-
formation extraction (IE), and summarization (SUM), and have employed four different
sampling techniques in an attempt to represent the different needs of these four applica-
tions. The RTE dataset itself is the union of these four datasets. In this section, we will
present some evidence to suggest that this may really be all there is to this dataset: the
union of four unrelated datasets, not a statistically coherent sample of an abstract task.

Suppose, for the purpose of contradiction, that textual entailment were, in fact, a co-
herent task and that one given entailment engine were equally useful as a component
of a larger system in any of the four applications, as implied by the tacit assumptions
underlying RTE. Then, given two empirical models, H1,H2 > H, one would have to be
preferable to the other. Let’s take H1 to be the one which is preferable. Also note that
for this argument it does not matter what exactly it is that constitutes one’s preference.
Now H1 would have to be preferable also on each of the four individual applications.
If, however, it were possible for H1 to be preferable to H2 in, for example, QA, while
H2 is preferable to H1 in IR, IE and SUM, then the notion of an RTE system, at least
from this application-oriented point of view, loses not only its coherence but any kind of
usefulness at all: averaging accuracy scores over the four applications would then only
obscure, rather than illuminate the underlying issues.

H25. Let SUM, QA, and IE be the subsamples of the RTE-4 inference sample, and note
that they form a partition. Let G be the gold standard model, and consider the different
participating models L. We can use some appropriate comparison score α to evaluate
α�G, L� for each system L on each of the four subsamples separately.

(Null Hypothesis) Systems generally exhibit the same behaviour on the four sub-
samples. When each system is scored against the four subsamples, these four scores
do not differ significantly. When systems are ranked against each other according
to their score on each of the four subsamples, then these four rankings do not differ
significantly.

(Alternative Hypothesis)
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µ̂ σ̂ q1 med q3 max

IR .072 .0630 .022 .066 .103 .327

SUM .052 .0531 .013 .042 .077 .282

QA .022 .0463 .001 .003 .011 .205

IE .020 .0451 .000 .001 .010 .229

(a) summary statistics on I��G�Q,S�G�Q,S�G�Q,S; �L�Q,S�L�Q,S�L�Q,S�

IR QA SUM IE

.15 .60 .41 IR

.12 .21 QA

.52 SUM

IE

(b) Kendall’s τ on I��G�Q,S�G�Q,S�G�Q,S; �L�Q,S�L�Q,S�L�Q,S�

Figure 2.5.: scores for 81 systems on different applications

1. Scores differ significantly and relate to each other as follows:
(a) IR A SUM, (b) SUM A QA, (c) QA A IE.

2. Rankings of models differ when scored against different applications.

Test. This hypothesis is straightforwardly testable from the data collected for RTE-4. As
per our arguments from the previous section (section 2.1), particularly those from section
2.1.6, mutual information seems the best choice of comparison score for the purposes of
testing this hypothesis.5

As part of our choice of an appropriate comparison score α, we also need to choose
a label equivalence. The obvious choice here is to use the CQ,S labelset, since RTE-4
collected data based on that labelset for 81 different systems. We could have used C3,
but this would have narrowed the data in the hypothesis test to the 45 systems which
participated in the 3-way task.

The table in Figure 2.5a presents some summary statistics on mutual information, from
which we can see that the sample means, seen as point estimates, agree with part 1 of the
alternative hypothesis.

The tables in Figures A.2 and A.3 (appendix A) also list the relevant statistics for a sign
test and for a Mann-Whitney U-test of our hypothesis.

As opposed to the t-test, which would make a normality assumption that seems un-
justified on this data, these two tests are nonparametric. Both of them reject the null
hypothesis in favour of parts 1a and 1b of the alternative hypothesis, but they do not
reject it in favour of part 1c, even at the 20% level of significance for the two-tailed
version of the test. So systems perform better on IR than they do on SUM, and better on
SUM than they do on QA and IE. But there is not enough evidence to contradict the part
of the null hypothesis which suggests that they perform the same on QA as they do on IE.

5Figures A.1, A.2, A.3, and A.4 in appendix chapter A also give the numbers to retrace this test based on
accuracy to yield the same conclusions.
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As for part 2 of the alternative hypothesis, Figure 2.5b presents Kendall’s tau statistics
to compare rankings. Recall that a Kendall’s tau of zero means that the rankings are
randomly reshuffled, and a Kendall’s tau of one means that the rankings are the same.

As we can see, the ranking of systems by their performance on the QA subsample does not
correlate well with rankings based on other subsamples. These are under the 20%-mark,
roughly, which means that, picking 100 pairs of systems at random, we would expect
that, at best, 60 pairs show the same relative ranking with 40 pairs showing opposite
rankings on QA when compared to another subsample.

The other three subsamples show higher rank correlations, the highest being between
SUM and IR at about 60% (80 concordant vs. 20 discordant pairs in every 100).

So we reject the null hypothesis also in favour of part 2 of the alternative hypothesis,
concluding that the rankings do differ significantly. This statistical significance comes
from the fact that, given our 81 systems, there are 80�81

2 � 3240 possible pairs of systems.
So deviations in Kendall’s tau are statistically significant beyond the level of precision
reported in our table, and none of these rank correlations is anywhere near 1.0.

So, in conclusion we note that this evidence casts doubt on the coherence and usefulness
of the notion of textual entailment as an abstraction over the four applications considered
at the RTE evaluations.

Decision Dimension: Relevance vs. Validity

One theme we keep coming back to is the two-dimensional nature of the inference deci-
sion, being composed of a relevance decision and a validity decision. We have previously
seen, that (i) these decisions can be defined independently of each other (section 2.1.2),
that (ii) they have different theoretical properties (section 2.1.3), and that (iii) due to
the bias in the RTE-4/5 datasets, it is predominantly the relevance distinction which is
being represented in the data (section 2.1.6). In this section, we will explore how systems
perform on each of the dimensions individually.

H26. Let X be the RTE-4 inference sample, let G be the gold standard model, and
consider the different participating inference models L. Let α be some comparison score
such that α�G, L� evaluates the performance of each system L on the validity distinction,
and let α� be another comparison score such that α��G, L� evaluates the performance of
L on the relevance distinction.

(Null Hypothesis) There is no significant difference in models’ performance on
validity and their performance on relevance:

α�G, L� � α��G, L�.
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µ̂ σ̂ q1 med q3 max

tp~n .036 .0356 .010 .036 .062 .136

t~np .030 .0395 .006 .018 .040 .187

tn~p .019 .0433 � 0 .004 .012 .229

Figure 2.6.: summary statistics on I���G��G��G�; �L��L��L��: scores for 36 systems on different com-
ponents of the 3-way inference decision

(Alternative Hypothesis) Systems are worse at validity than they are at relevance:

α�G, L� @ α��G, L�.

Test. Ideally, what is needed to test this hypothesis is a comparison

I��G��,��G��,��G��,�; �L��,��L��,��L��,�� vs. I��G�j,n�G�j,n�G�j,n; �L�j,n�L�j,n�L�j,n�.

Since the RTE data uses only the three-way labelset t vs. n vs. p, and not the full four-
way set of atomic decisions t vs. | vs. x vs. p, we cannot directly observe performance
on the validity distinction � vs. � separately from the relevance distinction j vs. n.

However, we can decompose the three-way distinction into three two-way distinctions
and observe performance on the different two-way distinctions which do and do not
involve the validity distinction, viz. we can observe

I��G�t,n8p�G�t,n8p�G�t,n8p; �L�t,n8p�L�t,n8p�L�t,n8p� vs. I��G�t8n,p�G�t8n,p�G�t8n,p; �L�t8n,p�L�t8n,p�L�t8n,p� vs. I��G�t8p,n�G�t8p,n�G�t8p,n; �L�t8p,n�L�t8p,n�L�t8p,n�,

where the latter is a pure relevance distinction, but the former two do partially rely on a
validity distinction.

This raises the problem that the different equivalence classes on labels are represented
in the data with different levels of bias, and hence are not directly comparable. This is
why we compute our mutual information scores over a rebalanced contingency table,
where, for each gold standard label, the associated counts of system-assigned labels are
multiplied by a constant multiplier chosen for each gold standard label in such a way as
to yield a uniform distribution on the prior probabilities of gold standard labels, while
not changing the relative frequencies of different system-assigned labels.

This can be interpreted as a stratified sampling technique, where the equivalence class
of each gold standard label identifies a stratum and where we draw samples of equal
sizes from each stratum separately. This means that the union of the subsamples is not
a representative sample of the population across different strata. It also means that
the prior distribution of system-assigned labels will be altered. The alteration would
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simulate what the system would do, if it could perfectly realign its decisions with the
given alteration in the prior of the gold standard, which is not necessarily what a system
would actually do if presented with the altered prior.

If we denote this rebalanced mutual information score as I�, we arrive at the following
scores to be observed.

I���G�t,n8p�G�t,n8p�G�t,n8p; �L�t,n8p�L�t,n8p�L�t,n8p� vs. I���G�t8n,p�G�t8n,p�G�t8n,p; �L�t8n,p�L�t8n,p�L�t8n,p� vs. I���G�t8p,n�G�t8p,n�G�t8p,n; �L�t8p,n�L�t8p,n�L�t8p,n�,

Figure 2.6 shows the summary statistics, and Figure A.5 (appendix A) shows the statistics
for the nonparametric sign test and Mann-Whitney test. These numbers lead us to reject
the null hypothesis in favour of the alternative hypothesis.

So, we conclude that systems are comparatively good at the relevance distinction, but
bad at the validity distinction. To the extent that these systems are based on model-
fitting techniques, this might be attributed to the fact that the relevance distinction is
being much more frequently represented in the gold standard data. Another possibility
is that the validity decision is inherently harder than the relevance decision.

Another possible explanation is that the particular methods being employed in RTE-4
systems are inherently less suited to the validity distinction than they are to the relevance
distinction. We will argue this in section 2.2.2.

Criteria: Logical vs. Intuitive vs. Application-Oriented

In section 2.1.2, we said that the application-oriented criterion which motives the RTE
task might not coincide with the intuitive criterion by which the gold standard model
was obtained from judges as part of the RTE data collection efforts and that these two
criteria, in turn, do not necessarily correspond to any standard logic.

In this section, we will formalize the hypothesis more rigorously, though, unfortunately,
we do not have the data to test it. This would require data on three different standard
models to be derived from the three different criteria.

H27. Let GL be the empirical model which assigns labels according to the logical crite-
rion, let GI be the empirical model which assigns labels according to the intuitive crite-
rion, and let GA be the f-induced standard model for some application f. We can then
use some appropriate comparison score α, to evaluate α�GL, L�, α�GI, L�, and α�GA, L�
for each participating model L.

(Null Hypothesis) Systems exhibit the same behaviour on the three criteria as
represented by the three different standard models. When each system is scored
against each of the standard models, these three scores do not differ significantly.
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When systems are ranked against each other according to their score on each of the
three standard models, then these three rankings do not differ significantly.

(Alternative Hypothesis)

1. Scores do differ significantly.

2. Relative rankings do differ significantly.

In the absence of the proper data to test this hypothesis, one can only speculate about the
relationship between the three different criteria. For example, the findings by Harabagiu
& Hickl (2006) on QA and those by Romano et al. (2006) on IE have often been used
to motivate the RTE task. They report on two specific instances of textual entailment
components developed within the RTE framework which could be usefully redeployed as
part of a QA and IE system. So these might be seen at least as two data points linking the
intuitive criterion to the application-oriented criterion. As there is only very little overlap
of systems entered both into the RTE evaluations and the Answer Validation Exercises at
QA@CLEF, there is no ground for statistically significant comparisons between those two
venues either, so ultimately very little is known about the relationship between systems’
performance at RTE and their usefulness in applications.

2.2.2. Data Interpretation & Synthesis: The Concentration Plot

The Concentration Plot

Error Characteristics

Previously, we described the RTE evaluations as one-dimensional in the sense that too
much attention is devoted to comparing a given empirical model M to another model N

in terms of their performance as measured under some arbitrary set of conditions P; too
little attention is devoted to comparing the performance of model M as measured under
conditions P to its performance as measured under another set of conditions Q.

It is also one-dimensional in another sense: By using a comparison score to measure each
of the empirical models M and N against only one gold standard model G, we get a sense
of how M and N individually relate to G, but only a one-dimensional projection of how
M relates to N, viz. we get error-counts, but no further qualification on how these errors
relate to each other, no information on error characteristics, no error analysis.

But this kind of information is important: Consider as an example a dataset for textual
inference containing 1000 candidate inferences. Each single candidate inference will
contribute 0.1 percent to an accuracy score. If model M makes 400 errors and model N

makes 450 errors, the fit of model M would be perceived as superior to that of model N,
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Figure 2.7.: scatterplot showing error characteristics at RTE-4

the methodological pitfall being to declare model N, at this point, as a research direction
no longer worth pursuing but model M as warranting further work.

Subsequent error analysis may, however, show the following: The 400 errors of model
M might be much the same as those made by a trivial baseline model B, say a bag-
of-words model for textual inference, the other errors being the result of purely random
deviations. The 450 errors of model N, on the other hand, might be predictable, e.g. they
might apply only to inferences involving long sentences, and they might be stochastically
independent of the errors made by the baseline B. By simply combining model N with
a predictor of its own errors and the baseline technique, we can construct a model N�

which now makes only 40% of 450 � 180 errors, while such improvement would not be
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possible for model M.

Baseline

In this section, we will consider the error characteristics of the different models sub-
mitted at RTE-4 w.r.t. such a bag-of-words system as a trivial baseline: My particular
implementation simply tokenizes words by whitespace, applies a Porter stemmer, counts
the number of tokens in the antecedent and consequent, and finally evaluates the ratio
of tokens which occur both in the antecedent and the consequent as a proportion of the
number of tokens in the consequent. If this ratio is greater than 1

2 , the system decides
ENTAILED, otherwise it decides UNKNOWN. The threshold of 1

2 was what I arbitrarily
determined. Later on, experimentation with the threshold showed that it happened to
be optimal, but that variations of the threshold only yield relatively small variations in
accuracy for the baseline system.

Construction of the Concentration Plot

The RTE-4 dataset is a collection of 1000 candidate inferences, so the labels assigned
by a model G on a sample can be seen as a 1000-dimensional vector G, where each
dimension represents a candidate inference x, and where the value of that component
would be �G�x��Q,S. So the space of all such labellings would be the 1000-dimensional
Hamming space. The scatterplots in Figure 2.7 are a two-dimensional projection of the
error characteristics observed at RTE-4 within this 1000-dimensional space.

Our concentration plot is constructed as follows: The point in the upper left corner,
labelled G, represents the gold standard model, and the point in the lower right corner,
labelled g, represents the negation of G, i.e. the model which makes the opposite decision
for each of the candidate inferences. Similarly, point B is the bag-of-words baseline
model, with point b representing its negation.

Since the 2-way accuracy of that system B is AQ,S�G; B� � .603, we know that there are
603 components in the vector B for which the decisions assigned by B and G agree
and 397 components for which they disagree. The position of any arbitrary 1000-
dimensional vector L in our scatterplot is now defined as follows: Its horizontal compo-
nent, i.e. the length of its projection in the Gb-direction, which is also the Bg-direction, as
measured away from B, is the number of decisions among the 603 decisions about which
G and B agree, where L disagrees with that decision. Its vertical component, i.e. the
length of its projection in the GB-direction, which is also the bg-direction, as measured
away from B, is the number of decisions among the 397 decisions for which G and B

disagree, where L agrees with G, thus disagreeing with B.
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Interpreting the Concentration Plot

This means that the Manhattan distance6 of point L from g represents the accuracy of
system L, and similarly the Manhattan distance of point L from b represents the percent-
age agreement between L and the baseline.

A few relationships can now be readily illustrated as geometric relationships within this
space. To make the numbers simpler, suppose it measures 600 units by 400 units.

Consider a model which improves over the baseline B towards the gold standard G in
such a way that it corrects 250 errors, but does not introduce any new errors. Such a
model would have to fall on the line segment GB, a distance of 250 away from B towards
G, so that the point is now only 150 units away from G.

One could also imagine a model which introduces 250 deviations into B at random. As
600
400 � 1.5, there are, in total, 1.5 instances where B and G agree for every instance where
they disagree. So, if introducing deviations at random, we would also expect 1.5 of those
deviations to affect an instance about which B and G agree for every deviation which
affects an instance about which they disagree. So any system which introduces random
deviations into B would fall on the line segment Bb. If introducing 250 such deviations,
we simply need to note that 600

400 �
150
100 � 1.5 to find that, in terms of the statistical expected

value, we would expect the point representing such a system at a position 150 units away
from B and G in the Bg-direction (the horizontal), and 100 units away from B towards
G in the GB-direction (the vertical).

Finally, consider a model which introduces 250 errors into G at random. We would
expect the point to fall on segment Gg, 150 units away from B and G in the Bg-direction
(the horizontal), and 100 units away from G towards B in the GB-direction (the vertical).

Statistical Patterns in the Concentration Plot

Figures 2.7a and 2.7b have been generated with a random number generator, in order
to visually establish some initial intuitions about the interpretation of statistical data
plotted in this diagram.

In Figure 2.7a, each point is generated as follows: Choose an error count c out of the
set of RTE-4 submissions, i.e. a model’s accuracy score. Then, instead of plotting the
actual error characteristic of that model, use a random number generator to generate a
random error characteristic by introducing c errors into the gold standard G at random.
We can see that the resulting datapoints are centered around the line segment Gg, with
the actual points falling within relatively short distances of that line segment. So this

6Recall that the Manhattan distance, or city-block distance, of a point �x1,y1� from another point �x2,y2�
is abs�x1 � x2� � abs�y1 � y2�. So, in Figure 2.7d, the grey lines labelled with percentages are lines of
equal Manhattan distance from G and g.
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plot maintains the accuracies reported in the RTE-4 overview paper, but randomly re-
generates the information which is in the data, in a way which is invariant to those
reported accuracies.

In Figure 2.7b, on the other hand, each point is generated by choosing a deviation count
d out of the set of RTE-4 submissions, where this deviation count represents the num-
ber of instances which deviate in the model decision from the baseline decision. Then,
instead of plotting the actual deviation characteristics, we generate a random deviation
characteristic by introducing d random deviations into B, and plot the resulting model.
The datapoints are now centered around Bb.

Let me stress: These two plots do not visualize RTE-4 data as such. Rather, they provide
a visual reference for the statistical properties of our plotting method.

Observed Concentration: Bag-of-Words Equivalence

This plotting method now enables us to ask a very basic question about the RTE systems
and their error characteristics: Are the incorrectly labelled instances random deviations
from the gold standard, or are the correctly labelled instances random deviations from
the bag-of-words baseline? Figure 2.7c shows that the latter seems to be the case, possibly
with the exception of a few outliers we will discuss shortly. Here, we have plotted the
models we can actually observe in the RTE-4 data directly, observing a visual pattern
which is much more similar to that of Figure 2.7b than it is to that of Figure 2.7a.

Figure 2.7d shows the same scatterplot larger with some additional labelling. The outliers
are the LCC system (Hickl 2008, Bensley & Hickl 2008) and the DFKI system (Wang &
Neumann 2008, Wang & Zhang 2009) which are, in fact, positioned closer to the gold
standard than they are to the baseline. – Other outliers are the UAIC system (Iftene 2008,
2009), the OAQA system (Siblini & Kosseim 2008, 2009), and possibly the QUANTA
system (Li et al. 2008), but these are still closer to the baseline than they are to the gold
standard.

All participants other than our handful of exceptions submitted systems which exhibited
a behaviour which is indistinguishable to our statistical test from a process behaving like
a bag-of-words baseline but introducing random deviations into its output.

This also helps explain our previous observation that systems are better at deciding rel-
evance than they are at deciding validity, as one would not expect to be able to draw
validity distinctions on the basis of a bag of words. Relevance, however, may very well
be decidable in such a way, as both deep and shallow systems suffer from the same lack
of background knowledge: If the only reliable source of ontological knowledge is sim-
ply the assumption that two predicates refer to equivalent ontological categories when
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they relate to words which have the same spelling, then bag-of-words overlap is the only
reliable indicator of relevance both for deep and shallow systems.

Note also, that the accuracies, which are easily observed in the diagram along the grey
lines marked by percentages, do not measure linear progress from the baseline towards
the gold standard. Even the UAIC system, which lies closest to the line segment BG and
thus comes closest to this ideal of linear progress, introduces 34 errors for every 100
errors it corrects relative to the baseline. The LCC system, which comes closest to the
gold standard G itself, introduces 46 errors for every 100 errors it corrects.

Phenomenology & Analytical Testsets: RTE vs. FraCaS

There is another interesting relationship that can be seen in the concentration plot in
Figure 2.7d: Consider the grey non-dotted lines which are drawn at an angle of 45
degrees to the Bg-direction. Since all points falling on one of those lines have the same
Manhattan distance from G, they would all map into the same accuracy. Similarly, we
can think of lines of equal Manhattan distance from B, which would have to be at an
angle of -45 degrees to the Bg-direction.

One can now imagine Figure 2.7d as rotated by -45 degrees, so as to view the grey lines
as horizontal. Given this rotation, the vertical position of a model L will be its accuracy
A�G; L�, with the horizontal position being its error rate when compared against the
baseline as a reference model, i.e. 1 � A�B; L�. If we leave aside the outliers mentioned
earlier and concentrate only on the systems below 65% accuracy, we can then clearly see
a correlation in the dataset: It is generally the points closest to B which are at the same
time closest to G.

In more statistical terms, we can compute the Pearson correlation coefficient between
A�G;L� and 1 � A�B;L� over the different models L. This value, at RTE-4, is ρ � .386

including outliers, or ρ � .682 after removing systems with accuracy above 65%. These
numbers are significantly different from zero, using a two-tailed test, and clearly positive.

In the rest of this section, we will argue that correlations like this pose a challenge to a
particular phenomenology which is often tacitly assumed when applying statistical doc-
trine naı̈vely, viz. the assumption of stochastic independence for datapoints in a dataset
like that used at RTE, or empirical models such as the systems submitted for RTE.

For example, a fact which the RTE organizers usually state in the abstract to the overview
paper is the number of participants. By interpreting this number under the incorrect
assumption of stochastic independence, one would grossly overestimate the size of the
hypothesis space explored. For example the 25 participants at RTE-4 did not really
produce 25 stochastically independent empirical models, rather there seem to be only a
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handful of clusters of models, each cluster exhibiting high mutual correlations between
models. In Figure 2.7d, for example, we have identified bag-of-words equivalence as one
very successful separation criterion. Our main criticism here is that there are easier ways
of making this separation than the RTE evaluation methodology.

More generally, one must emphasize that different empirical models are only useful to
the extent that they help us distinguish those datapoints where models succeed from
those datapoints where models fail. – But the converse is also true. Different datapoints
are only useful to the extent that they help us distinguish those empirical models which
succeed on those datapoints from those models which fail on them, which brings us back
to our running argument on the one-dimensionality of evaluation schemes like RTE.

To state this more formally: Let H1,H2 > H be two models, let X b X be a data sample,
and let G > HX be the gold standard model. Furthermore, choose some comparison
score α and a θ > R. Now, we can define that H1 �X H2 iff both αX�H1; G� C θ and
αX�H2; G� C θ. – This way, we use the dataset X to partition the set of models into two
subsets: The set of good models and the set of bad models.

Conversely, we can let X1,X2 > X be two data samples, and H > H be some empirical
model. Now we can define that X1 �H X2 iff both αX1�H; G� C θ and αX2�H; G� C θ. So,
we use the model H to partition the set of datasets into two subsets: The set of datasets
for which the model is good, and the set of datasets for which the model is bad.

Now, denote the RTE-4 dataset as X1000, and denote the following dataset, consisting of
a single candidate inference as X1:

The cat chased the dog.

The dog chased the cat.

We now arrive at a conclusion which seems unexpected from the point of view of sta-
tistical doctrine: The previously defined good/bad distinctions can be made almost as
effectively, given the models which were to be evaluated at RTE-4, using the one dat-
apoint in X1 as they can be, using the 1000 datapoints in X1000. The intuition behind
this fact is that this particular good/bad distinction is dominated by the pattern of bag-
of-words equivalence, and that this distinction can be as effectively made by looking at
a single carefully chosen example as it can be by studying a relatively complex pattern
within a a dataset of 1000 examples statistically.

More formally: At RTE-4, we would expect that, for the majority of participant models
H > H, we would have X1000 �H X1, and that, conversely, for every pair of models
H1,H2 > H, we would have H1 �X1000 H2 iff H1 �X1 H2.

This is the methodological rationale behind the use of analytical testsuites like FraCaS
(Cooper et al. 1996). If one subscribes naı̈vely to statistical doctrine, one may be mis-
lead prematurely into discarding such analytical testsuites on the grounds of the dataset
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not being large enough, or the whole methodology somehow not being empirical. How-
ever, I believe that the extreme case of X1 vs. X1000 for RTE-4 should make it clear that
analytical testing is not simply the theory-driven antithesis to empiricism. In this partic-
ular case, it is rather clear that an analytical testsuite which has been well-designed with
empirical considerations in mind is, on the whole, no less justifiable from an empirical
viewpoint than the sort of data collection practice used at RTE. And while analytical
testsuites are no less empirical in nature than traditional datasets, results become much
more straightforward to interpret.7

This, incidentally, is what linguists traditionally do when observing the effect of a theory
on a set of carefully chosen example sentences, or what logicists do when testing whether
a given logic proves all and only those of a small number of carefully selected theorems
which are intended to be provable in the logic.

7This is why, in appendix D, we provide an exhaustive list of FraCaS test instances, together with com-
ments on how our inference mechanism deals with each. This provides some level of empirical ground-
ing for our inference mechanism, although this empirical line of work is comparatively immaterial for
the main thrust of the argument presented in this thesis.
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3.  Lukasiewicz Logic &

Syllogistic Semantics

In the previous chapter, we reviewed the state of the art in empirically-driven textual
inference, pointing out its main limitations, and concluding that an in-depth theoretical
investigation is needed.

In this chapter, we establish a model theory to give an interpretation to expressions of a
logical language. In the next chapter (chapter 4), we will show how to translate natural
language into this logical language and, in the chapter after that (chapter 5), how we can
computationally implement an appropriate inference procedure for this logic.

The defining feature which makes our logic particularly useful for the purposes of this
thesis is the fact that it is a many-valued logic.

28. For any M >N with M C 2, we define truth value sets as

VM
def
� � 0

M � 1
,

1

M � 1
,

2

M � 1
, . . . ,

M � 1

M � 1
�;

V¯0

def
� �v S v > Q , 0 B v B 1�.

If V is a truth value set, we call any v > V a truth value.

Where, traditionally, truth values are drawn from the set V2, we will, in this chapter,
establish how we can generalise this towards drawing truth values from VM for M A 2,
and we will be particularly interested in the limit case of V¯0.

3.1. Many-Valued Propositional Logic

Due to the widespread misconceptions about fuzzy logic which we briefly outlined in
the introduction (chapter 1), it has become very difficult to delimit concrete proposals
such as ours against the often hazy and indistinct notions which one sometimes finds in
connection with soft computing. Our approach will therefore be to build up our theory
entirely from first principles. In doing so, we will, of course, make heavy use of prior
work in the field, which is why this section, in particular, amounts simply to a summary
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of relevant aspects of the work of Łukasiewicz & Tarski (1930), Rose & Rosser (1958),
Chang (1959) on Łukasiewicz logic. A more general and modern treatment of many-
valued logic can be found, for example, in the monographs by Hájek (1998), Gottwald
(2001), Metcalfe et al. (2008).

3.1.1. Language

In what follows, we define the expressions of the formal language to which we ultimately
want to assign truth values.

29. We call Λ a propositional signature, iff Λ is a set of propositional symbols Λ �

�p1,p2, . . . ,pSΛS� of finite cardinality SΛS.
30. Let V be a truth value set and let Λ be a propositional signature. The following
recursive rules define by structured induction the notion of a basic propositional formula

over V and Λ. For all v, p, ϕ, and ψ:

• if v > V, the value constant ‘v’ is a formula;

• if p > Λ, the proposition ‘p’ is a formula;

• if ϕ and ψ are formulae, then the implication ‘�ϕ� ψ�’ is a formula as well;

• nothing else is a formula.

So, for example, if we take Λ � �p1,p2,p3�, V � V3, then ‘p1’ will be a formula, but ‘q’
or ‘p4’ will not be formulae. Similarly, ‘0’, ‘.5’ and ‘1’ will be formulae, but ‘.7’ will not
be a formula. The latter will however be a formula for V � V¯0. Given these atomic
formulae, we can use implication operators to construct formulae like ‘p1 � �p2 � p3�’.
Obviously ‘p1 �� p2’ or ‘p1 � p2p3’ are not formulae. For a formula to be a basic

formula, implication is the only operator allowed.

A few more comments on notation: We enclose an expression in quotation marks, writ-
ing ‘�’, when there is a need to emphasize that it is taken as an expression of an object
language under discussion, rather than an expression of the meta language used to de-
scribe the object language. To enhance readability, we are free to drop the quotation
marks when no such confusion can arise.

Also, we will drop parentheses when no confusion can arise about the syntactic structure
of the formula. However, we will not rely on any conventions regarding operator prece-
dence. We treat this strictly as notational convenience. For purposes of mathematical
induction on the syntactic structure of a formula, we will always treat it w.l.o.g. as if it
were parenthesized in a strict fashion.

We can now go on to define more operators besides implication.
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31. Let V be a truth value set and let Λ be a propositional signature. The following
recursive rules define by structured induction the notion of an extended propositional

formula over V and Λ. For all ϕ and ψ:

• if ϕ is a basic formula over V and Λ, then ϕ is an extended formula as well;

• if ϕ is a formula, then the negation “ ϕ” is a formula as well;

• if ϕ and ψ are formulae, then

– the strong conjunction ‘�ϕ&ψ�’,
– the strong disjunction ‘�ϕ - ψ�’,
– the weak conjunction ‘�ϕ , ψ�’,
– the weak disjunction ‘�ϕ - ψ�’,
– the equivalence ‘�ϕ � ψ�’, and

– the antivalence ‘�ϕ ~� ψ�’
are formulae as well;

• nothing else is a formula.

32. For any extended formula χ over some V and Λ, we assign a corresponding basic
formula B�χ� over V and Λ. We define B��� recursively as follows. For any extended
formulae ϕ and ψ:

B� ϕ� � B�ϕ�� 0,

B�ϕ� ψ� � B�ϕ�� B�ψ�,
B�ϕ&ψ� � B� �ϕ�  ψ��,
B�ϕ - ψ� � B� ϕ� ψ�,
B�ϕ , ψ� � B�ϕ& �ϕ� ψ��,
B�ϕ - ψ� � B��ϕ� ψ�� ψ�,
B�ϕ � ψ� � B��ϕ� ψ�& �ψ � ϕ��
B�ϕ ~� ψ� � B� �ϕ � ψ��.

33. Let V be a truth value set and let Λ be a propositional signature. We denote the set
of all basic propositional formulae over V and Λ as LV,Λ.

This propositional language follows a traditional setup. The only noteworthy aspect
is the use of two different conjunction operators, strong conjunction (‘ & ’) and weak
conjunction (‘,’), as well as two different disjunction operators, strong disjunction (‘- ’)
and weak disjunction (‘-’) in definitions 31, 32.

One can verify some initial intuitions about definition 32 by checking that the given
reductions are identities in Boolean algebra. In this case, weak and strong conjunction

53



turn out to be identical. However, as we will see later on in corollary 38, this is not
generally the case in a Łukasiewicz logic with more than two truth values.

We allude to the reduction of definition 32 whenever we talk simply about a formula

without specifying whether it is a formula of the basic or the extended syntax. We
always take such a formula to be of the extended syntax in the first instance. But for
subsequent statements, we can then assume w.l.o.g. that it is in basic syntax, i.e. we then
talk about the basic propositional formula which corresponds to the original extended
propositional formula.

Our terminology, our notation for formulae, and our reduction of the extended fragment
to the basic fragment have been chosen in accordance with Hájek (1998). The operators
are used throughout the relevant literature, for example also by Rose & Rosser (1958).
Different notations are in use for formulae of the kind we are considering, and it is quite
common for different fragments of the logic to be taken as basic, together with different
reductions of the extended fragment to the basic fragment. However, after some initial
development of the logic, it is usually easy to see that the different ways of theoretically
framing Łukasiewicz logic are equivalent.

3.1.2. Semantics & Model Theory

Having constructed formulae in our propositional logic, we can now go about assigning
truth values to them. In order to do this, we first need to assign truth values to atomic
formulae. We do this by means of a valuation. Truth values of composite formulae are
then determined through their operators.

34. Let V be a truth value set and let Λ be a propositional signature. We call w a �V,Λ�-
valuation iff w � Λ( V is a function from Λ to V.

In traditional bivalent logic, we use truth tables to define operators model theoretically.
For example implication might be defined as follows:

35. Let Λ be a propositional signature and w be a �V2,Λ�-valuation. Now, for any
formula χ overV2 and Λ, the truth value of χ in w, denoted YχYw, is defined by structured
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induction as follows. For any ϕ and ψ:

Y0 Yw
def
� 0; Y1 Yw

def
� 1;

Yp Yw
def
� w�p�, for each p > Λ;

Yϕ� ψYw
def
�

¢̈̈
¨̈̈̈
¨̈̈̈
¦̈
¨̈̈̈
¨̈̈̈
¤̈

1 if YϕYw � 1 and YψYw � 1,

0 if YϕYw � 1 and YψYw � 0,

1 if YϕYw � 0 and YψYw � 1,

1 if YϕYw � 0 and YψYw � 0.

We can generalize this to the many-valued case as follows:

36. Let V be a truth value set, Λ be a propositional signature, and w be a �V,Λ�-
valuation. Now, for any formula χ, over V and Λ, the truth value of χ in w, denoted
YχYw, is defined by structured induction as follows. For any ϕ,ψ:

Y v Yw
def
� v, for any v > V;

Yp Yw
def
� w�p�, for each p > Λ;

Yϕ� ψYw
def
� min�1,1 � YϕYw � YψYw�.

�37. Classical semantic (def. 35) is a special case of Łukasiewicz semantic (def. 36).

Proof. Simply substitute the truth values from the case distinction in definition 35 into
the expression in definition 36 and validate that the assignments agree.

From here on, by Y � Y, we will always denote truth values as per Łukasiewicz semantic
(definition 36). From the above corollary, we know that classical semantic (definition
35) can be treated as a special case.

�38. Let V be a truth value set and let Λ be a propositional signature. Now for any

�V,Λ�-valuation w, we have

Yϕ&ψYw � max�0, YϕYw � YψYw � 1�,
Yϕ - ψYw � min�1, YϕYw � YψYw�,
Yϕ , ψYw � min�YϕYw, YψYw�,
Yϕ - ψYw � max�YϕYw, YψYw�,

Y ϕYw � 1 � YϕYw,

Yϕ� ψYw � min�1,1 � YϕYw � YψYw�,
Yϕ ~� ψYw � abs�YϕYw � YψYw�,
Yϕ � ψYw � 1 � abs�YϕYw � YψYw�,

where abs stands for absolute value.

Proof. Use the reduction from definition 32 to substitute the left-hand formula for its
corresponding basic formula, use definition 36 to obtain its truth value, and simplify.
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Now that we can assign to a formula its truth value as a function of the truth values of its
atomic propositions, we can define validity. Again, we start with the traditional bivalent
special case and then generalise to the many-valued case.

39. Let V be a truth value set and let Λ be a propositional signature. For any formula ϕ
over V and Λ, we denote by ��V,Λ� à ϕ that ϕ is valid in V and Λ, which we define as:

��V,Λ� à ϕ iff YϕYw � 1 for any �V,Λ�-valuation.

40. Let V be a truth value set, Λ be a propositional signature, and t > V be a validity

threshold. For any formula ϕ over V and Λ, we denote by ��V,Λ� àt ϕ that ϕ is t-valid

in V and Λ, which we define as:

��V,Λ� àt ϕ iff YϕYw C t for any �V,Λ�-valuation.

�41. Classical validity (definition 39) is a special case of graded validity (definition 40).

In particular, classical validity is 1-validity.

Proof. This follows trivially from definitions 39 and 40.

The fragment of the model theory considered here, consisting of implication and nega-
tion, as well as the attached notion of validity were first introduced in a publication
by Łukasiewicz & Tarski (1930), but are attributed to Jan Łukasiewicz alone. The full
set of operators considered here were used by Rose & Rosser (1958) and now appear
throughout the relevant literature. The notion of graded validity we consider is chosen
in accordance with the theoretic framework of Pavelka (1979). Our characterization of
Pavelka logic, in turn, closely follows that of Hájek (1998).

3.1.3. Syntax & Proof Theory

In the previous section, we defined a model theory for Łukasiewicz logic, establishing
traditional propositional logic as that special case of Łukasiewicz logic which arises when
we restrict attention to model theoretic valuations which assign only the truth values 0

and 1. We will now switch to a proof theoretic viewpoint, showing how we can develop
Łukasiewicz logic axiomatically. This will show that all theses provable in ¯0-valued
Łukasiewicz logic are also provable in traditional propositional logic. Note however
that it is not the case that, conversely, all theses provable in traditional logic are provable
in Łukasiewicz logic.

We start this definition by establishing an axiom system, i.e. the set of formulae which
we accept without proof:
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42. Consider the following axiom schemata:

ϕ� �ψ� ϕ�; (��1)

�ϕ� ψ�� ��ψ� χ�� �ϕ� χ��; (��2)

� ϕ�  ψ�� �ψ� ϕ�; (��3)

�ψ -ϕ�� �ϕ -ψ�; (��4)

p� q � r for
Ð�
T��p,q� � r; (��5)

�
r>VM

�ϕ � r�. (��6)

Let Λ be a propositional signature. In what follows, we define the conditions under which
a formula ω over Λ and some V is considered an instance of one of these schemata.

• A formula ω is an instance of one of axiom schemata (��1), (��2), (��3), or (��4),
iff it results from substituting particular formulae ϕ, ψ, and χ for the form variables
ϕ, ψ and χ in the schema.

• A formula r � p� q is an instance of axiom schema (��5), iff p, q, r > V, so that ‘p’,
‘q’, and ‘r’ are formulae over V, and r � min�1,1 � p � q�.

• A formula ω over VM for some M is an instance of axiom schema (��6), iff it
results from substituting a particular formula ϕ over VM for the form variable ϕ in
the schema, where the M in the axiom schema equals M . So, for example for V3,
any formula of the form ϕ � 0 - ϕ � 0.5 - ϕ � 1 is an instance of (��6).

We can then define axiom systems for Łukasiewicz logic as follows.

• The axiom system �V¯0 ,Λ is the set of all formulae ω over V¯0 and Λ that are
instances of any of the above axiom schemata except (��6).

• An axiom system �VM ,Λ, for any M , is the set of all formulae ω over VM and Λ that
are instances of any of the above axiom schemata, including (��6).

From this axiom system we can develop the entire logic simply by modus ponens. Again,
we will first establish the traditional case, and then generalize to the graded case.

43. Let V be a truth value set and let Λ be a propositional signature. For any formula ϕ
over V and Λ, we denote by ��V,Λ� Ø ϕ that ϕ is provable in V and Λ, which we define:

• if ϕ > �V,Λ, then ��V,Λ� Ø “ϕ”;

• if ��V,Λ� Ø “ϕ” and ��V,Λ� Ø “ϕ� ψ”, then ��V,Λ� Ø “ψ”;

• nothing else is provable in V and Λ.

44. Let V be a truth value set, Λ be a propositional signature, and t > V be a standard of

proof. For any formula ϕ over V and Λ, we denote by ��V,Λ� Øt ϕ, that ϕ is t-provable
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in V and Λ, which we define as follows:

��V,Λ� Øt “ϕ” iff ��V,Λ� Ø “t� ϕ”.

In section 3.1.5, we will outline the completeness result which establishes that the rela-
tion ‘à’, which we defined model theoretically is the same as the relation ‘Ø’, which we
defined proof theoretically.

Some more comments on the origins of this proof theory: Axiom schemata (��1), (��2),
(��3), and (��4) were given by Łukasiewicz himself (Łukasiewicz & Tarski 1930). He
conjectured that these four axioms, together with a fifth axiom, would form an axioma-
tization for the semantic system he was considering, but did not present a completeness
proof to that extent. In 1935, M. Wajsberg claimed to have proven this completeness
result, but such a proof never appeared in print (Borkowski 1970). A completeness proof
was later published by Rose & Rosser (1958). At the same time, it was also found that
the fifth axiom considered by Łukasiewicz was in fact dependent (Meredith 1958, Chang
1958b), so that it does not need to be accepted axiomatically but rather can be deduced
from the other four.

Our axiom schemata (��5) and (��6) serve bookkeping purposes. Schema (��5) estab-
lishes the construction of Pavelka logic due to Hájek (1998). Schema (��6) embeds the
M -valued logic into the ¯0-valued logic. This construction is due to Rose & Rosser
(1958). Finally, our notion of graded provability is set up in accordance with Pavelka
(1979), following Hájek (1998).

3.1.4. Algebra

Besides the model theoretic and the proof theoretic account, one can also use algebra
to work with this logic. In the 2-valued case, this process of algebraization would
yield a Boolean algebra. In this section, we will consider the more general case of ¯0-
valued Łukasiewicz logic, which, by the process of algebraization yields what we call
Łukasiewicz algebra. The algebraic analysis of Łukasiewicz logic was pioneered and de-
veloped in great depth by Chang. The part of this algebra which focuses on conjunction
and disjunction is referred to in the literature as MV algebra (Chang 1958a, 1959) and
the part which focuses on implication is that of Wajsberg algebra (Font et al. 1984).

We will show how these algebraic systems interact to give equivalent characterizations
of the algebra of Łukasiewicz logic. For the convenience of the reader, we have repro-
duced some useful algebraic identities and proven them directly from our definitions in
appendix B. These proofs, however, proceed along the lines of similar proof theoretic
proofs as they can be found in many places in the literature, including (Chang 1958a,
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1959) and recent monographs such as that by Hájek (1998), that by Gottwald (2001)
or that by Metcalfe et al. (2008). Furthermore, the equivalence of the algebraic systems
which we show here also follows trivially from the obvious similarity between the ax-
iomatic identities required for Wajsberg algebras and the axioms of the proof theory for
Łukasiewicz logic, given the completeness result by Chang (1959).

It is this algebraic account which we will use in order to prove our main result in sec-
tion 3.3. Note that all algebraic identities which are identities in Łukasiewicz algebra
also hold in Boolean algebra, but the converse is not true. So, we first need to develop
Łukasiewicz algebra to some extent, before we can use it to prove our main result. We
start by defining what an algebra is, and work our way towards more concrete results.

45. We call AAA � �A,op1,op2, . . . ,opn, c1, c2, . . . , cm� an algebra iff it consists of

• the carrier A, a nonempty set of elements;

• a set of operators opi � A
ai ( A which are functions from A to A; and

• a set of constants cj > A.

We can now define some reductions of operators to a basic set. Note how this parallels
definition 32 which we have made for the language itself in section 3.1.1.

46. Let AAA � �A,�,0� be an algebra. We call AAA� the Wajsberg-induced algebra of AAA, iff
AAA� � �A,�, , & , - ,,,-,�, ~�,0,1� is an algebra and, for all x, y, z > A:

1 � 0� 0, (�W5)

 x � x� 0, (�W6)

x& y �  �x�  y�, (�W7)

x - y �  x� y, (�W8)

x , y � x& �x� y�, (�W9)

x - y � �x� y�� y, (�W10)

x � y � �x� y�& �y � x�, (�W11)

x ~� y �  �x � y�. (�W12)

Now we define some identities over the basic fragment. Note how these identities parallel
the axioms of definition 3.1.3.

47. Let AAA � �A,�,0� be an algebra, and let AAA� � �A,�, , & , - ,,,-,�, ~�,0,1� be the
Wajsberg-induced algebra of AAA. We call AAA a Wajsberg algebra, iff for all x, y, z > A:

1� y � y, (�W1)

�x� y�� ��y � z�� �x� z�� � 1, (�W2)

� x�  y� � �y � x� � 1, (�W3)

�x - y� � �y - x�. (�W4)

We can arrive at what we will show to be the same algebra by taking conjunctions or
disjunctions as basic, rather than taking implication as basic.
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48. Let AAA � �A, - , ,0� be an algebra. We call AAA� the MV-induced algebra of AAA, iff
AAA� � �A,�, , & , - ,,,-,�, ~�,0,1� is an algebra and, for all x, y, z > A:1

1 �  0, (�MV8)

x& y �  � x -  y�, (�MV12)

x� y �  x - y, (�MV13)

x � y � �x� y�& �y � x�, (�MV14)

x - y � �x& y� - y, (�MV15)

x , y � �x -  y�& y, (�MV16)

x ~� y �  �x � y�. (�MV17)

The basic identities are as follows.

49. Let AAA � �A, - , ,0� be an algebra and let AAA� � �A,�, , & , - ,,,-,�, ~�,0,1� be its
MV-induced algebra. We call AAA an MV algebra iff for all x, y, z > A:

x - y � y - x, (�MV1)

x - �y - z� � �x - y� - z, (�MV2)

x �   x, (�MV7)

x - 1 � 1, (�MV4)

x - 0 � x, (�MV5)

x - y � y - x. (�MV9)

We can now establish a useful duality result, which gives us identities on conjunctions
from identities on disjunctions.

�50. Let AAA � �A, - , ,0� be an MV algebra and AAA� � �A,�, , & , - ,,,-,�, ~�,0,1� be the

MV-induced algebra of AAA. Then BBB � �A, & , ,1� is an MV algebra, and the MV-induced

algebra of BBB is of the form BBB� � �A,��, , - , & ,-,,,��, ~��,1,0�.

Proof. See appendix B.1 (p. 159).

Finally, we can make more rigorous the claim that Wajsberg algebras and MV algebras
are equivalent ways of algebraizing Łukasiewicz logic.

�51. Let AAA � �A,�, , & , - ,,,-,�, ~�,0,1� be an algebra. Then AAA is the Wajsberg-

induced algebra of a Wajsberg algebra �A,�,0�, iff AAA is the MV-induced algebra of an

MV algebra �A, - , ,0�.

Proof. See appendix B.1 (p. 164).

This is why, from here on, we will not make the distinction between MV-algebras and
Wajsberg algebras explicit. Rather we will just call them Łukasiewicz algebra.

52. We call AAA a Łukasiewicz algebra, iff AAA is the Wajsberg-induced algebra of a Wajsberg
algebra, or, equivalently, if AAA is the MV-induced algebra of an MV algebra.

1The equation numbers marked here with the prefix ‘MV’ are coordinated with the numbers used by
Chang (1958a, 1959).
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We can now develop the algebra some more. First, let’s establish the rest of the identities
which had a central role to play for Chang (1958a, 1959).

�53. Let AAA � �A,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. For all x, y, z > A:

x -  x � 1, (†MV3)

 �x - y� �  x& y, (†MV6)

x - �y - z� � �x - y� - z, (†MV10)

x - �y , z� � �x - y� , �x - z�. (†MV11)

Proof. See appendix B.1 (p. 168).

Then, we get a number of identities directly from duality.

�54. Let AAA � �A,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. For all x, y, z > A:

x& y � y&x, (†MV1�)

x& �y& z� � �x& y�& z, (†MV2�)

x �   x, (†MV7�)

x& 0 � 0, (†MV4�)

x& 1 � x, (†MV5�)

x , y � y , x. (†MV9�)
Furthermore, for all x, y, z > A, we have

x& x � 0, (†MV3�)

 �x& y� �  x -  y, (†MV6�)

x , �y , z� � �x , y� , z, (†MV10�)

x& �y - z� � �x& y� - �x& z�. (†MV11�)

Proof. This follows from definition 49, theorem 53, and corollary 50.

Finally, we can establish the rest of the algebraic identities which we will need for our
main result (section 3.3).

�55. Let AAA � �A,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. For all x, y, z > A:

x � y iff x� y � 1 and y � x � 1; (†W13)

if x� y � 1 and y � z � 1 then x� z � 1. (†W14)

Furthermore, the following identities hold for all x, y, z > A:

x� x � 1, (†W15)

x� 1 � 1, (†W16)

0� x � 1, (†W17)

 x�  y � y � x, (†W18)

x� �y � x� � 1, (†W19)

x� �y � z� � y � �x� z�, (†W20)
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 �x - y� �  x ,  y, (†�1)

y � �x - y� � 1, (†�2)

x� �x - y� � 1, (†�3)

x - x � x, (†�6)

x - �x , y� � x, (†�7)

x - 1 � 1, (†�8)

x - 0 � x, (†�9)

 �x , y� �  x -  y, (†�1�)

�x , y�� y � 1, (†�4)

�x , y�� x � 1, (†�5)

x , x � x, (†�6�)

x , �x - y� � x, (†�7�)

x , 0 � 0, (†�8�)

x , 1 � x, (†�9�)

�x� z�� � �y � z�� ��x - y�� z� � � 1, (†�10)

�z � x�� � �z � y�� �z � �x , y�� � � 1, (†�11)

�x& y�� z � x� �y � z�, (†�12)

�x& y�� z � � z& y��  x, (†�13)

�x& y�� z � �x& z��  y, (†�14)

x� �y � �x& y�� � 1, (†�15)

�x� y�� ��z&x�� �z& y�� � 1, (†�16)

��x1 � y1�& �x2 � y2�� � ��x1 &x2�� �y1 & y2�� � 1. (†�17)

Proof. See appendix B.1 (p. 170).

From these identities, we can now see a number of relationships between our Łukasiewicz
algebra and other types of algebras:

�56. Let AAA � �A,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. Now

• �A,-,,,0,1� is a bounded lattice,

• �A, - ,0� is an abelian monoid with neutral element 0,

• �A, & ,1� is an abelian monoid with neutral element 1,

• �A, - , & , � is a DeMorgan algebra, and

• �A,-,,, � is a DeMorgan algebra.

Proof. This follows from definition 49, theorems 53, and 55.

3.1.5. Metatheory

In the previous sections, we have presented Łukasiewicz logic from a model theoretic
point of view and from a proof theoretic point of view, and we have developed it from
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its axiomatic seeds into a collection of algebraic identities which will turn out to be useful
throughout the rest of this work, and in particular for the proof of our main result in
section 3.3. In this section, we will conclude our presentation of this logic by giving some
pointers to results on the metatheory which connects these three viewpoints.

First, note that our model theoretic definition 36 leads to the so-called standard algebra
of Łukasiewicz logic. Here we take V¯0 as the support of the algebra, we take x � y �

min�1,1 � x � y� as the implication operator, and we take 0 � 0 for 0 > V¯0 as the falsity
constant. The Wajsberg-induced algebra which uses this implication operator is then a
Łukasiewicz algebra.

We can also approach Łukasiewicz algebra from a proof theoretic angle, by using the
Lindenbaum-Tarski process to obtain an algebra over sets of formulae which can be
derived from each other. This Lindenbaum-Tarski algebra, too, is a Łukasiewicz algebra.

These two results about the standard algebra and the Lindenbaum-Tarski algebra of
Łukasiewicz logic can be easily checked from what we have established so far, and paral-
lel claims are found in Hájek (1998), Gottwald (2001), Metcalfe et al. (2008). This line
of work leads up to the algebraic completeness result of Chang (1959) which in some
form or another can be found in many places in the literature, including Hájek (1998),
Gottwald (2001), and which establishes that an identity which holds in the standard
Łukasiewicz algebra holds in all Łukasiewicz algebras.

We can now state the completeness result for this logic more rigorously:

�57. Let V be a truth value set and let Λ be a propositional signature. For any formula

ϕ over V and Λ,

��V,Λ� Ø ϕ iff ��V,Λ� à ϕ.

�58. Let V be a truth value set, Λ be a propositional signature, and t > V be a degree of
validity. For any formula ϕ over V and Λ,

��V,Λ� Øt ϕ iff ��V,Λ� àt ϕ.

This result has two additional points of interest: The fact that it holds for M -valued
Łukasiewicz logic, and the fact that it holds for graded validity and graded provability.
The former follows from the completeness proof of Rose & Rosser (1958), the latter has
been established by Pavelka (1979), and later re-formulated by Hájek (1998).

For our purposes, however, it is sufficient to note that we will build our logic simply by
extending the propositional language and by using the identities of Łukasiewicz algebra
to derive further identitites. Since these identities will hold in all Łukasiewicz algebras,
this will hold in particular for the standard algebra, implying a model-theoretic validity,
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and for the Lindenbaum-Tarski algebra of the logic, implying a provability. If we wish to
establish the validity and provability of a formula, we will simply prove its identity with
the element 1, if we wish to establish its non-validity and non-provability we will prove
its identity with the element 0.

3.2. Predicate Logic

The main complication in moving from propositional logic to predicate logic is the fact
that quantifications in first-order logic are usually taken as ranging over infinite domains.
The predicate logic we establish here does not go down that road. Instead, we assume
strictly finite domains, so that the predicate language can be established as merely syntac-
tic sugar over propositional language. We will assign to each formula χ of the predicate
language a purely propositional formula χ�, which then implicitly gives us a model the-
ory, a proof theory and an algebra for our logic by reduction to propositional logic.

3.2.1. Language

A predicate signature establishes symbols for variables and constants. It also assigns
symbols to predicates and defines their arities.

59. We call Λ � �P,arp,X,C� a predicate signature iff it consists of:

• a finite set P of predicate symbols;

• a function arp � P(N mapping each predicate symbol P > P to its arity;

• a finite set X � �x1, x2, . . . , xSXS� of variable symbols; and

• a finite set C � �c1, c2, . . . , cSCS� of constant symbols.

For example, if we wanted to express statements like ‘Socrates is mortal’ and ‘Every man

loves a woman’, we would need

Λ � � �man,woman,mortal, loves�,
��man,1�, �woman,1�, �mortal,1�, �loves,2��,
�x�,
�Socrates� �

60. Let Λ � �P,arp,X,C� be a predicate signature. The following recursive rules define
by structured induction the notion of a predicate formula over V and Λ:

• For any propositional formula χ over V and propositional signature g, we say that
χ is a formula with no free variables, viz. a formula with free variables g, and that
χ is propositionally constant.
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• For any propositional formula χ over V and propositional signature �ϕ�, where ϕ
is a formula with free variables X, we say that χ is a formula with free variables
X, and that ϕ is a subformula of χ.

• For any propositional formula χ over V and propositional signature �ϕ,ψ�, where
ϕ and ψ are formulae with free variables X and Y respectively, we say that χ is a
formula with free variables X 8 Y , and that ϕ and ψ are subformulae of χ.

• For any χ of the form ‘P �u1,u2, . . . ,uarp�P ��’, where P > P and all ui > X 8 C, we
say that χ is a formula with free variables �u1,u2, . . . ,uarp�P �� � C, and that χ is a
predication.

• For any χ of the form ‘¦�x��ϕ��ψ�’, ‘§�x��ϕ��ψ�’, ‘~§ �x��ϕ��ψ�’, or ‘~¦ �x��ϕ��ψ�’,
where ϕ and ψ are formulae with free variables X and Y respectively, we say that
χ is a formula with free variables �X 8Y ���x�, that χ is a quantification, and that
ϕ and ψ are subformulae of χ.

• Nothing else is a formula.

So, for example, ‘¦ �y��man�y�� �mortal�y��’ and ‘man�Socrates�’ are formulae with no
free variables, ‘man�y�’ has free variable y, and ‘man�woman�’ is not a formula.

Note that this is the standard language of FOL, with the exception that we always denote
quantifiers as binary where it is more common in FOL to denote them as unary. For
example, it would be more common to write ‘¦ �y��man�y� � woman�y��’. Using the
binary notation, however, we can more closely line up our predicate language with the
linguistic structures envisioned by Barwise & Cooper (1981), with the object language
used by grammars that produce MRS semantics (Copestake et al. 2005) such as the ERG
(Flickinger 2000), and with the linguistic structures we will introduce in the next chapter
(chapter 4). Also, we will find that this notation is more efficient when dealing with the
syllogism in the next section (section 3.3).

Note, however, that this does not change the expressive capacity of the language, as we
can always rewrite our binary quantifiers into a unary quantifier as suggested by the
above example. In order to rewrite a unary quantifier into a binary quantifier, we simply
need a predicate � which always has Y��x�Y � 1 for all x. We could then write ‘There is a

woman’ as ‘§ �y����y�� �woman�y��’ and ‘Everything sucks’ as ‘¦ �y����y�� �sucks�y��’.

We can now move on to show how we can rewrite expressions in our predicate language
into a purely propositional language. First, we need to translate predicate signatures into
propositional signatures.

61. Let Λ � �P,arp,X,C� be a predicate signature. We call Λ� the induced propositional

signature of Λ over D with SDS C 3 iff

Λ�
� �‘Pi1,i2,...,iarp�P �

’ S P > P and all ij > D 8C�.
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Consider our example predicate signature, and the domain D � �1,2,3�. The atomic
propositions possible are then

Λ� � �man1,man2,man3,manSocrates,

woman1,woman2,woman3,womanSocrates,

mortal1,mortal2,mortal3,mortalSocrates,

loves1,1, loves1,2, loves1,3, loves1,Socrates,

loves2,1, loves2,2, loves2,3, loves2,Socrates,

loves3,1, loves3,2, loves3,3, loves3,Socrates,

lovesSocrates,1, lovesSocrates,2, lovesSocrates,3, lovesSocrates,Socrates�

Finally, we can show how to rewrite entire predicate formulae into propositional formu-
lae over such signatures.

62. Let V be a truth value set, let Λ � �P,arp,X,C� be a predicate signature and Λ�

be the induced propositional signature of Λ over D. We call a mapping b a binding iff
b � X 8 C ( D 8 C, such that for all c > C, we have b�c� � c. For any predicate formula
χ over V and Λ with free variables X and any binding b, we assign a corresponding

propositional formula B�b, χ� overV and Λ� under binding b. We define B�b, �� recursively
as follows. For any predicate formulae ϕ and ψ with free variables X and Y respectively
and any binding b:

B�b,P �u1, u2, . . . , uarp�P ��� � pP,b�u1�,b�u2�,...,b�uarp�P ��,

B�b,¦�x��ϕ��ψ�� � �
i>D8C

B�b 8 �x( i�, ϕ�� B�b 8 �x( i�, ψ�,

B�b,§�x��ϕ��ψ�� � �
i>D8C

B�b 8 �x( i�, ϕ� , B�b 8 �x( i�, ψ�,

B�b, ~§ �x��ϕ��ψ�� � B�b, §�x��ϕ��ψ��,
B�b, ~¦ �x��ϕ��ψ�� � B�b, ¦�x��ϕ��ψ��.

If χ is a formula with no free variables, its corresponding propositional formula is
B�g, χ�, otherwise its corresponding propositional formula is left undefined if no ref-
erence is made to a binding.

So, for example, ‘man�Socrates�’ would be written as

manSocrates.

The formula ‘¦ �y��man�y�� �mortal�y��’ would be written as

�man1 � mortal1�,�man2 � mortal2�,�man3 � mortal3�,�manSocrates � mortalSocrates�,

and the formula ‘§ �y��man�y�� �mortal�y��’ would be written as

�man1 ,mortal1� - �man2 ,mortal2� - �man3 ,mortal3� - �manSocrates ,mortalSocrates�.
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3.3. Syllogistic Logic

At this point, we can employ the results summarized in this chapter to establish our main
result on the syllogism.

Recall that the syllogism plays a central role in this thesis, which we previously sum-
marized as follows: (1) Assuming the syllogism as a benchmark fragment of NLR, it
turns out that the model theory which underlies NLR is not necessarily two-valued, but
can be a many-valued Łukasiewicz logic. This is what we will establish in this section.
(2) Given the syllogism as a logical language of far less expressive power than natural
language itself, we can still obtain a good approximation to NLR using the syllogism.
This is the result which we will establish in the next chapter (chapter 4).

The syllogism was originally established by Aristotle in his Prior Analytics. The first
treatment of the syllogism from the standpoint of modern formal logic, and perhaps
still the authoritative reference on the subject, is the monograph by Łukasiewicz (1951).
More recent modern treatments of the syllogism have been established by Crabbé (2001)
and by Moss (2007a,b).

3.3.1. Language

Our exposition of this logical fragment, again, begins by constructing its formulae.

63. We call Λ a syllogistic signature iff Λ is a set of term symbols Λ � �A,B, . . .�.

64. Let Λ be a syllogistic signature. We call the predicate signature Λ� � �Λ,arp,�y�,g�
the induced predicate signature of Λ iff arp�P � � 1 for all P > Λ.

So a syllogistic signature is simply a predicate signature which consists exclusively of
unary predicate symbols, one variable, and no constants. Next, we can impose some
structure on formulae of the syllogism.

65. Let Λ be a syllogistic signature.

• We say that χ is an atomic syllogistic proposition about S and P for any term
symbols S,P > Λ, iff, χ is of one of the forms

¦ �y�S�y�P �y� or § �y�S�y�P �y�,

or is the negation

~§ �y�S�y�P �y� or ~¦ �y�S�y�P �y�,

of one of those forms.
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syllogism pre-syllogism equivalent syllogism

�1� � Ψ1 �y�M �y�P �y�

& Ψ2 �y�S�y�M �y� �
� Ψ3 �y�S�y�P �y�;

�4�� � Ψ1 �y�M �y�P �y�

& Ψ2 �y�S�y�M �y� �
� Ψ3 �y�P �y�S�y�;

�4� � Ψ1 �y�S�y�M �y�

& Ψ2 �y�M �y�P �y� �
� Ψ3 �y�P �y�S�y�;

�2� � Ψ1 �y�P �y�M �y�

& Ψ2 �y�S�y�M �y� �
� Ψ3 �y�S�y�P �y�;

�2�� � Ψ1 �y�P �y�M �y�

& Ψ2 �y�S�y�M �y� �
� Ψ3 �y�P �y�S�y�;

�2� � Ψ1 �y�S�y�M �y�

& Ψ2 �y�P �y�M �y� �
� Ψ3 �y�P �y�S�y�;

�3� � Ψ1 �y�M �y�P �y�

& Ψ2 �y�M �y�S�y� �
� Ψ3 �y�S�y�P �y�;

�3�� � Ψ1 �y�M �y�P �y�

& Ψ2 �y�M �y�S�y� �
� Ψ3 �y�P �y�S�y�;

�3� � Ψ1 �y�M �y�S�y�

& Ψ2 �y�M �y�P �y� �
� Ψ3 �y�P �y�S�y�;

�4� � Ψ1 �y�P �y�M �y�

& Ψ2 �y�M �y�S�y� �
� Ψ3 �y�S�y�P �y�;

�1�� � Ψ1 �y�P �y�M �y�

& Ψ2 �y�M �y�S�y� �
� Ψ3 �y�P �y�S�y�;

�1� � Ψ1 �y�M �y�S�y�

& Ψ2 �y�P �y�M �y� �
� Ψ3 �y�P �y�S�y�.

Figure 3.1.: syllogisms, pre-syllogisms and their figures

• We say that χ is a pre-syllogism about S, M , and P , for any term symbols S,M,P >

Λ, iff χ is of the form �ϕ1 &ϕ2� � ψ, where ϕ1 is an atomic syllogistic proposition
about M and P , ϕ2 is an atomic syllogistic proposition about S and M , and ψ is
an atomic syllogistic proposition about S and P .

• It can be seen that any pre-syllogism χ can be written in one of the eight forms
listed in the first or second column of Figure 3.1, where S,M,P > Λ, and where the
form variables Ψ1, Ψ2, and Ψ3 can stand for one of ¦, §, ~§, and ~¦. If a pre-syllogism
χ is written in the form labelled i in the table,

– We call i its figure.

– We call the combination �Ψ1,Ψ2,Ψ3� its mood.

– We call the combination �i,Ψ1,Ψ2,Ψ3� of figure and mood its schema.

• We call a mood �Ψ1,Ψ2,Ψ3�
– affirmative iff Ψ1,Ψ2,Ψ3 > �¦,§�,

– negative iff Ψ1,Ψ2,Ψ3 > �~§, ~¦�,

– mixed otherwise.

• We say that χ is a proper syllogism over Λ, iff it is a pre-syllogism in one of the
figures 1, 2, 3, or 4, i.e. excluding the figures 1�, 2�, 3�, and 4�.
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So we can freely combine any of the eight figures with any of the 64 moods to obtain
the 512 schemas for pre-syllogisms. A schema determines a pre-syllogism uniquely, up
to substitution of its term symbols.

As pre-syllogisms are at the same time formulae of our predicate calculus, we can imme-
diately establish their semantics:

66. Let Λ be some syllogistic signature, let Λ� be its induced predicate signature, and let
Λ�� be the induced propositional signature of Λ�. Let ϕ be a pre-syllogism over Λ and let
ϕ� be its corresponding propositional formula over Λ�� and some V. Let t > V be any
validity threshold. Now we define

SYL�Λ� à ϕ iff ��V,Λ� àt ϕ
��

Then, we can break up some symmetries within the space of pre-syllogisms:

67. Let Λ be some syllogistic signature. For any pre-syllogism χ over Λ, we say that χ� is
the commutation of χ and that χ is the commutation of χ�, iff χ is of the form listed in
the center column of Figure 3.1 and χ� is of the form listed next to it in the right column.

�68. Let Λ be some syllogistic signature. For every pre-syllogism ϕ over Λ, if ϕ� is the

commutation of ϕ, we have:

SYL�Λ� à ϕ iff SYL�Λ� à ϕ�.

Thus, to every pre-syllogism there corresponds a proper syllogism which, by commuta-

tion, is equivalent to it.

Proof. It follows via the commutativity of strong conjunction (†MV1�) that a pre-syllogism
χ is identical in any Łukasiewicz algebra to its commutation. Validity follows from the
fact that the standard algebra of Łukasiewicz logic is a Łukasiewicz algebra. The third
column in Figure 3.1 shows how, by means of term substitution and commutation, we
obtain a proper syllogism from any pre-syllogism.

69. Let Λ be some syllogistic signature. For any syllogism χ over Λ, we say that χ� is
the first contraposition (1CP) of χ, iff χ is listed in the left column of figure 3.2 and χ�

is of the form listed next to it in the center column. Similarly, we say χ�� is the second

contraposition (2CP) of χ, iff χ�� of the form listed in the right column.

�70. Let Λ be some syllogistic signature. For every syllogism ϕ over Λ, if ϕ� is the 1CP

of ϕ, and ϕ�� is the 2CP of ϕ, we have:

SYL�Λ� à ϕ and SYL�Λ� à ϕ� and SYL�Λ� à ϕ�� are mutually equivalent.

Proof. This is similar to our previous proof. This time, we need the contraposition
identities (†�13) and (†�14).
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orig. 1CP 2CP

�1� � Ψ1 �y�M �y�P �y�

& Ψ2 �y�S�y�M �y� �
� Ψ3 �y�S�y�P �y�;

�2� � Ψ1 �y�M �y�P �y�

&  Ψ3 �y�S�y�P �y� �
�  Ψ2 �y�S�y�M �y�;

�3� �  Ψ3 �y�S�y�P �y�

& Ψ2 �y�S�y�M �y� �
�  Ψ1 �y�M �y�P �y�;

�2� � Ψ1 �y�P �y�M �y�

& Ψ2 �y�S�y�M �y� �
� Ψ3 �y�S�y�P �y�;

�1� � Ψ1 �y�P �y�M �y�

&  Ψ3 �y�S�y�P �y� �
�  Ψ2 �y�S�y�M �y�;

�3� � Ψ2 �y�S�y�M �y�

&  Ψ3 �y�S�y�P �y� �
�  Ψ1 �y�P �y�M �y�;

�3� � Ψ1 �y�M �y�P �y�

& Ψ2 �y�M �y�S�y� �
� Ψ3 �y�S�y�P �y�;

�2� �  Ψ3 �y�S�y�P �y�

& Ψ1 �y�M �y�P �y� �
�  Ψ2 �y�M �y�S�y�;

�1� �  Ψ3 �y�S�y�P �y�

& Ψ2 �y�M �y�S�y� �
�  Ψ1 �y�M �y�P �y�;

�4� � Ψ1 �y�P �y�M �y�

& Ψ2 �y�M �y�S�y� �
� Ψ3 �y�S�y�P �y�;

�4� �  Ψ3 �y�S�y�P �y�

& Ψ1 �y�P �y�M �y� �
�  Ψ2 �y�M �y�S�y�;

�4� � Ψ2 �y�M �y�S�y�

&  Ψ3 �y�S�y�P �y� �
�  Ψ1 �y�P �y�M �y�;

Figure 3.2.: contrapositions

A 1CP 2CP

�1,¦,¦,¦� �2,¦, ¦, ¦� �3, ¦,¦, ¦�
�1,¦,§,§� �2,¦, §, §� �3, §,§, ¦�
�3,¦,§,§� �2, §,¦, §� �1, §,§, ¦�
�3,§,¦,§� �2, §,§, ¦� �1, §,¦, §�
�4,§,¦,§� �4, §,§, ¦� �4,¦, §, §�

A 1CP 2CP

Barbara Baroco Bocardo
Darii Camestres Ferison
Datisi Cesare Ferio

Disamis Festino Celarent
Dimaris Fresison Camenes

Figure 3.3.: left: valid syllogisms; right: corresponding scholastic names

3.3.2. Valid Syllogisms

71. Let Λ be some syllogistic signature. For any syllogism χ over Λ, we say that χ is
traditionally correct, iff the schema of χ is listed in Figure 3.3.

Note that we consider what Crabbé (2001) calls the weakening-free fragment of the syl-
logism, i.e. we do not permit subalternation as a valid inference rule, so we do not include
among our list of correct moods the four moods Darapti, Felapton, Bramantip, Fesapo,
or their five weakened variants. These are considered correct in Aristotle’s classical syl-
logism, and in the treatment by Łukasiewicz (1951). However, they commit what is now
sometimes called the existential fallacy. Whether or not this is, in fact, a fallacy relies, of
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course, on the intended semantics of the logic. We will demonstrate the controversy by
considering the mood Bramantip.

This mood takes as antecedents ¦ �y�Z�y�Y �y� and ¦ �y�Y �y�X�y�, from which it would fol-
low, by the mood Barbara, that ¦ �y�Z�y�X�y�. The mood Bramantip would conclude
§ �y�X�y�Z�y�, from which it would also follow that § �y�Z�y�X�y�.

Now, if we think of the intended semantics as set-theoretic in nature, there is a prob-
lematic case where Z is the empty set. Then ¦ �y�Z�y�Y �y� and ¦ �y�Z�y�X�y�, as it might
be concluded by the mood Barabara, would be true vacuously. However, § �y�Z�y�X�y�

would assert the existence of elements in Z, contradicting the intended semantic.

We have decided to go with the modern treatment, on the basis that it would still be
possible to introduce a universal quantifier with existential import, i.e. if needed we can
define ¦� �y�X�y�Y �y� � ¦ �y�X�y�Y �y� & § �y�X�y�Y �y�. The existential quantifier § would
then interact with this universal quantifier ¦� in the classical way.

3.3.3. Metatheory

We can now go on to show our main result: The syllogistic fragment of the predicate
calculus we have constructed here proves all and only those syllogisms which are tradi-
tionally considered correct.

Soundness

�72. Let Λ be some syllogistic signature. For every syllogism ϕ over Λ, we have

SYL�Λ� à ϕ if ϕ is listed in Figure 3.3.

Before we can prove this soundness result, we first need a lemma.

�73. Let �V,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. For all x1, x2, y1, y2, z1

, z2 > V, and all N , we have

�x1 , y1� - �x2 , y2� - . . . - �xN , yN� � �y1 , x1� - �y2 , x2� - . . . - �yN , xN�,
(�SYL�comm)� ��y1 � z1� , �y2 � z2� , . . . , �yN � zN��

& ��x1 � y1� , �x2 � y2� , . . . , �xN � yN�� �
� � �x1 � z1� , �x2 � z2� , . . . , �xN � zN� � � 1,

(�SYL�1�A)

� ��y1 � z1� , �y2 � z2� , . . . , �yN � zN��
& ��x1 , y1� - �x2 , y2� - . . . - �xN , yN�� �
� � �x1 , z1� - �x2 , z2� - . . . - �xN , zN� � � 1.

(�SYL�2�A)
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Proof. See appendix B (p. 171).

Identity (�SYL�comm) states the commutativity of the existantial affirmative, i.e.

§ �y�X�y�Y �y� � § �y�Y �y�X�y�.

Identity (�SYL�1�A) is the schema Barbara,

¦ �y�Y �y�Z�y� & ¦ �y�X�y�Y �y� � ¦ �y�X�y�Z�y�,

and identity (�SYL�2�A) is the schema Darii,

¦ �y�Y �y�Z�y� & § �y�X�y�Y �y� � § �y�X�y�Z�y�.

Note that, in our naming scheme, the number stands for a line in Figure 3.3, and the
suffixes ‘A’, ‘1CP’, or ‘2CP’ identifies the colum.

We can view these three algebraic identities as axiomatic for the theory of the syllogism.
What we have shown here, however, is that, instead of accepting them as axiomatic, we
can also construct them from a reduction of the language of the syllogism to the language
of propositional logic. Now we can show the rest of the soundness proof.

Proof of theorem 72. Let �V,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. Now,
from the algebraic identities in lemma 73, we can also derive the following identities:

� ��y1 � z1� , �y2 � z2� , . . . , �yN � zN��
& ��y1 , x1� - �y2 , x2� - . . . - �yN , xN�� �
� � �x1 , z1� - �x2 , z2� - . . . - �xN , zN� � � 1,

(†SYL�3�A)

� ��y1 , x1� - �y2 , x2� - . . . - �yN , xN��
& ��y1 � z1� , �y2 � z2� , . . . , �yN � zN�� �
� � �z1 , x1� - �z2 , x2� - . . . - �zN , xN� � � 1,

(†SYL�4�A)

� ��x1 , y1� - �x2 , y2� - . . . - �xN , yN�� �
& ��y1 � z1� , �y2 � z2� , . . . , �yN � zN��
� � �z1 , x1� - �z2 , x2� - . . . - �zN , xN� � � 1.

(†SYL�5�A)

This can easily be seen, because Datisi (†SYL�3�A) results from Darii (�SYL�2�A) sim-
ply by applying the commutativity of the existential affirmative (�SYL�comm) in the
antecedent. Then Disamis (†SYL�4�A) results from Datisi (†SYL�3�A) by applying the
commutatvity of strong conjunction (†MV1�), and the commutativity of the existen-
tial affirmative (�SYL�comm) in the consequent. Finally, Dimaris (†SYL�5�A) results
from Disamis (†SYL�4�A) by applying the commutativity of the existential affirmative
(�SYL�comm) in the antecedent again.
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~§, ~¦ M È P S � �1�
n ~§, ~¦ S È M M � �2� 32

~§, ~¦ S P P � �1�
~§, ~¦ M È P S � �1�

b ~§, ~¦ S È M M � �2� 32
¦,§ S P P � �3�
¦,§ M È P S � �1�

c ¦,§ S È M M � �1� 32
~§, ~¦ S P P � �1�
§ M P S � �1�

a.1.1 ¦,§ S M M � �1,2� 12
¦,§ S P P � �2�
§ M P

a.1.2 ¦ M S 2
§ S P

§ M P S � �1,2�
a.1.3 ¦ M S M � �1� 2

¦ S P P � �1�

¦ M P

a.2.1.1 § S M 2
§ S P

¦ P M S � �1�
a.2.1.2 § S M M � �1,2� 2

§ S P P � �2�
¦ M È P S � ��

a.2.2 ¦ S È M M � �� 4
§ S P P � ��
¦ M È P S � �1,2�

a.2.3 § S M M � �1� 4
¦ S P P � �1�
¦ M P

a.2.4.1 ¦ S M 1
¦ S P

¦ P M S � �1�
a.2.4.2 ¦ S M M � �1,2� 1

¦ S P P � �2�
¦ M È P S � �1,2�

a.2.4.3 ¦ M S M � �1� 2
¦ S P P � �1�

Figure 3.4.: model-theoretic counterexamples for invalid syllogisms

From these algebraic identities, the corresponding validities of correct affirmative mood
syllogisms listed in the left column of Figure 3.3 follow via the fact that the standard
algebra of Łukasiewicz logic is itself a Łukasiewicz algebra.

Then, observe that each of these correct affirmative moods has an associated first contra-
position (1CP) and second contraposition (2CP), listed in the center and right columns
of table 3.3 respectively. The validities for these syllogisms follows from the validity of
the associated affirmative mood syllogism via corollary 70.

Completeness

�74. Let Λ be some syllogistic signature. For every syllogism ϕ over Λ, we have

SYL�Λ� à ϕ iff ϕ is listed in Figure 3.3.

Proof. The ‘if’-part was demonstrated above in theorem 72. We will show the ‘only if’-
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part by considering its contrapositive, i.e. we will show that whenever it is not the case

that ϕ is listed in Figure 3.3, then it is also not the case that SYL�Λ� à ϕ.

As per the construction of our model theory, let Λ� be the induced predicate signature
of Λ, and Λ�� be the induced propositional signature of Λ�. Let ϕ� be the propositional
formula over Λ�� and some V corresponding to ϕ. Let t > V be any validity threshold.

Now, note that V2 b V for all V. So, in order to establish this result, it is sufficient to
show that, for each ϕ, there is a �V2,Λ���-valuation w, for which Yϕ��Yw � 0, unless ϕ
is listed in Figure 3.3. Such a valuation would act as a counter-example, showing that
it cannot be the case that SYL�Λ� àt ϕ for any t. These counter-examples are listed in
Figure 3.4. To make our list of counter-examples more comprehensible, we have imposed
some structure on it.

The table lists in the third column of each line a valuation w in set notation, where
YXxYw � 1 if x >X and YXxYw � 0 otherwise.

The second column shows which syllogisms the valuation w is a counter-example for.
Syllogisms are written in three lines, where the first and second line represent the two
conjuncts of the antecedent, and where the third line represents the consequent.

Every line in the abbreviated notation can have a number of configurations, each config-
uration corresponding to a syllogistic proposition.

• A line of the form ¦ X Y has one configuration, corresponding to the proposition
¦ �y�X�y�Y �y�.

• Analogously, a line of the form ~¦ X Y has one configuration, corresponding to the
proposition ~¦ �y�X�y�Y �y�.

• A line of the form ¦ X È Y has two configurations, corresponding to the proposi-
tions ¦ �y�X�y�Y �y� and ¦ �y�Y �y�X�y�.

• Analogously, a line of the form ~¦ X È Y has two configurations, corresponding
to the propositions ~¦ �y�X�y�Y �y� and ~¦ �y�Y �y�X�y�.

• A line of the form § X Y or § X È Y has two configurations, corresponding
to the propositions § �y�X�y�Y �y� and § �y�Y �y�X�y�, if it occurs in an antecedent.
However, it has only one configuration, corresponding to the original proposition
§ �y�X�y�Y �y�, if it occurs in the consequent.

• Analogously, a line of the form ~§ X Y or ~§ X È Y has two configurations,
corresponding to the propositions ~§ �y�X�y�Y �y� and ~§ �y�Y �y�X�y�, if it occurs in an
antecedent. However, it has only one configuration, corresponding to the original
proposition ~§ �y�X�y�Y �y�, if it occurs in the consequent.

• A line of the form Ψ1,Ψ2 X Y has as its configurations all configurations of Ψ1 X Y

plus all the configurations of Ψ2 X Y .
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The above definition mentions explicitly the number of configurations for each line with
one quantifier. If there are two quantifiers, we simply add up the number of configura-
tions for each of the individual quantifiers to obtain the number of configurations for
the line. In order to obtain a configuration for the entire three-line syllogism, we can
independently choose a configuration for each of the three lines. So by multiplying the
number of configurations for each of the lines, we get the number of configurations for
the entire syllogism, which is listed in the third column of each row.

Since the first line only refers to the terms M and P , the second to S and M , and the
third to S and P , we know that these are pre-syllogisms, and that they are syntactically
distinct. Since S and P always occur in the same order in the consequent, they are, in
fact, syntactically distinct proper syllogisms, not just syntactically distinct pre-syllogisms.

In order to verify that each valuation w is in fact a valid counter-example for the cor-
responding syllogisms, simply verify that Yϕ1Yw � 1 for all configurations ϕ1 of the first
line, that Yϕ2Yw � 1 for all configurations ϕ2 of the second line, and that YψYw � 0 for all
configurations ψ of the third line.

Some rows in the table list one or more syllogism, but no corresponding valuation. By
comparison with Figure 3.3, it can be verified that these are the valid syllogisms.

Now all that remains to be done is to verify that Figure 3.4 accounts for each of the 256
syntactically distinct syllogisms which can be formed by combining one of the 64 moods
�Ψ1,Ψ2,Ψ3� with one of the four figures. – To that end, consider the following eight
cases, each of which accounts for eight moods with four figures, and verify that they are
pairwise mutually exclusive, and comprehensively exhaustive.

i. Ψ1,Ψ2,Ψ3 > �~§, ~¦�: The counter-example is listed under (n).

ii. Ψ1 > �~§, ~¦�, and Ψ2,Ψ3 > �¦,§�: By inspecting Figure 3.2, it can be seen that, by
corollary 70 and the algebraic double-negation identity (�MV7), each of the four
figures for case (ii) can be rewritten into some figure for case (i). So this case reduces
to case (i), viz. the counter-example listed under (n) is also a counter-example for
the 32 case-ii-syllogisms.

iii. Ψ2 > �~§, ~¦�, and Ψ1,Ψ3 > �¦,§�: This case reduces to case (i), just as case (ii) reduces
to case (i).

iv. Ψ3 > �~§, ~¦�, and Ψ1,Ψ2 > �¦,§�: The counter-example is listed under (c).

v. Ψ1,Ψ2,Ψ3 > �¦,§�: The counter-example are listed with the prefix “a.”, and fall
within exactly one of the following cases:

– Ψ1 = “§”: This accounts for 16 syllogisms, listed with the prefix “a.1”.

– Ψ1 = “¦”: This accounts for 16 syllogisms, listed with the prefix “a.2”.
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vi. Ψ1 > �¦,§�, and Ψ2,Ψ3 > �~§, ~¦�: This case reduces to case (v.), just as case (ii)
reduces to case (i).

vii. Ψ2 > �¦,§�, and Ψ1,Ψ3 > �~§, ~¦�: This case reduces to case (v.), just as case (iii)
reduces to case (i).

viii. Ψ3 > �¦,§�, and Ψ1,Ψ2 > �~§, ~¦�: The counter-example is listed under (b).

With this completeness result, we have arrived at a logic which I believe can be more use-
fully applied to textual inference problems than classical logic due to the advantageous
computational properties of many-valued logic, which we will discuss in chapter 5.

It is, at this point, perhaps also worth reiterating that Łukasiewicz logic proves a subset
of all theorems provable in classical logic, and that the present completeness result is
nontrivial in that it shows that those theorems which classical logic proves and which
Łukasiewicz logic does not prove are not required for the purposes of reasoning within
a fragment of propositional logic which corresponds to the syllogism.

To the extent that one takes the syllogism as a benchmark fragment of natural language
reasoning, this result is particularly noteworthy in that bivalence is often one of the
very first axioms postulated about logic, even when one is talking about the logic of
natural language. One of the wider implications of this thesis, however, is that one can
get a surprisingly long way towards natural langauge reasoning, even without assuming
bivalence. In particular: This chapter has shown that one gets at least as far as the
syllogism. In the next chapter (chapter 4), we will then see why the syllogism, in turn,
gets us surprisingly far towards the goal of full-scale natural langauge reasoning.
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4. Semantic Decomposition

In this chapter, we will address the topic of semantic representation and of how we can
arrive from pieces of natural language text at logical formulae that are suitable for infer-
ence purposes. Here, we distinguish semantic composition from semantic decomposition,
semantic composition being the problem of arriving at a semantic representation struc-
ture, given a piece of text, and semantic decomposition being that of arriving at a logical
formula suitable for inference purposes, given a semantic representation structure.

To that end, we first need to establish what we mean by representation and then what it
is that makes a representation for text a semantic representation. We think of a repre-

sentation scheme as either a formal language the formal semantics of which can stand in
within an inference mechanism for the true semantics of the natural language of interest
or of the domain of an algebra which supports relevant logical operations on text.

This notion of representation is commonplace throughout the literature on semantics,
but it usually involves an a-priori commitment to a particular logic. Noteworthy wide-
coverage implementations of semantic composition include that of Bos (2005) in a CCG
grammar, based on DRT (Kamp & Reyle 1993), and that of Dalrymple et al. (1993)
within LFG, based on Glue Semantics (see e.g. Lev 2007). Both DRT and Glue Semantics
are meta-level formalisms which are grounded in FOPC as an object-level formalism so
that the problem of decomposition is solved relatively trivially.

Herein, we will instead build on the MRS algebra for semantic composition (Copes-
take et al. 2001, 2005, Copestake 2007) and on the general principles underlying the
implementations of MRS-based semantic composition in the ERG grammar (Flickinger
2000) and similar grammars. This line of work fits particularly well with our empiricist-
relationalist viewpoint as outlined in the introduction (1), precisely because it avoids to a
greater extent such a-priori commitments to a particular logic. This makes it possible to
address the problem of formulating a logic which is suitable for drawing inferences with
text, without committing the fallacy of begging the question. The only commitment we
accept a-priori is the methodological need to fit our model of semantics to a particular
set of inferences we wish to make. – Semantic decomposition thus becomes a problem
which is nontrivial and distinct from that of semantic composition, and it will be the
prime focus of the present chapter.
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But, given this generalized viewpoint, the notion of semantic representation seems to
become a pleonasm, as every form of representation of text has some formal semantics,
and every theory of the semantics of text, either explicitly or implicitly, avails itself of
a form of representation. For our purposes, the notion of semantics serves purely as
a distinction from syntax. Syntactic representation arises specifically from the need to
draw inferences about the grammaticality of a piece of text. Semantic representation,
on the other hand, aims at drawing inferences about the meaning of text. So, when we
talk about semantic composition and decomposition, we are really talking about how
the syntactic and the semantic criteria for drawing inferences about text differ from and
relate to each other.

One notion which is instructive concerning this distinction is that the logic for reasoning
about grammaticality and the logic for reasoning about meaning may really be the same.
We will take the recent thesis by MacCartney (2009) as prototypical for this idea, but it
is, in fact, commonplace throughout the field of natural language processing. Although
it often comes under the heading of natural logic, we prefer the more specific reference
to what we will call syntactically driven substitution logic (SynSL), as we will contrast
this syntactic approach with a semantically driven substitution logic (SemSL), showing
that there are inference phenomena which SemSL can adequately handle which SynSL
cannot. But, we will then, in turn, have to discard the working hypothesis of SemSL in
favour of a more expressive fragment of predicate calculus: the syllogism.

This argument goes into the heart of the question why one would want to do semantic
composition and decomposition in the first place: Predicate calculus leads down the
road of what has traditionally fallen under the heading of computational semantics and
semantic composition in particular. SynSL, however, describes approaches to textual
inference which avoid any such explicit treatment of semantics, but which do lead to an
implied theory of semantics which is, as we argue, inadequate. In particular, this includes
inference engines working with rewrite-patterns over syntax trees or the Carroll-Briscoe
dependency structures (Carroll et al. 1999) produced by many parsers.

Once we arrive at the syllogism, we will stop there to consider some of its properties
which seem linguistically interesting. In particular, we will demonstrate how syllogistic
premises impose dependency structures on text that fulfill the metatheoretical principles
of grammar outlined by Harris (1982, 1991). These dependency structures differ from
Briscoe-Carroll style dependencies, which sheds some more light on the nature of the
syntax/semantics interface we have in mind.
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4.1. The ProtoForm Language

In this section, we will introduce the new ProtoForm representation language for seman-
tic structures. Given the proliferation of different semantic representation schemes over
the past decade or two, the question arises whether it is really necessary to introduce yet
another. In response to this question, we emphasize that the ProtoForm language is heav-
ily inspired by, closely related to, and fully compatible with previous work on MRS. In
4.2, we will show that the MRS algebra for semantic composition can, in fact, be directly
applied to the problem of semantic composition with ProtoForms. Besides enforcing this
theoretical relationship, I have also implemented an algorithm which is linear in memory
and runtime complexity to translate MRS structures as produced by the ERG into Proto-
Forms.1 Thus, the existence of the ProtoForm language is not confined to the drawing
board. It takes full advantage of the experience in broad-coverage grammar engineering
which has gone into the ERG and related HPSG grammars, and there exists a mature
software platform for future experimentation with ProtoForms.

Given the current state of the art in MRS-based semantics, the ProtoForm formalism
makes two important contributions: (1) It facilitates the decomposition operation out-
lined in section 4.4. (2) It makes explicit a number of theoretical properties which are
only implicit within current implementations of MRS-based composition in particular
grammars such as the ERG, but which have not been explicitly mentioned in the litera-
ture previously.

The ProtoForm language has disadvantages relative to the MRS language when it comes
to the applications which have traditionally been the domain of MRS: (1) In the MRS
language, composition operators can be directly implemented in typed feature structures,
which is useful for grammar engineering in certain frameworks. (2) MRS has been de-
signed so as to maximize the level of canonicity it imposes on the representation of
semantic structures, which is useful for generation and transfer-based machine transla-
tion. – These two features are not shared by ProtoForms but irrelevant for purposes of
semantic decomposition.

One particular problem within semantic decomposition is that of solving the scope un-
derspecification problem which would necessarily be involved when trying to translate
an MRS-style structure into a formula in FOPC. This problem of scoping MRS struc-
tures has been addressed in a series of publications by Koller et al. (2009). This work,
however, has further-reaching implications than those applying to the problem of scope
enumeration. We will argue that the recursive structure they impose on an MRS-style
representation is central to semantic decomposition in general. The language of Proto-

1It is available freely as part of PyPES, the Python Platform for Experimentation with Semantics at
http://www.semantilog.org/pypes.html
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Forms can be seen as an MRS-style representation language which allows for making
this kind of recursive structure explicit.

The notions of semantic composition and decomposition now take on a more specific
meaning: Semantic composition within the algebra of MRS is all about removing syn-
tactic recursion from the semantic representation. Decomposition within the language
of ProtoForms, on the other hand, is about making explicit a different kind of recursion:
Here we are interested in the semantic recursion that supports inferences, rather than
the syntactic recursion which arises during composition due to the idiosyncrasies of the
particular language and the structure imposed on it by the grammar. Although the two
are clearly related to each other, they are nevertheless distinct as we will see throughout
the rest of this chapter.

4.1.1. ProtoForm Concepts

Different Kinds of Subforms

Predications

The simplest kind of subform which can appear in a ProtoForm is a predication. Our
notation for predications differs from standard FOPC notation in that we use explicitly
named labels to identify arguments, rather than identifying arguments by their position
in a sequence. We would write, for example

SgaveS �KEY � e0, arg1 � x1, arg2 � x2, arg3 � x3 �,

and this would mean the same as

SgaveS � arg3 � x3, arg2 � x2, arg1 � x1, KEY � e0 �.

We use the notation S�S to remind ourselves of the fact that a word is uninterpreted and
may need some kind of logical interpretation in order to be applicable within a logical
inference mechanism.

Quantifications

This is another kind of subform:

StheS �x1� � SrepresentativeS �KEY � x1 �� � SarrivedS �KEY � e1, arg1 � x1 �� .

It might appear in a semantic representation for ‘The representative arrived’. The quan-
tification binds a single variable (in this case x1), and it has two scopal arguments: a
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restrictor and a scope. It can be easily seen how this notation corresponds to the nota-
tion for quantifiers we used previously (section 3.2.1), with the restrictor appearing as
the left-hand scopal argument, and the body appearing as the right-hand scopal argu-
ment. In this case, we have directly plugged a ProtoForm into the restrictor and another
ProtoForm into the body of this quantfication, but we will later on see, that ProtoForms
also support a number of placeholder structures which can go into such scopal argument
slots. A ProtoForm is always written in brackets ���. In this case, each of the subordinate
ProtoForms itself contains one subform. In our example these are predications. The
quantifier itself, in the above example, is a word. But for purposes of logical inferences
it is useful to be able to substitute a logical operator for an uninterpreted word. For
example, we might write:

§ �x1� � SrepresentativeS �KEY � x1 �� � SarriveS �KEY � e1, arg1 � x1 �� ,

where the logical operator ‘§’ has replaced the word StheS.

Connections

Now consider

StheS �x1� � � SnewS � arg1 � x1 �� & � SrepresentativeS �KEY � x1 ���
� SarrivedS �KEY � e1, arg1 � x1 ��

,

which might appear in a semantic representation for ‘The new representative arrived’.
The subform which appears in the restrictor of the quantifier is a connection. These
connections are always denoted in infix notation. As before, we could have used a word
instead of a logical operator here, and write SandS, for example when representing the
phrase ‘new and inexperienced’ or ‘arrived and checked in’. A connection has two scopal
arguments, which we simply call the lefthand scope and the righthand scope.

Modalifications

Finally, words like SsaidS give rise to a type of subform which, for lack of a better term,
we will call a modalification (modal modification). The subform

StheS �x1� � SrepresentativeS �KEY � x1 ��
� SsaidS �KEY � e1, arg1 � x1 � � SrainedS �KEY � e2, ���

might appear in a representation for ‘The representative said it rained’, but modalifica-
tions need not have predicate-style arguments, as in ‘It possibly rained’, or they might
have more than one, as in ‘Smith bet Jones a dime that it rained’. In any case, how-
ever, a modalification has exactly one scopal argument, which we call the scope of the
modalification.
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Representing Scope

The ProtoForm language offers a number of different ways for representing scope. De-
pending on which mechanisms are used, we speak of a ProtoForm as either a type-I,
type-II, or type-III ProtoForm. In what follows, we will give examples of each type of
ProtoForm and the associated mechanisms for representing scope.

Type-I ProtoForms

All examples we have previously given are type-I ProtoForms, as they represent scope
only by plugging ProtoForms into scopal arguments directly. They use none of the mech-
anisms for representing scope ambiguity.

Type-II ProtoForms

The following ProtoForm imposes a less strict kind of recursion:
<@@@@>
StheS �x1� � SrepresentativeS �KEY � x1 �� ,

SarrivedS �KEY � e1, arg1 � x1 �

=AAAA?
,

Here, the ProtoForm consists of two subforms, and the body of the quantifier is marked
by what we call an anonymous hole, denoted ‘ ’. This is what makes this example a
type-II ProtoForm: type-I ProtoForms may not use holes of any kind. The idea behind
our use of holes is the same as the holes in Hole Semantics (Bos 1996; also see Blackburn
& Bos 2005, Koller et al. 2003). Anonymous holes are a particularly simple special case
of this idea: A type-II ProtoForm simply has N anonymous holes and N � 1 subforms,
where any subform can be plugged into any anonymous hole. When each hole has been
filled in this manner, we get a type-I ProtoForm which we call a configuration of the
type-II ProtoForm. One can see how this can be used to model scope ambiguity. For
example

<@@@@@@@>

SeveryS �x1� � SrepresentativeS �KEY � x1 �� ,

SaS �x1� � SsampleS �KEY � x2 �� ,

SsawS �KEY � e1, arg1 � x1, arg2 � x1 �

=AAAAAAA?
,

has two configurations:

<@@@@@@@>

SeveryS �x1� � SrepresentativeS �KEY � x1 ��
<@@@@>

SaS �x2� � SsampleS �KEY � x2 ��
� SsawS �KEY � e1, arg1 � x1, arg2 � x1 ��

=AAAA?

=AAAAAAA?
,

<@@@@@@@>

SaS �x2� � SsampleS �KEY � x2 ��
<@@@@>

SeveryS �x1� � SrepresentativeS �KEY � x1 ��
� SsawS �KEY � e1, arg1 � x1, arg2 � x1 ��

=AAAA?

=AAAAAAA?
.

82



We can use the same mechanism not only for genuine scope ambiguity, but also for
defining a canonical representation for connections which involve commutative opera-
tors, such as conjunction:

<@@@@@@@@@>

StheS �x1�
<@@@@@@>

SnewS � arg1 � x1 �,
& ,

SrepresentativeS �KEY � x1 �

=AAAAAA?
,

SarrivedS �KEY � e1, arg1 � x1 �

=AAAAAAAAA?

.

Note that a subform can only fill such holes which we call active holes within the Proto-
Form of which it is a subform. We will introduce the notions of active and passive hole in
greater detail later. For type-II ProtoForms, it simply means that subforms cannot float
into subordinate ProtoForms, so the subform for ‘arrived’ above cannot fill a hole in the
connection.

Type-III ProtoForms

The most complex and most expressive mechanism for representing scope consists in
assigning explicit names to handles, in order to refer to handles in a constraint language
which governs how subforms may or may not be plugged into each other. This is the
idea behind underspecification in Hole Semantics, more generally. A ProtoForm which
uses only this kind of mechanism, and never plugs a ProtoForm into a scopal argument
directly, is what we call a type-III ProtoForm. The two examples we have previously
encountered can be represented using type-III ProtoForms as follows:

<@@@@@@@@@@@@>

1 StheS �x1� 2 ,

3 SrepresentativeS �KEY � x1 �,
4 SarrivedS �KEY � e1, arg1 � x1 �,

1 h 4 ,

2 h 3

=AAAAAAAAAAAA?

,

<@@@@@@@@@@@@@@@@@>

SeveryS �x2� 1 ,

2 SrepresentativeS �KEY � x1 �,
SsawS �KEY � e1, arg1 � x1, arg2 � x1 �,
SaS �x1� 3 ,

4 SsampleS �KEY � x2 �,
1 h 2 ,

3 h 4

=AAAAAAAAAAAAAAAAA?

.

Such type-III ProtoForms now bear a resemblance to MRS structures (Copestake et al.
2005; also see Niehren & Thater 2003, Fuchss et al. 2004). In the first of the above
examples, all three subforms are labelled using what we call named roots ( 1 , 3 , 4 ), and
the restrictor of the quantifier carries what we call a named hole ( 2 ). The problem of
determining a configuration, again, consists in plugging subforms into holes, but this
time we also specify constraints that the resulting tree structure must fulfill.

For example, the constraint 2 h 3 specifies that root 3 must be either a direct or indi-
rect descendant of hole 2 . This constraint would have to be explicitly inserted during
semantic composition.
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The constraint 1 h 4 specifies that root 4 must be a direct or indirect descendant of
root 1 . This latter constraint is an example of an implicit binding constraint (Niehren
& Thater 2003, Fuchss et al. 2004). It arises from the fact that the quantifier which
binds a variable must occur on an outside scope of a predication which refers to that
variable. This is a simple well-formedness condition in FOPC, so the constraint can be
omitted during semantic composition and inserted later. We will generally not write out
the implicit binding constraints, but simply assume that they are always implicit. The
second of the above examples uses that convention.

The use of constraints further improves the expressive power of the formalism. For
example, consider the following structure:

<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>

SeveryS �x1� 1 ,

2

<@@@@@@>

SrepresentativeS �KEY � x1 �,
& ,

Sof S � arg1 � x1, arg2 � x2 �

=AAAAAA?
,

SaS �x2� 3 ,

4 ScompanyS �KEY � x2 �,
SsawS �KEY � e1, arg1 � x1, arg2 � x3 �,
SaS �x3� 5 ,

6 SsampleS �KEY � x3 �,
1 h 2 ,

3 h 4 ,

5 h 6

=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA?

.

Here, the restrictor of SeveryS must be a hole due to the fact that either ‘a company’ or
‘representative of’ can fill this slot, and the body of SeveryS must be a hole too, due to the
fact that either ‘saw’ or ‘a sample’ can fill this slot. But they cannot both be anonymous
holes, since this would mean that everything that can fill the restrictor of SeveryS could
also fill its body and vice-versa, which is clearly not the case. So the use of named holes
with constraints is required.

Minimally, Maximally, & Fully Recursive ProtoForms

Previously, we have seen three types of semantic representations, as exemplified by (1)
The representative arrived, (2) Every representative saw a sample, (3) Every representative

of a company saw a sample. Example (1) has a direct representation as a fully recursive
ProtoForm, previously called a type-I ProtoForm. This is a ProtoForm, which plugs
ProtoForms directly into scopal arguments, but does not use holes or constraints. Ex-
amples (2) and (3) have no such representations, due to scope ambiguity. Examples (1)
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and (2) also have a direct representation as a type-II ProtoForm. This kind of ProtoForm
plugs ProtoForms into scopal arguments wherever possible, and uses anonymous holes
to represent scope ambiguities, but no named holes or roots, and no constraints. A type-
II ProtoForm thus specifies a set of type-I ProtoForms, which we call its configurations.
Due to the nature of its scope ambiguity, example (3) has no representation either as a
type-I or a type-II ProtoForm. However, examples (1), (2), and (3) all have a minimally
recursive, or type-III ProtoForm as a representation. This kind of ProtoForm never fills
scopal arguments with ProtoForms directly, and instead uses named holes and explicit
constraints to represent scope ambiguities. As before, a type-III ProtoForm specifies a set
of type-I ProtoForms, which we call its configurations.

The notion of a type-II ProtoForm was used in this section only for instructive purposes.
Throughout the rest of this work, it will be more useful to talk about fully recursive,
maximally recursive, and minimally recursive ProtoForms. When writing a maximally
recursive ProtoForm, we plug ProtoForms into scopal arguments directly wherever pos-
sible, and prefer the use of anonymous holes over the use of named holes with explicit
constraints. Given these preferences we will, however, still need to satisfy the goal of ad-
equately representing scope ambiguity by the use of named holes and constraints where
this is necessary.

Consider the following example, which combines the use of the three types of techniques
for representing scoping in a maximally recursive ProtoForm:

<@@@@@@@@@@@@@@@@@@@@@>

SeveryS �x1� 1 ,

2

<@@@@@@>

SrepresentativeS �KEY � x1 �,
& ,

Sof S � arg1 � x1, arg2 � x2 �

=AAAAAA?
,

SaS �x2� � ScompanyS �KEY � x2 �� ,

SsawS �KEY � e1, arg1 � x1, arg2 � x3 �,
SaS �x3� � SsampleS �KEY � x3 �� ,

1 h 2

=AAAAAAAAAAAAAAAAAAAAA?

.

Maximally recursive ProtoForms are of central importance to us, as they define the no-
tion of semantic head, which we will introduce in section 4.3.2. These semantic heads,
in turn, form the operators in our characterization of operator grammar (section 4.5).

I have implemented an algorithm to bring minimally recursive ProtoForms into an equiv-
alent maximally recursive form. This algorithm does not involve exhaustive scope enu-
meration. Rather, the invariant pluggings can be read directly off the packed representa-
tion produced by a scoping machinery such as that of Koller et al. (2009).
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Active and Passive Holes

One final complication which arises with ProtoForms is illustrated by the example ‘Ev-

ery organizer who knew that a representative protested apologized’. If we were forced to
represent this in a minimally recursive way, we would use the following ProtoForm:

<@@@@@@@@@@@@@@@@@@@@@@@@@@@@@>

SeveryS �x1� 1 ,

2

<@@@@@@>

SorganizerS �KEY � x1 �,
& ,

SknowS �KEY � e1, arg1 � x1 � v 3 w

=AAAAAA?
,

SaS �x2� 5 ,

6 SrepresentativeS �KEY � x2 �,
4 SprotestedS �KEY � e2, arg1 � x2 �,
SapologizedS �KEY � e3, arg1 � x1 �,

1 h 2 ,

3 h 4 ,

5 h 6

=AAAAAAAAAAAAAAAAAAAAAAAAAAAAA?

,

which has a number of configurations, among them the following two:

<@@@@@@@@@@@@@>

SeveryS �x1�

<@@@@@@@@@@>

SaS �x2� � SrepresentativeS �KEY � x2 ��
<@@@@@@@>

SorganizerS �KEY � x1 �,
& ,

SknewS �KEY � e1, arg1 � x1 � � SprotestedS �KEY � e2, arg1 � x2 ��

=AAAAAAA?

=AAAAAAAAAA?
SapologizedS �KEY � e3, arg1 � x1 �

=AAAAAAAAAAAAA?

,

<@@@@@@@@@@@@@>

SaS �x2� � SrepresentativeS �KEY � x2 ��

SeveryS �x1�
<@@@@@@@>

SorganizerS �KEY � x1 �,
& ,

SknewS �KEY � e1, arg1 � x1 � � SprotestedS �KEY � e2, arg1 � x2 ��

=AAAAAAA?
SapologizedS �KEY � e3, arg1 � x1 �

=AAAAAAAAAAAAA?

.

Contrast this with our previous example ‘The new representative arrived’, where we said
that an outside subform cannot float into a hole in an inside ProtoForm. What we
have newly introduced here is the notation v 3 w which can override this property. Here,
hole 3 is not an active handle in the ProtoForm in which it appears, but rather in the
superordinate ProtoForm thereof, i.e. the ProtoForm in which the ProtoForm in which
it appears appears as a subform. This notation may also be nested. For example vv 3 ww

would be active in the superordinate ProtoForm of the superordinate ProtoForm of the
ProtoForm in which it appears.
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4.1.2. ProtoForm Definitions

Having given some examples and established some initial intuitions about ProtoForms,
we can now go on to define some more notational preliminaries, and then give a full
formal definition of ProtoForms.

Preliminaries: Basic Data Structures

75. Let D1,D2 be disjoint sets and let f1 be a function over domain D1 and f2 be a function
over domain D2. Then the union of functions f1 and f2, written f � f1 8 f2, is a function
over domain D1 8D2, which is defined as follows: For all x,

f�x� �
¢̈̈
¦̈̈
¨̈¤

f1�x� if x > D1,

f2�x� if x > D2.

76. Let D,D� be sets with D� b D, and let f be a function over domain D. Then the
intersection of function f with subdomain D�, written f � � f 9 D�, is a function over
domain D� where, for all x, we have f ��x� � f�x�.
77. Let D be some set. We say that S is a sequence over D of length N, iff S is a function
�1,2, . . . ,N�( D. Furthermore, we define the following.

• We write S�i� to denote the value S�i� of this function at i.

• We have s > S when there exists an i with S�i� � s.

• We write �S� to denote the set �sSs > S�.

• We write S��i� to denote the sequence over D of length i, for i B N, which has
S��i��j� � S�j� for all j.

• We write S�i��, for i B N, to denote the sequence over D of length N � i which has
S�i���j� � S�i�j� for all j.

• Let S1 and S2 be two sequences over D of lengths N1 and N2. Let S�2 be the function
over domain �N1 � 1,N1 � 2, . . . ,N1 �N2� which has S�2�x� � S2�x �N1�. Then, S is
the concatenation of sequences S1 and S2, written S � S1 � S2, iff S � S1 8 S�2 is the
union of the two functions S1 and S�2.

Signatures

78. A logical signature LSig � �Funcs,ArgLabels,FuncArgs,ArgValues� consists of:

• A set Funcs of functors. Each functor f > Funcs can be one of the following:

– a word such as SeveryS, SrepresentativeS, or SarriveS, which we identify by its
lemma, and write using the notation S�S; or
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– an operator, which we generally identify using a logical symbol such as  , �,
,, & , -, �, ~�, ¦, ~§, §, ι. This particular list of operator symbols is specific to
the language of our logic (section 3.2.1).2

• A set ArgLabels of argument labels such as KEY, arg1, arg2, arg3, arg4, arg, carg, l-index, r-index.
This particular list of argument labels arises specifically from semantic structures as
produced by the ERG but has some normative bearing on related HPSG grammars.

• A relation FuncArgs b Funcs � ArgLabels, such that �f, l� > FuncArgs, iff the
functor f > FuncArgs accepts and requires an argument with label l > L, e.g.
��SarriveS,KEY�, �SarriveS, arg1�, �SbetS,KEY�, �SbetS, arg1�, �SbetS, arg2�, �SbetS, arg3�� b FuncArgs.

• A set V of argument values. Each argument value v > V can be one of the following:

– a variable such as x1, x2, x3, . . . or e1, e2, e3, . . .

– a constant which we write between slashes, e.g. ~Jones~, ~San Francisco~, ~e1~.

79. A proto signature PSig may either be the empty signature, denoted �, or may be of
the form PSig � �LSig,Holes,PSig��, consisting of

• a logical signature LSig;

• a set Holes b �1,2,3, . . .� of holes;

• a subordinate proto signature PSig�.

ProtoForms and Their Subforms

80. A ProtoForm

PF � �Roots,ActHoles,Subfs,Conss�

of size N, for some N >N, over a proto signature PSig � �LSig,PassHoles,PSig�� contains:

• a sequence Roots of roots of length S�Roots�S over domain �1,2,3, . . .� (i.e. a se-
quence of numbers, where each number occurs only once).

• a set ActHoles b �1,2,3, . . .� of active holes with �Roots� 9ActHoles � g;

• a relation Conss b ��Roots� 8ActHoles� �ActHoles of constraints;

2In addition, it contains the symbol ‘ ι’. This is an upside-down iota, a piece of notation introduced in
the Principia Mathematica alongside the quantifier symbols ‘¦’ and ‘§’. It stands for Russell’s definite
description quantifier, which is outside the scope of our particular logic, but which we will nevertheless
permit into our logical language. In the absence of a better model for definite descriptions one may
think of it as an existential quantifier. We could have introduced the syllogistic quantifier ‘~¦’, standing
for ‘Some X is not Y ’ or ‘It is not the case that all X are Y ’. The fact that there does not seem to be a
single word in the English language to express this quantifier has led us to omit it.
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• a function Subfs, such that, for each ri > �Roots�, we have Subfs�ri� � sfi, where sfi

is a subform over PSigi � �LSig,Hi,PSig�3, where

�Roots� � �r1, r2, . . . , rN�,
ActHoles � H1 8H2 8 . . . 8HN.

• the following conditions are fulfilled about the size N:
(a) S�Roots�S � N, (b) SActHolesS � N � 1.

If PF is a ProtoForm over PSig, then PF is also a subform over PSig. Furthermore, we
say about every subform sfi that it is a subform of PF. Finally, let us define a notation
for ProtoForms: Let the notation for each sfi be ωi and let

Conss � ��u1, l1�, �u2, l2�, . . . �uN� , lN���.

Then the notation for the ProtoForm PF is as follows:

<@@@@@@@@@@@@@@@@@@@@>

r1 ωi,

r2 ω2,

. . .,

rN ωN,

u1 h l1 ,

u2 h l2 ,

. . . ,

uN� h lN�

=AAAAAAAAAAAAAAAAAAAA?
81. Let PSig � �LSig,Holes,PSig�� be a proto signature.

• If h > Holes, then we say that h is a scope bearer over PSig.
Its notation over PSig is h .

• Let PF�� be a ProtoForm over PSig�� with PSig�� � �LSig,Holes��,PSig�.
Then, PF�� is a scope bearer over PSig.

• Consider a scope bearer over PSig� with notation υ over PSig�. This scope bearer
over PSig� is then also a scope bearer over PSig. Its notation over PSig is vυw.

82. Let PSig � �LSig,Holes,PSig�� be a proto signature with logical signature LSig �

�Funcs,ArgLabels,FuncArgs,ArgValues�. Then, let f > Funcs be a functor, l1, l2, . . . >

ArgLabels be argument labels with �f, li� > FuncArgs for all li, and let v1,v2, . . . > ArgValues

be argument values. We say that

• ω is a predication over LSig, iff ω is of the form

f � l1 � v1, l2 � v2, . . . , lN � vN � for some N ;

3This notion of sfi being a subform over PSigi will be defined in due course.
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• ω is a quantification over PSig, iff ω is of the form

f �v�ϕψ,

where ϕ and ψ are scope bearers over PSig;

• ω is a modalification over PSig, iff ω is of the form

f � l1 � v1, l2 � v2, . . . , lN � vN �ϕ, for some N,

where ϕ is a scope bearer over PSig;

• and that ω is of the form

ϕ f ψ,

where ϕ and ψ are scope bearers over PSig.

If ω is a predication, quantification, modalification, connection or ProtoForm over PSig,
then we also say that ω is also a subform over PSig.

ProtoForm Operations

83. Let PSig1 and PSig2 be two proto signatures. Their union PSig1 @PSig2 is defined as
follows:

• if PSig1 � �, then PSig1 @PSig2 � PSig2;

• if PSig2 � �, then PSig1 @PSig2 � PSig1;

• if PSig1 � �LSig,Holes1,PSig�1� and PSig2 � �LSig,Holes1,PSig�2�, then

PSig1 @PSig2 � �LSig,Holes1 8Holes2,PSig�1 @PSig�2�.

84. Let PF1 � �Roots1,ActHoles1,Subfs1,Conss1� be a ProtoForm over PSig1 and let
PF2 � �Roots2,ActHoles2,Subfs2,Conss2� be a ProtoForm over PSig2. Their union PF1 @

PF2 is a ProtoForm over PSig1 @PSig2 and is defined as follows:

PSig1@PSig2 � �Roots18Roots2,ActHoles18ActHoles2,Subfs1�Subfs2,Conss18Conss2�.

85. Let PF � �Roots,Holes,Subfs,Conss� be a ProtoForm over PSig, let r > Roots be a
root, and let Subfs�r� be a subform over PSig� � �LSig,Holes�,PSig�. The selection PFA r

is the ProtoForm �`re,Holes�,Subfs 9 �r�,g�.
86. Let PF � �Roots,Holes,Subfs,Conss� be a ProtoForm over PSig, let r > Roots be a
root, and let i be its index, so that Roots�i� � r. Let Roots� � Roots��i�1�

�Roots�i��, and let
Subfs�r� be a subform over PSig� � �LSig,Holes�,PSig�. Then the deletion PF � r is the
ProtoForm �Roots�,Holes1 �Holes�,Subfs� 9 �Roots��,Conss�.

90



4.2. MRS-Style ProtoForm Composition

Having introduced ProtoForms, we can now address the question of how to derive a
ProtoForm as a representation for a piece of text by grammatical composition. Thus,
we show, to a proof-of-concept level, that the ProtoForm language is compositionally
adequate, in the sense of being able to express the intermediate semantics of arbitrary
syntactic constituents arising from a small toy grammar. Furthermore, our toy language
will define the sentences we will use as linguistic examples later on, together with their
syntax trees and semantic representations.

4.2.1. Grammar

In particular, our toy grammar is as follows:

S NPP VP, VP AdvR VP, PP PP NP,

NP DetR N’, VP V’, N’ N’Q PP,

N’ AdjQ N’, V’ V, V’ V’Q PP,

V’ VP NP.

The framework of this simplistic textbook context-free grammar has been chosen here
for illustrative purposes. The implementation of my inference engine uses the HPSG-
based ERG grammar instead, which is a typed feature structure grammar implementing
MRS-based composition. The resulting MRS structures are converted to ProtoForms.
For our purposes, however, it is not necessary to go into the additional complexities
which come with the implementation of a broad-coverage grammar. The definitions of
the operators Q, P and R as used above will be given shortly. For now, simply note that
they give us an algebra which is a special case of the MRS algebra, but which is nev-
ertheless sufficient to introduce the basic ideas about MRS-style semantic composition
relevant to us. For a more detailed treatment of the general case, refer to Copestake et al.
(2001, 2005), Flickinger (2000).

4.2.2. Composition Structures & Lexicon

Before we can go on to discuss the composition operators, let us first consider an exam-
ple lexicon which might go with our above example grammar: Entries in the semantic
lexicon are composition structures, which we will give a formal definition of shortly. For
example, an entry might look like this:

`X e `xe � X ScompanyS �KEY � x �� .
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For now, we can think of such an entry as akin to a lambda expression of the form

λX λx � X ScompanyS �KEY � x �� .

Here, the outside lambda expression λ X belongs to the meta language, viz. the language
of ProtoForms, with lambda variable X providing a handle that ranges over roots and
holes. The inside lambda expression λx belongs to the object language, with lambda
variable x ranging over entities of the logical model theory. But n.b. that we mention
this analogy with the lambda calculus only to establish a preliminary intuition about
composition structures. A formal definition of the composition algebra, which does not
use the lambda calculus at all, will follow shortly.

The lexicon might look like this:

every � `X e `xe � SeveryS �x� X � , Det every,

a � `X e `xe � SaS �x� X � , Det a,

representative � `X e `xe � X SrepresentativeS �KEY � x �� , N repr...,

company � `X e `xe � X ScompanyS �KEY � x �� , N company,

sample � `X e `xe � X SsampleS �KEY � x �� , N sample,

saw � `X e `x2, x1e � X SseeS � arg1 � x1, arg2 � x2 �� , V see,

large � `X e `xe � X SlargeS � arg1 � x �� , Adj large,

of � `X e `x2, x1e � X Sof S � arg1 � x1, arg2 � x2 �� , P of,

probably � `X e `e � SprobablyS � � X � , Adv probably.

Here, we have, for each word, a syntactic production rule and an entry for a semantic
lexicon, which is what we call a composition structure. One element of the composition
structure is a ProtoForm which represents the lexical entry.

87. A composition structure CS � �Handles,Vars� over ProtoForm

PF � �Roots,ActHoles,Subfs,Conss�

over PSig � �LSig,PassHoles,PSig�� with LSig � �Funcs,ArgLabels,FuncArgs,ArgValues�
consists of:

• a sequence

Vals � `v1, v2, . . . , vNe

for some N with all vi > ArgValues;
• a sequence Handles which may either be empty, so that Handles � `e, or which

may contain one handle Handles � `Handlee which is either an active hole Handle >

ActiveHoles or a root Handle > Roots in PF.
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4.2.3. Composition Operators & Derivations

By parsing a piece of text using the above context-free grammar, we can impose on it a
structure such as the following:

�EveryR �representativeQ �ofP �aR �largeQ company�����Q �sawP �aR sample��.

We have defined a composition structure which provides a semantic representation for
each of these lexical items. Now, all that remains to be done is to define the composition
operators R, Q and P as operators on composition structures.

88. Let CS1 � �Handles1,Vars1�, CS2 � �Handles2,Vars2�, and CS � �Handles,Vars�, be
composition structures over PF1 � �Roots1,ActHoles1,Subfs1,Conss1�, PF2 � �Roots2,

ActHoles2,Subfs2,Conss2�, and PF � �Roots,ActHoles,Subfs,Conss� where PF1, PF2

are ProtoForms over proto signatures PSig1 � �LSig,PassHoles1,PSig�1�, PSig2 � �LSig,

PassHoles2,PSig�2�, and PSig respectively. Then, if one of the following three sets of
conditions is fulfilled, we say that CS is a composition of CS1 and CS2.

a. CS is the intersectively coordinating composition of CS1 and CS2,
written CS � CS1 QCS2, iff the following holds:

• Let R > �Roots�, and `H1e � Handles1, and `H2e � Handles2;

• let ConnPF be the ProtoForm which has the notation ConnPF � � & �;
• let RootPF�

� �PF1 �H1� @ConnPF @ �PF2 �H2�;
• let the notation of RootPF� be ϕ;

• let RootPF be the ProtoForm which has the notation RootPF � � R ϕ�;
• then CS � CS1 QCS2 iff:

– PF � RootPF @ �PF1 �H1� @ �PF2 �H2�,
– Handles � `Re, and

– Vars1 � Vars2 � Vars.

b. CS is the intersectively complementizing composition of CS1 and CS2,
written CS � CS1 PCS2, iff:

• PF � PF1 @PF2,

• Handles � Handles1,

• Vars2 � `Vars
�1�
1 e, and Vars � Vars

�2��
1 .

c. CS is the scopally subordinating composition of CS1 and CS2,
written CS � CS1 RCS2, iff the following holds:

• Let `H1e � Handles1, and `H2e � Handles2;

• let ConsPF � � H1 h H2 �;
• then CS � CS1 RCS2 iff:
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– PF � PF1 @PF2 @ConsPF,

– Handles � `e,
– Vars1 � Vars2 � Vars.

�89. Let CS1 � �Handles1,Vars1�, CS2 � �Handles2,Vars2�, and CS � �Handles,Vars�,
be composition structures over PF1 � �Roots1,ActHoles1,Subfs1,Conss1�, PF2 � �Roots2,

ActHoles2,Subfs2,Conss2�, and PF � �Roots,ActHoles,Subfs,Conss� where PF1, PF2 are

ProtoForms over proto signatures PSig1, PSig2, and PSig respectively. Then, if CS is a

composition of CS1 and CS2, the following conditions are always fulfilled:

• Roots � Roots1 8Roots2,

• ActHoles � ActHoles1 8ActHoles2,

• Conss � Conss1 8Conss2,

• PSig � PSig1 @PSig2.

Proof. Trivial.

These definitions are demonstrated in Figure 4.1, which traces a semantic composition.

4.3. Substitution Logic

The previous two sections have been dedicated to ProtoForms and ProtoForm composi-
tion in an MRS algebra. As we will later see, this approach to semantic representation
is sufficient in order to support the type of natural language reasoning we will discuss in
the next chapter (chapter 5). – But before we go on to subscribe to this approach and
all of the complexities it entails, let us first consider the question of whether it is in fact
necessary, as well as being sufficient, or whether a simpler model might do.

This section will, in particular, consider the more simple approach of reasoning with
substitutions over syntactic structures. We will see various inadequacies of this approach
and move on to the idea of reasoning with substitutions over semantic structures, and
then finally to reasoning with quantified structures in a predicate calculus. At each step of
the way, we will show why the working hypothesis is inadequate and construct examples
where it fails before we move on to the next.

4.3.1. Syntactically Driven Substitution Logic

Applying to our example grammar the idea of syntactic monotonicity composition, which
one often finds in connection with treatments of natural logic, we would write the gram-
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large � ` 1 e `x1e � 1 SlargeS � arg1 � x1 �� ;

company � ` 2 e `x1e � 2 ScompanyS �KEY � x1 �� ;

largeQ company � ` 3 e `x1e
<@@@@@@>

3

<@@@@@@>

SlargeS � arg1 � x1 �,
& ,

ScompanyS �KEY � x1 �

=AAAAAA?

=AAAAAA?
;

a � ` 4 e `x1e � SaS �x1� 4 � ;

aR �largeQ company� � `e `x1e

<@@@@@@@@@@@@>

SaS �x1� 4 ,

3

<@@@@@@>

SlargeS � arg1 � x1 �,
& ,

ScompanyS �KEY � x1 �

=AAAAAA?
,

4 h 3

=AAAAAAAAAAAA?

;

of � ` 5 e `x1, x2e � 5 Sof S � arg1 � x2, arg2 � x1 �� ;

ofP �aR �largeQ company�� � ` 5 e `x2e

<@@@@@@@@@@@@@@@>

5 Sof S � arg1 � x2, arg2 � x1 �,
SaS �x1� 4 ,

3

<@@@@@@>

SlargeS � arg1 � x1 �,
& ,

ScompanyS �KEY � x1 �

=AAAAAA?
,

4 h 3

=AAAAAAAAAAAAAAA?

;

representative � ` 6 e `x2e � 6 SrepresentativeS �KEY � x2 �� ;

reprQ �ofP �aR �largeQ company��� � ` 7 e `x2e

<@@@@@@@@@@@@@@@@@@@@>

7

<@@@@@@>

SrepresentativeS �KEY � x2 �,
& ,

Sof S � arg1 � x2, arg2 � x1 �

=AAAAAA?
,

SaS �x1� 4 ,

3

<@@@@@@>

SlargeS � arg1 � x1 �,
& ,

ScompanyS �KEY � x1 �

=AAAAAA?
,

4 h 3

=AAAAAAAAAAAAAAAAAAAA?

.

Figure 4.1.: Example composition
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mar as follows:

S NP� VP�, VP Adv�

really VP
�, PP P� NP�,

NP Det�
every N’

�, VP Adv�

didn’t VP
�, N’ N’� PP�,

NP Det�
some N’

�, VP V’�, V’ V’� PP�,

N’ Adj� N’�, V’ V�,

V’ V� NP�.

Rather than augmenting a grammar like this with semantic composition rules, this gram-
mar applies monotonicity markers directly to constituents. MacCartney (2009) has de-
veloped such a ruleset for use with the Stanford parser, but the above toy grammar will
be sufficient for our purposes.

Given such a grammar, we can obtain syntax trees like these:

tango� `in� Paris�e�,
`Some� dog�e� barked�,

`Every� dog�e� barked�,

`Every� dog�e� `didn’t� bark�e�,

which are decorated with monotonicity markers.

Given such markers, we can move on to the logical reasoning mechanism which we call
syntactically driven substitution logic (SynSL) using the following idea: Let’s assume that
we have somehow established that, when ψ is substituted for ϕ, then ϕ also logically
follows from ψ, perhaps on the basis of an ontological fact which we take as logically
trivial or axiomatic. Later on (section 4.3.4), we will in fact make the point that this
is not such a good assumption. But let us nevertheless develop this formal system as a
working hypothesis. We write this relationship as ϕ� ψ.

We then define our substitution logic as follows: If ϕ � ψ, let the same substitution
be permissible in a context f where ϕ occurs as a constituent in an upward-monotonic
context. We write this relationship as f�ϕ�� � f�ψ��. Furthermore, if ϕ occurs in a
downward-monotonic context f �, let the converse substitution be permissible: f ��ψ�� �
f ��ϕ��. Then, we immediately have an impressively productive logic:

Paris� France


 in Paris� � in France�,

tango� dance


 tango� `in Parise� � dance� `in Francee�
.
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And, similarly:

brown dog� dog


 Every dog� barked� Every `brown doge� barked
,

brown dog� dog


 Some `brown doge� barked� Some dog� barked
.

4.3.2. Semantically Driven Substitution Logic

We can now contrast syntactically driven substitution logic (SynSL) with semantically
driven substitution logic (SemSL) as a working hypothesis to improve over SynSL. In
the next section (section 4.3.3), we will then point out some limitations of SynSL which
SemSL does not suffer from, and, in section 4.3.4, we will point out limitations with
SemSL and finally arrive at the syllogism as a more adequate reasoning mechanism.

Semantic Heads

Semantic heads can easily be defined in terms of maximally recursive ProtoForms. A
given set of subforms which appear in a sentence make up a semantic head, written in
square brackets ���, iff they appear together in the same ProtoForm within a maximally
recursive representation. Furthermore, we enclose a set of subforms in round parentheses
��� when they appear together in the same subform of a ProtoForm. Note that we used
angle brackets `�e in the previous section to denote syntactic constituents.

The two configurations of ‘Every representative saw a sample’, for example, have the fol-
lowing semantic structure:

Every representative ��saw a sample��.
��Every representative saw�� a sample.

Confer section 4.1.1 for the full ProtoForm corresponding to this abbreviated notation.

Here, we can still mark some of the semantic heads as such, even in a fully scope-
underspecified, but maximally recursive, ProtoForm.

�Every representative� saw �a sample�.

We mark those semantic heads as such which are semantic heads in all configurations,
and we remove the offending brackets which cross each other in different configurations.

Note how the above structure, despite being underspecified for scope, still shows a useful
parallelism with a structure like this:

�Every �new representative�� saw �an �impressive sample��.
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Another one of our running examples is even more heavily underspecified for scope:

Every �representative of� �a �large company�� saw �a sample�.

Considering heads such as �representative of�, it becomes clear that semantic heads do not
always coincide with syntactic constituents.

A semantic head need not even consist of words which are consecutive in a sentence:

�Every Scillonian� �pay in� taxes Britain.

This would be the semantic structure of ‘Every Scillonian pays taxes in Britain’.4

From the point of view of this section, we will only be interested in these bracketed
structures. So the purpose of semantic composition here is simply to produce semantic
heads. But, let us emphasize that semantic heads are only one kind of information which
we can extract from the ProtoForms resulting from the semantic composition process
discussed in the previous section (section 4.2).

Semantic Monotonicity Markers

In the previous section, we applied monotonicity markers to syntactic constituents. We
can do the same thing with semantic heads. For example, the scope of a negation, or
the restrictor of a universal quantifier, are downward monotonic, while the body of a
quantifier, or the restrictor of an existential quantifier are upward monotonic.

not ��every dog� bark����.
�Every representative�� saw� �a sample��.

4One final comment may be in place concerning this abbreviated notation: The ordering of subforms
within ProtoForms is never significant for inference purposes, so the above expression would be equiv-
alent to, e.g.

Britain �pay in� �Every Scillonian� taxes.

However, there are a number of purposes for which a canonical ordering of subforms is useful, one
of them being the goal of making our abbreviated forms as readable as possible. This is why, in our
previous definitions of ProtoForms, the roots of a ProtoForm were defined as members of an ordered
sequence, not members of an unordered set. Also, the composition operators as previously defined,
together with the union, selection, and deletion operations on ProtoForms maintain this sequence such
as to keep the roots and associated subforms of a ProtoForm in the canonical order. The canonical
order aims to make subforms occur in the same order as the words in the surface representation,
except where a reordering is required due to the necessity of putting a given set of words between a
given pair of brackets representing a semantic head. Where such a reordering is required, it is always
the lefthand argument to the composition operator which determines the ordering.
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Note that this assignment can be made directly to underspecified forms, and without the
need to enumerate configurations. Instead, we can simply propagate markers through
a chart representation. Such chart representations have previously been introduced by
Koller & Thater (2005), Koller et al. (2009) for purposes of scoping.

Note how, in a substitution logic, the recursive nesting of monotonicity markers af-
fects the property of substitution directionality. For example, if we make a substitution
f�ϕ�� � f�ψ�� we note that f�ϕ� and f�ψ� are themselves formulae, which we might
write ϕ� and ψ�. This would then, for example, allow a substitution g�ψ��� � g�ϕ���.
Equivalently, we could simply note that the context g X f where the upward monotonic
context is nested inside a downward monotonic context is itself downward monotonic,
so substitutions must be of the form g X f�ϕ��� g X f�ψ��.
More generally, a downward monotonic context inverts its inside monotonicity markers,
while an upward monotonic context leaves them as they are. Let’s consider our earlier
example ‘Every dog didn’t bark’, which we might assign the following representation:

not ��every �brown� dog��� bark����.

If we resolve the outermost marker to the inner level, we get

not ��every �brown� dog��� bark���,

and, if we resolve the next level,

not ��every �brown� dog�� bark���.

Substitution Logic & Ambiguous Monotonicity Markers

Now consider an example involving a more complex form of scope ambiguity:

Every �representative of� �a company� arrived,

which has the following configurations:

Every ���representative of�� a company���� arrived�,

��Every �representative of�� arrived���� a company�.

We can now see that ‘arrived’ is upward monotonic in both cases (either upward mono-
tonic on the outermost context, or upward monotonic in an upward monotonic context).
Similarly, �representative of� is downward monotonic in both cases (either upward mono-
tonic in a downward monotonic context, or downward monotonic in an upward mono-
tonic context). But ‘company’ can be either upward monotonic or downward monotonic,

99



depending on the configuration used to resolve the scope ambiguity. In one configuration,
it is upward monotonic in a downward monotonic context, in the other configuration it
is upward monotonic in the outermost context.

So, we write the monotonicity markers of our underspecified ProtoForm as follows:

Every �representative of�� �a company?� arrived�.

Furthermore, we extend our substitution logic by blocking substitutions of the following
forms: f�ϕ?� ~� f�ψ?� and f�ψ?� ~� f�ϕ?�. But we will permit both f�ϕ?� � f�ψ?� and
f�ψ?�� f�ϕ?� in case we also have both ϕ� ψ and ψ� ϕ.

For example:

�representative of�� �salesman of�,
registered� arrived,

manufacturer� company,

firm� company,

company� firm,



Every �salesman of�� �a company?� registered�

� Every �representative of�� �a firm?� arrived�
,

~
 Every �representative of�� �a company?� arrived�

� Every �representative of�� �a manufacturer?� arrived�
,

~
 Every �representative of�� �a manufacturer?� arrived�

� Every �representative of�� �a company?� arrived�
.

Syntactic monotonicity composition cannot deal with such examples, as, by definition,
it is incapable of detaching the notion of semantic scope from the recursive constituency
structure of the syntax-tree or of detecting scope ambiguity. MacCartney (2009, p. 118)
concedes that “classic scope ambiguities [. . . ] may be one issue” for his approach.

As an example of a classic scope ambiguity MacCartney (2009) mentions ‘Every man

loves a woman’. This is, as he also points out, in fact no problem at all, due to the
fact that, as we have seen, despite scope ambiguity, there is no ambiguity about the
monotonicity markers involved. However, he fails to discuss examples such as the above,
where genuine ambiguity does arise.

MacCartney (2009, p. 135) then goes on to state that “in practice this rarely causes
problems”, by which he probably means the absence of such phenomena in the particular
inference datasets he works with, such as the FraCaS testsuite and RTE data. This can
hardly be denied. But at the same time, one is reminded of how he motivates his study
of syntactic monotonicity marking to begin with: The problem being addressed here is
that the success of most RTE systems “depends on the prevalence of upward-monotone
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contexts, and thus can easily be derailed” by the infrequent, though existent, presence of
downward-monotone contexts (MacCartney 2009, p. 92).

At its most basic level, the heart of the problem being addressed by MacCartney (2009)
is that of applying monotonicity markers to text recursively in such a way as to allow
for textual reasoning. So, regardless of the “practical” impact of his simplifying assump-
tions, it seems unsatisfactory to allow any admissions to the extent that the recursive
structures he uses may, in fact, be linguistically inadequate for his purposes.

For example, his approach, to the best of my understanding, could not deal with cases
such as ‘Every brown dog does not bark’, where there is no real ambiguity involved at all,
but where the semantically preferred scoping

not ��every �brown dog� bark��
simply does not line up with the syntactic structure of the sentence

`Every brown doge `does not barke.

4.3.3. Semantic Scoping Principles

Finally, we need to introduce some additional conventions about resolving scope. In par-
ticular, our distinction between quantifications, modalifications, and connections makes
it possible to single out different semantically interesting groupings among the configu-
rations of a given underspecified ProtoForm.

Scoping Connections vs. Quantifications & Modalifications

As a general rule, we will always have connectives take wide scope over quantifications
and modalifications. So, for example, we might have a maximally recursive ProtoForm
which, in its general scope-underspecified form, looks like this:

�The dog� barked and �the cat� meowed,

where, in general, quantifiers belonging to the different sentential clauses might float
into each other’s body scopes. But, due to the fact that the two sentential clauses share
no variables in the ProtoForm, this kind of scope ambiguity would be entirely spurious
and could be eliminated in a redundancy elimination framework such as that of Koller
& Thater (2006), Koller et al. (2009). So, let’s establish a convention to add brackets
around clausal constituents:

��The dog� barked� and ��the cat� meowed�.
leading to the following maximally recursive ProtoForm:

��The dog barked�� and ��the cat meowed��.
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Scoping Quantifications vs. Modalifications

It is often useful to make a distinction, for a given modalification, between de re configu-
rations in which one minimizes the number of quantifiers which take narrow scope under
that modalification, and de dicto configurations in which one maximizes the number of
such quantifiers.

Consider, for example, the following maximally recursive ProtoForm:

�The organizers� believed �the representatives� arrived,

which has the following configurations:

a1. The organizers ����believed arrived�� the representatives��,
a2. ��The organizers ��believed arrived���� the representatives,

b. The organizers ��believed ��the representatives arrived����.
We can now distinguish among configurations between group (a) and group (b), and
represent the same distinction by adding the following brackets:

a. �The organizers� �believed arrived� �the representatives�,
b. �The organizers� believed ��the representatives� arrived�,

leading to the following maximally recursive ProtoForms:

a. �The organizers� ��believed arrived�� �the representatives�,
b. �The organizers� ��believed ��the representatives arrived����.

ProtoForm (a) represents the de re reading of ‘believed’ and ProtoForm (b) represents the
de dicto reading of ‘believed’.

The brackets suggest the significance of this distinction for logical inferences. Consider,
for example, the following:

The organizers believed �some representatives� arrived

The organizers believed �some salesmen� arrived
.

A logical relationship which might justify this inference is that every representative is a
salesman. But we also need to know the modal force of such a claim, and the modal
scope of �some representatives� and �some salesmen� in the sentence.

The inference should go through under the de re reading iff the relationship is valid on
the topmost modal context, and under the de dicto reading iff it is valid as a belief held
by the organizers about whom the sentence is reporting.

In this case, I would expect Davidson (1968) to argue that the complementizer ‘that’ in

The organizers believed [that] the representatives arrived
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should exhibit the same function as the demonstrative ‘that’ with the subordinate clause
as a cataphoric referent:

The organizers believed that. The representatives arrived.

Thus, scope ambiguity about quantifiers from the two sentential clauses floating into
each other’s scopes would become spurious in much the same way as for the sentential
connectives discussed previously.

Following the principle of semantic innocence (Bach 1997), we would resolve this spuri-
ous ambiguity by resorting to the de re reading, thus generally choosing ProtoForm (a)
and dropping ProtoForm (b). This maximizes the amount of reasoning which is pushed
onto the outermost scope and thus becomes shared between contexts.

But Davidson’s and Bach’s account are not without their critics5, and their arguments
do not extend to modalities which have nothing to do with such propositional attribute
reports. Examples like

The organizers necessarily greeted the representatives

seem to exhibit a more genuine form of logical ambiguity in a modal logic between

j��The organizers� greeted �the representatives��, and

�The organizers� �jgreeted� �the representatives�.

The question is what to infer when the claim that every representative is a salesman is
true, but not necessarily so. In fact, even the past tense marker associated with ‘greeted’

acts as such a modality in a temporal logic. The question then arises what to do with this
inference if it is now true that every representative is a salesman, this not having been the
case until recently.

4.3.4. Ontological Limitations of Substitution Logic

Universal vs. Existential Substitutability: PP-Arguments & Modifiers

Verb Modifiers vs. Verb Complements

Paul tangoed


 Paul danced
,

Paul tangoed in Paris


 Paul danced in Paris
,

Jones works


 Jones lives
,

Jones works in London

~
 Jones lives in London
;

5for a good summary on the problems surrounding propositional attitude reports see e.g. McKay &
Nelson (2005)
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The linguistic examples offered by MacCartney (2009) and other advocates of substitu-
tion logic display a peculiar affinity for verbs which happen to be closely related to nouns
that are in a hypernymy-hyponymy relation such as ‘tango’ and ‘dance’. These are clean
cases for inference purposes, since we accept all of the following:

• syntactically montonic substitution:
‘if you tango, you dance’;

• WordNet “verb entailment”:
‘tangoing cannot be done unless dancing is done’;

• WordNet verb troponymy:
‘to tango is to dance’;

• syllogistic premise:
‘every tango is a dance’;

• noun hyponymy:
‘tango is a dance’; ‘tango is a kind of dance’; ‘tangoing is a kind of dancing’.

Let’s look at a different case:

• syntactically montonic substitution:
‘if you work, you live’;

• WordNet verb entailment:
‘working cannot be done unless living is done’;

• WordNet verb troponymy:
‘�to work is to live’ (wrong, or meaning shift).

For this case, there exists no straightforward way of turning the concept of living or
working into a noun, while maintaining the entailment property: ‘every work is a life’,
‘work is a kind of life’, ‘working is a kind of living’, are all nonsensical, wrong, or suggest
an unintended metaphor.

The phenomenon is easily accounted for within an ontology expressed in the language
of FOPC. Consider one solution based on Davidsonian-style event variables:

¦ �e,x� �StangoS �KEY � e, ARG1 � x �� SdanceS �KEY � e, ARG1 � x ��,
¦ �x� �§ �e� �SworkS �KEY � e, ARG1 � x ��� § �e�� �SliveS �KEY � e�, ARG1 � x ���.

The former relationship is what we need in order to postulate tango� dance in a substi-
tution logic. Here, variables of predicates are never explicitly represented. Instead it is
assumed that all relationships which affect substitutability are based on implicit univer-
sal quantification. But the expressive power of such a logic does not permit an adequate
representation of the kind of relationship which exists between ‘work’ and ‘live’ in the
above example.
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There is no straightforward way of addressing that problem within the confines of sub-
stitution logic: If the grammaticist goes with the usual natural logic treatment of ‘tango

in Paris’, then the ontologist is left with a choice to either incorrectly infer ‘
 Jones lives in

London’ by interpreting ‘�’ as involving besides cases of troponymy also other cases of
verb entailment and postulating work� live, or to miss out on ‘
 Jones lives’ by interpret-
ing ‘�’ as involving only clean cases of troponymy, thereby precluding the possibility to
postulate work� live.

The grammaticist may attempt to come to the ontologist’s rescue by treating ‘�’ as in-
volving besides cases of troponymy also cases of meronymy, and consequently blocking
intersective modification of verb phrases by prepositional phrases altogether, thus allow-
ing the ontologist to safely postulate both work� live and tango� dance, but this would
mean we are now losing ‘
 I dance in France.’

Finally, the ontologist and grammaticist may conspire to hypothesize that a sense dis-
tinction is the true culprit, the material existence sense of living behaving in a cleanly
monotonic fashion with PP-modification, the habitation sense of living featuring an op-
tional PP-complement which blocks monotonic substitutions. Of course, going down this
road means possibly introducing into the grammar a syntactically spurious distinction,
where only an ontological distinction might exist.

Noun Modifiers vs. Relational Noun Complements

Furthermore, it seems the phenomenon is not limited to verbs, but applies to any kind of
predicate which is relational in the ontology, i.e. which takes more than one argument,
including relational nouns.

J. is an auditor.


 J. is an accountant.
,

J. is an accountant.


 J. is an employee.
,

J. is an auditor of IBM.

~
 J. is an employee of IBM.
.

From the perspective of substitution logic, it is hard to block the chain of reasoning
‘auditor� accountant� employee’ which would be licensed by

¦ �x1,x2� �auditorOf � ARG1 � x1, ARG2 � x2 �� accountantAt � ARG1 � x1, ARG2 � x2 ��,
¦ �x1,x2� �accountantAt � ARG1 � x1, ARG2 � x2 �� employeeOf � ARG1 � x1, ARG2 � x2 ��,

but not by

¦ �x1�

¢̈̈
¦̈
¤̈
§ �x2� �auditorOf � ARG1 � x1, ARG2 � x2 ��
� § �x�2� �accountantAt � ARG1 � x1, ARG1 � x

�
2 ��

£̈̈
§̈
¥̈
,

¦ �x1�

¢̈̈
¦̈
¤̈
§ �x2� �accountantAt � ARG1 � x1, ARG2 � x2 ��
� § �x�2� �employeeOf � ARG1 � x1, ARG1 � x

�
2 ��

£̈̈
§̈
¥̈
.
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For nouns it seems even less tempting to speak of a grammatical distinction between non-
monotonic optional PP-complements and monotonic PP-modifiers, since this distinction
seems even more systematically spurious from the point of view of syntax.

However, within the ontology, it makes perfect sense to postulate a very close relation-
ship between modifiers and optional complements when it comes to providing optional
arguments for verbs and relational nouns. Incidentally, such a naming convention for
relational nouns and verbs with, possibly optional, PP-complements is also used in the
ERG (Flickinger 2000), where predicates such as employee�of or accountant�at induce
sense-distinctions which are useful, for example, for machine translation.

Generally, the lack of expressive power of substitution logics when it comes to such
knowledge stems from their inability to attach arguments to predicates and to allow the
ontology to relate predicates to each other by quantifying over the individual arguments.

Conversely, if one were to write down the underlying ontology in natural language, one
would have to resort to statements like ‘If you work, you live’ but ‘If you work in a place,

you do not necessarily live in that same place’ vs. ‘If you dance, you tango’ implying ‘If

you dance in a place, you also tango in that same place’ or ‘Every auditor is an employee’

but ‘Every auditor of a company is not necessarily an employee of that company’ vs. ‘Every

accountant is a person’ implying ‘Every happy accountant is a happy person’. I can think of
no grammatically trivial way of expressing such relationships at all, without recourse to
meta-level variable binding as in the case of anaphora or mathematical language.

Transitivity Dimensions: Space Needle & Mariana Trench

In the previous section, we argued that the mechanism provided by FOPC to state quan-
tifications over explicit variables makes FOPC adequate in a way in which substitution
logic is not, for purposes of expressing the ontological distinction between complement-
taking and modification. In this section, we will consider another important metatheo-
retical principle of ontology: transitivity.

Consider the classical substitution logic example of the geographical location sense of
‘in’ and the following transitivity property, as expressed in FOPC:

¦ �x1,x2,x3�

¢̈̈
¦̈
¤̈

in � ARG1 � x2, ARG2 � x1 �& in � ARG1 � x3, ARG2 � x2 �
� in � ARG1 � x3, ARG2 � x1 �

£̈̈
§̈
¥̈
.

One can establish how the meaning of this preposition relates to that of ‘outside’, by
postulating the following relationship:

¦ �x1,x2� �in � ARG1 � x1, ARG2 � x2 ��  outside � ARG1 � x1, ARG2 � x2 ��.
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These two meaning postulates would logically entail the contrapositives

¦ �x1,x2� �outside � ARG1 � x1, ARG2 � x2 ��  in � ARG1 � x1, ARG2 � x2 ��,

¦ �x1,x2,x3�

¢̈̈
¦̈
¤̈

in � ARG1 � x2, ARG2 � x1 �& outside � ARG1 � x3, ARG2 � x1 �
� in � ARG1 � x3, ARG2 � x2 �

£̈̈
§̈
¥̈
.

Given this and ‘The Space Needle is in Seattle’, we get the following inferences:

Jones was in the Space Needle


 Jones was in Seattle
,

Jones was outside the Space Needle

~
 Jones was outside Seattle
,

Jones was in Seattle

~
 Jones was in the Space Needle
,

Jones was outside Seattle


 Jones was outside the Space Needle
.

This example of ‘in the Space Needle’ � ‘in Seattle’ is parallel to the one given by Mac-
Cartney & Manning (2007), Chambers et al. (2007), whereby ‘in Paris’� ‘in France’.

Moreover, it is important to note that, due to the way in which MacCartney (2009) has
set up his inference mechanism, he must arrive at this relationship in a compositional
manner. In particular, he uses a two-stage strategy, where the first stage consists in
identifying lexical substitutions, deletions, and insertions, and the second stage consists
in determining compositionally the impact of such operations. So as soon as ‘outside

Paris’ and ‘outside France’ enter the scene, it must be down to the relationship between
the prepositions ‘in’ and ‘outside’ and the monotonicity properties among the complement
NPs to derive monotonicity properties for the resulting PPs. These cannot be directly
postulated in the ontology as relationships between PPs per se.

If this set of relationships is to be derived compositionally, it would have to be expressed
in SynSL by the relationship ‘Space Needle’ � ‘Seattle’, together with the grammar rules
PP  in NP� and PP  outside NP�. The idea that ‘outside’ would have to be taken
as imposing a downward-monotonic context on its complement is parallel to the one
expressed by MacCartney (2009, p. 11) that ‘without’ should be downward-monotonic.

But this is problematic. The relationship ‘Space Needle’ � ‘Seattle’ or ‘Paris’ � ‘France’

is clearly not logically axiomatic, but rather a quite specific ontological thesis: geog-
raphy relates the Space Needle and Seattle to areas in the geometric space of latitude
and longitude, and geometry establishes inclusion properties for such areas which can be
expressed by ‘in’ and ‘outside’.

The fact that ‘Space Needle’ � ‘Seattle’ is, indeed, not logically axiomatic, is reflected
in the fact that we could arrive at the same system of relationships, by doing the exact
opposite throughout the grammar: we could have ‘Seattle’ � ‘Space Needle’, and the
grammar rules PP in NP� and PP outside NP�.
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If we do grant ‘Space Needle’� ‘Seattle’, we will find that it either significantly overgener-
ates inferences such as ‘like the Space Needle’ � ‘like Seattle’, or ‘own the Space Needle’ �

‘own Seattle’, where the inference does not refer to this geographical/geometric inclusion,
or it would miss inferences.

The question here is how to express the transitivity property of a given ontological pred-
icate. Since logical entailment is a transitive relation, one can arrive at such a transitivity
property by reinterpreting logical entailment under the interpretation of the ontological
predicate. But such an approach would be badly confused. The point is that a logic
has only one entailment relation, but an ontology has many transitive predicates, each
imposing an independent dimension along which inclusions and exclusions arise. Inclu-
sions or exclusions along these ontological dimensions are not at all the same thing as
logical entailment and logical disjointness.

This can easily be shown by extending our example about in/outside with further dimen-
sions by introducing into our toy grammar vocabulary such as above/below. Our domain
of Space Needle/Seattle could be extended by Mariana Trench/Pacific.

We see that, w.r.t. the above example inferences, Mariana Trench/Pacific behave exactly
like Space Needle/Seattle, which might lead us to postulate ‘Mariana Trench’� ‘Pacific’.

Now, let’s say we want the following inferences, given ‘The Mariana Trench is below the

Pacific’ and ‘The Space Needle is above Seattle’:

The balloon floats above the Space Needle


 The balloon floats above Seattle
,

Oil was found below the Mariana Trench


 Oil was found below the Pacific
,

Data were measured above the Mariana Trench

~
 Data were measured above the Pacific
,

A ring was found below the Space Needle

~
 A ring was found below Seattle
.

It can be seen, that, given the relationships postulated so far, the latter two incorrect
inferences cannot be blocked. Regardless of what we do to entailment-directions for
lexical items and projectivity markers in our example grammar, we will find that at least
two out of our eight example inferences will fail.

The only recourse for SynSL would be to mark the complements of prepositions as not
projecting any entailment information, and to characterize the relationships in an on-
tology of rewrite relationships between PPs, without attempting to build them composi-
tionally. – FOPC, on the other hand, is perfectly capable of a compositional treatment of
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inferences arising from these transitivities, by simply adding meaning postulates such as
the one expressed above for ‘in’. Each of these transitivity postulates refers only to one
lexical item at a time, not entire phrases.

This example, involving two spacial dimensions, is, of course, only the tip of the iceberg,
as it has been specifically chosen so as to hinge on the transitivity of a single preposition.
If we think of the vast number of transitive predicates which provide the ontological
interpretations for other semantic heads such as �member of�, �attaches to�, supports, etc.,
it quickly becomes clear that an ontology should not only be able to distinguish two
dimensions of transitive inclusions, but, in fact, a great many.

MacCartney’s approach, however, lumps in with logical negations linguistic phenomena
such as the preposition ‘without’, the verb ‘avoid’, the adverb ‘rarely’, the superlative ad-
jective ‘tallest’, and the noun ‘denial’ (MacCartney 2009, p. 11). Based on our discussion
in this section, it should be clear, however, that this is confusing metalinguistic predicates
with linguistic predicates and logical axioms with ontological theses. It amounts to say-
ing that the ontological dimension which counts how often an event occurs is the same
as the dimension which measures how tall a person is.

4.4. Syllogistic Normal Form Decomposition

We began this chapter by giving an introduction to the ProtoForm semantic representa-
tion language and showing how to use grammatical composition to translate text into
ProtoForms. We showed how ProtoForms impose a recursive structure on text, and,
equating such recursive structures to the notion of semantic head, argued that seman-
tically driven substitution logic is more suitable for purposes of logical inference than
syntactically driven substitution logic.

In this section, we will go one step further and discuss how ProtoForms also impose
relational dependencies on text. We call these structures syllogistic normal forms (SNFs),
and the individual relational dependencies which make up such structures are what we
call syllogistic premises (SPs). – One might think of SNFs in terms of three different
interpretations as illustrated by the different forms of notation shown in Figure 4.2.

First, an SNF is a logical formula within a fragment of FOPC, which can be used within
traditional theorem provers or other kinds of first order logical inference mechanisms.
In particular, an SNF is a conjunction of SPs, each of which corresponds to a possible
premise in the traditional logic of the syllogism. The semantics of the SNF within the
logic serves as an approximation to the true semantics of the text for inference purposes.

Second, an SNF is a semantic dependency structure which is comparable, in terms of
its metalanguage properties, to representations such as Briscoe-Carroll-style syntactic

109



sentence:

Every representative of a company saw a sample.

Underspecified ProtoForm:

<@@@@@@@@@@@@@@@@@@@@@>

SeveryS �x1� 1 ,

2

<@@@@@@>

SrepresentativeS �KEY � x1 �,
& ,

Sof S �KEY � ~e2~, arg1 � x1, arg2 � x2 �

=AAAAAA?
,

SaS �x2� � ScompanyS �KEY � x2 �� ,

SsawS �KEY � e1, arg1 � x1, arg2 � x3 �,
SaS �x3� � SsampleS �KEY � x3 �� ,

1 h 2

=AAAAAAAAAAAAAAAAAAAAA?

.

SNF, logical form:

<@@@@@@@@@@@@@@@@@@>

<@@@@@@@@@@@@@@@>

<@@@@@@>
SeveryS �x�

<@@@@@@>

SrepresentativeS �KEY � x �,
& ,

Sof S �KEY � ~e2~, arg1 � x �

=AAAAAA?
� SsawS �KEY � ~e1~, arg1 � x ��

=AAAAAA?

,

<@@@@@@>
SaS �x� � ScompanyS �KEY � x ��

<@@@@@@>

SrepresentativeS � �,
& ,

Sof S �KEY � ~e2~, arg2 � x �

=AAAAAA?

=AAAAAA?

=AAAAAAAAAAAAAAA?
, � SaS �x� � SsampleS �KEY � x �� � SsawS �KEY � ~e1~, arg2 � x ���

=AAAAAAAAAAAAAAAAAA?
SNF, dependency notation:

( every [ representative of ] ) ( a company ) saw ( a sample )

§ §

¦

SNF, McDonald’s decomposition:

• F: Every representative saw � something.

Q: Who ~ saw? A: Every representative ~ saw.

• F: They were � representatives of a company.
Q: Who were they � representatives of? A: Representatives of � a company.

• F: Somebody ~ saw a sample.

Q: What ~ was seen? A: A sample ~ was seen.

Figure 4.2.: example SNF structure
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How can I help?

I would like a large #3 Meal with Coke and with Sweet & Sour Sauce to eat in.

Would you like that large?

Yes.

What drink?

Coke.

What sauce?

Sweet & Sour.

To eat in or take out?

To eat in, please.

Figure 4.3.: example dialogue

dependency relations (Carroll et al. 1999), henceforth abbreviated GRs, and the repre-
sentations used in semantic role labelling (see e.g. Màrquez et al. 2008). We will argue
that SNFs are preferable for inference purposes to syntactic dependencies and that they
are expressively more powerful than semantic role labels.

Third, we can think of SNF in terms of what, for lack of a better term, one might call
a “McDonald’s decomposition”, where a possibly complex sentence is analyzed into a
number of atomic factoids expressible using question/answer pairs of a particular format,
in our case SPs. SPs are atomic in the sense that expressions are only allowed to use one
quantification at a time and they can be represented either in a formal language, or in a
controlled natural language of greatly reduced complexity. Factoid-based decomposition
is, of course, nothing new (see e.g. Hickl 2008, Bensley & Hickl 2008), and text simpli-
fication techniques have been investigated before as well (see e.g. Siddharthan 2004). As
a byproduct of our approach to semantic decomposition, however, SNFs present a new
approach towards identifying in a logically-motivated way a fragment of natural lan-
guage which serves the purposes of syntactic simplicity and canonicity of the language,
expressive adequacy of the logic, and atomicity of the factoids.

4.4.1. From Composition-Derived Forms to SNF Logical Forms

Dialogues such as the one in Figure 4.3 take place hundreds of times each day in a
typical fast food restaurant. Question/answer pairs in such dialogues might correspond
to buttons on a computer register communicating orders to the kitchen and controlling
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the cashier’s dialogue with the customer. This dramatically reduces the complexity of the
language used in the dialogue by focusing on one variable at a time. – We can do the
same with ProtoForms.

Consider our previous example:

<@@@@@@@@@@@@@@@@@>

SeveryS �x2� 1 ,

2 SrepresentativeS �KEY � x1 �,
SsawS �KEY � e1, arg1 � x1, arg2 � x2 �,
SaS �x2� 3 ,

4 SsampleS �KEY � x2 �,
1 h 2 ,

3 h 4

=AAAAAAAAAAAAAAAAA?

.

This ProtoForm has two variables: x1 and x2, and each has a quantification associated
with it. We can go through the ProtoForm one quantification at a time, and, for each
one, determine a partial scoping which has that quantifier on the outermost scope. For
variable x1 the ProtoForm which results from such partial scoping would look like this:

<@@@@@@@@@>

SeveryS �x1� � SrepresentativeS �KEY � x1 ��

<@@@@@@@@@>

SsawS �KEY � e1, arg1 � x1, arg2 � x2 �,
SaS �x2� 3 ,

4 SsampleS �KEY � x2 �,
3 h 4

=AAAAAAAAA?

=AAAAAAAAA?
Now we have a ProtoForm in the restrictor of the quantification, and another ProtoForm
in its body. The second step consists in applying what we might call a variable filter on
both sides. Since we are currently focusing on x1, we simply remove all subforms which
do not refer to x1. For those subforms which do, we remove all arguments referring to
quantified variables other than x1 but leave in place event variables such as e1. In the
above example, the restrictor ProtoForm is in the proper format already, so the filter
does not alter anything. In the body, however, it will delete the quantification for x2 and
the predication referring only to x2.

� SeveryS �x1� � SrepresentativeS �KEY � x1 �� � SsawS �KEY � e1, arg1 � x1 ��� .

We now have a syllogistic premise (SP) and can move on to the next variable x2:

<@@@@@@@@@>

SaS �x2� � SsampleS �KEY � x2 ��

<@@@@@@@@@>

SeveryS �x2� 1 ,

2 SrepresentativeS �KEY � x1 �,
SsawS �KEY � e1, arg1 � x1, arg2 � x1 �,

1 h 2 ,

=AAAAAAAAA?

=AAAAAAAAA?

.

After filtering we get

� SaS �x2� � SsampleS �KEY � x2 �� � SsawS �KEY � e1, arg2 � x2 ��� .
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Finally, we combine the two SPs by means of conjunction in a left-branching structure,
leaving us with the SNF as displayed in the figure. Note that, since quantifier nesting
is never allowed in SNFs, we can generally write each premise using the same variable,
which we simply call x. In the figure, we have also turned the event variable e1 into a
constant ~e1~ for reasons we will discuss shortly (section 4.4.2).

4.4.2. SNFs vs. Scoped Logical Forms

By converting a ProtoForm with multiple quantifiers into an SNF, we remove the infor-
mation pertaining to quantifier nesting, so it is instructive to revisit the problem of scope
and scope ambiguity briefly. In standard examples such as

Every man loves a woman,

common-sense knowledge associated with the predicate ‘loves’ may well have a role to
play. If only one subject and only one object can participate in one given loving-event at
a time, then nesting of quantifiers becomes important, and scope ambiguity arises. But
in the example

Every company gave to a politician,

one might equally well argue for a collective reading, i.e. that this sentence does not com-
mit to either of the scoped readings, but rather just states the existence of a giving-event,
where the set of all companies is a subset of the set of all individuals participating in
subject-role, and the overlap between the set of all politicians and the set of all individu-
als participating in object-role is nonempty. The predication

SgaveS �KEY � e1, arg1 � x1, arg2 � x2 �

would break apart into two predications

SgaveS �KEY � e1, arg1 � x1 �, SgaveS �KEY � e1, arg2 � x2 �,

Note that, by saying that there exists at least one politician who is an object of this
event, we are not ruling out the possibility that there may be many different politicians
for which this is the case.

By appealing to common-sense knowledge, discourse-level variable binding, or formal
or mathematical language, we might be able to enforce a particular scoped reading for a
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given sentence:

Every man loves a woman.

~
 There is this woman and every man loves her.
,

A clean planet is important.

Every child needs a clean planet.


 A clean planet is important. Every child needs it.

In the first example, the every-outscopes-a reading is perhaps more likely, due to the fact
that the competing scoping is less compatible with common-sense knowledge, but one
might arrive at the same result by applying scoping heuristics such as scoping quantifiers
in order of their appearance from left to right. In the second example, knowledge of the
context in which such sentences are usually uttered and which implications are intended
suggests that the a-outscopes-every reading is more likely to be the one intended. But
these inference decisions are not quite as straightforward.

By using SNFs, an inference mechanism would generally allow both inferences to go
through. This is due to the fact that it discards information about scope both in the
antecedent and the consequent of an implication, and therefore ignores certain models
which might make the consequent false while making the antecedent true and producing
a counterexample to the implication. – So SNFs will tend to err on the side of proving
too many positive propositions in the consequent, and too few propositions inside the
scope of a negation in the consequent.

This differs from the alternative strategy of enforcing scoped forms, where an inference
mechanism might block an inference based on a specific scoping, once such a scoping
has been chosen. But this seems less natural than the treatment afforded by SNFs, which
would tend to implicitly apply the scoping which is plausible in the context of whatever
inference might refer to the sentence downstream in the discourse. For example, if the
sentence ‘This season, every man loves a woman’ is uttered by a showmaster and followed
by ‘And here she is; please welcome my next studio guest. . . ’, then a contradiction may not
be perceived as such. Similarly, the sentence ‘Every child needs a clean planet’ might be
uttered in a science fiction context, followed by ‘For £98, you can buy yours now’.

We can also use McDonald’s decompositions to further develop our intuitions surround-
ing SNFs. Under an SNF interpretation, the statement ‘Every company gave to a politician’

would fall apart into the conjunction of two factoids: ‘Every company gave to someone’,
and ‘Someone gave to a politician’. So, the sentence implies ‘Every company gave’, ‘A politi-

cian received’, and, of course, it would imply itself, ‘Every company gave to a politician’.

In addition, we need to know which two factoids refer to the same event, so as to block
the inference ‘Every company gave to a politician and every church gave to a charity’, 
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‘Every company gave to a charity and every church gave to a politician’. We achieve this by
reifying event variables into logical constants, so that the two predicates

SgaveS �KEY � ~e1~, arg1 � x1 �, SgaveS �KEY � ~e1~, arg2 � x2 �,

would relate the subject and object to the same event, but not to a distinct event

SgaveS �KEY � ~e2~, arg1 � x1 �, SgaveS �KEY � ~e2~, arg2 � x2 �.

4.4.3. More on SNF Conversion

As we have seen, the main idea behind SNF conversion is to go through a ProtoForm one
quantification at a time, and filtering its restrictor and body for the predications which
depend on the quantified variable.

One further complication in this context is that, before this algorithm can be applied, the
ProtoForm must be brought into a form which is maximally recursive except for the fact
that quantifier holes do not get plugged. So all holes, other than quantifier holes, which
have an invariant plugging in a scoping machinery get filled in by ProtoForms first.

Then, during SNF conversion, whenever the filtering mechanism hits a subordinate Proto-
Form where at least one predication refers to the filter variable, all other predications
must be kept as well. If this ProtoForm is nested inside other ProtoForms, all superor-
dinate ProtoForms must be kept. In other words: removal of a subform during filtering
can only occur, if this subform (a) does not reference the filter variable, (b) occurs either
in the top-level ProtoForm, or inside a ProtoForm where no other subform refers to the
filter variable, and where (c) this ProtoForm does not, itself, contain subordinate Proto-
Forms which are nonempty after filtering. – This essentially means that semantic heads
never get broken up.

For ERG-derived ProtoForms, the additional condition (b) is important for adverbial
modification. Consider for example the sentence ‘No company gave grudgingly’. Here, the
SP which establishes the subject would be

<@@@@@@>
SnoS �x� � ScompanyS �KEY � x ��

<@@@@@@>

SgaveS �KEY � ~e1~, arg1 � x �,
& ,

SgrudginglyS �KEY � ~e1~ �

=AAAAAA?

=AAAAAA?
In the body of this restrictor, we cannot remove the conjunction and the predication
SgrudginglyS, as this would incorrectly imply that ‘No company gave’.

Condition (c) is important in cases where the quantifier binds the variable of a predicate
which appears nested inside a modalification. So in the sentence ‘Abrams said that Browne
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arrived’, the SP which establishes the subject to SarrivedS would be6

� ι�x� � SBrowneS �KEY � x �� � SsaidS �KEY � ~e1~ � � SarrivedS �KEY � ~e2~, arg1 � x ���� .

4.5. Operator Grammar & SNF Dependency Structures

In the previous section, we used the logical interpretation to show how SNFs can be
obtained from ProtoForms coming out of the composition process. In this section, we
will show how the logical interpretation relates to dependency structures.

In particular, we will discuss metatheoretic properties of various dependency-style rep-
resentation schemes. In particular, we will use Briscoe-Carroll-style GRs (Carroll et al.
1999) as a point of reference, and briefly discuss dependency MRS (Copestake 2009).

By the metatheoretic properties of a dependency structure, we mean theoretic properties
which hold for the concrete symbols in the graph, not properties associated with the
linguistic information they implicitly represent. As far as the latter is concerned, all three
representations, SNFs, DMRSs, and GRs, are, to some extent, equivalent. For example,
both SNFs and DMRSs can be obtained from the same MRS algebra, and, in the case of
the ERG, the same grammar, and the same algebra might also be used to project GRs to
such structures. So, as far as the most important linguistic properties are concerned, the
three types of dependency structures are informationally equivalent.

For the purposes of this section, however, we will disregard such information which is
implicit, and concentrate only on that information which is explicit in the associated
graph structures. This distinction is particularly important, for example, for machine
learning. If we feed dependency structures into a feature space by making each depen-
dency a dimension in such a space, or if we use graph kernels, or, based on projectivity
properties, tree kernels to represent the structures, we would expect a machine learner to
be able to make use of the geometry of a feature space, or properties which arise directly
from the graph-hood or tree-hood of a data structure. But it would be, in my opinion,
naı̈ve to suppose that a machine learner could learn, on the basis of GRs, a system of
relationships among GR patterns which implicitly amounts to semantic composition, or
that it could somehow pick up on the solution of a scope-underspecification problem
represented by a DMRS. Even if it could, this would be unnecessary, if we can use a rep-
resentation scheme where those kinds of information (semantic composition, scoping)
are explicit, rather than implict.

6Recall that the symbol ‘ ι’ is an upside-down iota and stands for Russell’s definite description quantifier.
We do not implement this quantifier in the model theory, but the symbol is nevertheless useful as a
translation of the quantifier ‘the’, or for named entities.
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4.5.1. From SNF Logical Forms to SNF Dependency Structures

Using the process described in the previous section (section 4.4), we can convert Proto-
Forms to SNFs in logical notation. But we can interpret such structures not only as
logical formulae, but also as dependency structures like this:

( a [ representative of ] ) ( the manufacturer ) spoke.

ι

§

This notation builds on the notation we have previously used for semantic structures,
adding crosses to words and ProtoForms, circles to words, and arrows which always run
from a cross to a circle. Each arrow corresponds to an SP. For example, the longer arrow
in the above example would correspond to the following SP:

<@@@@@@>
SaS �x�

<@@@@@@>

SrepresentativeS �KEY � x �,
& ,

Sof S � arg1 � x �

=AAAAAA?
� SspokeS �KEY � ~e1~, arg1 � x ��

=AAAAAA?

We represent such a formula by drawing a cross above the ProtoForm in the restrictor
of the quantification. We then identify the word in the body of the quantification which
refers to the variable being quantified and represent its arguments by circles in the depen-
dency notation. These are the arguments the predicate would have had in a ProtoForm
before SNF decomposition, i.e. we are not speaking of the result of breaking up the pred-
icate here, but rather of the predicate in its original lexical form. The circles, from left
to right, correspond to arg1, arg2, and arg3. One of these arguments will be the one which
refers to the variable being quantified in the SP, and this corresponds to the circle which
defines the endpoint of the arrow. The label of the arrow is the quantifier itself, which is
originally a word, or a quantifier induced by the grammar for purposes of representing
a semantic construction.

In cases where this quantifier has a clear interpretation as a first-order quantifier, we can
label the arrow with this quantifier to indicate the logical relationship being expressed
by the semantic dependency. In many cases, we will omit this label, as it is a nontrivial
problem and outside the scope of this work to define logical operators which adequately
interpret these words and grammatical constructions.

4.5.2. Words & Syntactic Theory

Such SNF dependency structures are very closely related to dependency structures in
operator grammar. In what follows, we will summarize the fundamental metatheoretic
ideas behind operator grammar as envisioned by Harris (1991), and show, by the use
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of examples, that the relevant properties are fulfilled by SNF dependencies, but not, for
example, by GRs and DMRSs.

Harris’ entire “theory of sentences” (Harris 1991, p. 53) is built on little more than a
few fundamental constraints on likelihood classes for word occurences and the nature
of grammatical dependence. These constraints are, in fact, so basic, that one is quick to
accept them as necessary for any theory of grammar and, in discarding them as trivial,
to miss his main message, viz. that they are also very nearly sufficient:

“At various points, the conclusions which are reached here turn out to be
similar to well-known views of language [. . . ]. The intent of this work, how-
ever, was not so much to arrive at such conclusions, as to arrive at them from
first principles [. . . ] The issue was not so much what was so, as whether and
how the essential properties of language made it so.” (Harris 1991, p. 6)

In particular:

“The crucial property of language is that the presence of words in a sentence
depends on how other words in the sentence depend on yet other words in
it. This dependence is the essential constraint on equiprobability of words in
sentences. Though more or less empirically come by, this dependence can be
considered a construct of the syntactic theory.” (Harris 1991, p. 54)

Note that he does not say that dependencies determine equiprobabilities, only that de-
pendencies yield a constraint on equiprobabilities. In particular, this might refer to the
viewpoint that they only serve to distinguish zero likelihoods from non-zero likelihoods.

Also note that he does not speak of dependencies on words, but rather of dependencies on
dependencies on words. One way of fulfilling this dependence-on-dependence constraint
is by expressing the algebra of dependence not at all as an algebra over words, but as an
algebra over equivalence classes of words which enter into the same dependencies.

If, for example, our theory of syntax is such that the words in the classical example
sentence ‘Colorless green ideas sleep furiously’ and the sentence ‘Small young companies in-

novate tirelessly’ enter into the same dependencies, then that would amount to the same
constraint on equiprobabilty, viz. that the probability of the first is nonzero iff the prob-
ability of the second is nonzero. – By probability, we mean the expected occurence
frequency of the expression in the language.

For the equivalence classes, this would mean that pairs of words entering into the same
dependencies in the two sentences have to be assigned to the same equivalence class.

Conversely, if words such as ‘black’ and ‘white’ occur in the same context always either
both with zero or both with nonzero probability, our theory of syntax must be such that
they belong to the same equivalence classes and thus enter into the same dependencies.
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So, concerning the sentence ‘Colorless green ideas sleep furiously’, we would not say that it
has a zero likelihood of occurence, nor that it is nonsensical or that it has no meaning or
semantic interpretation. Its likelihood of occurence may, of course, be so close to zero as
to be, in practice, unobservable, but the same thing is true of sentences that are perfectly
sensible if they have sufficiently nontrivial semantics.7 This is notably different from
an unlexicalized approach, which would go much further in saying not only that both
example sentences must have nonzero likelihoods, but furthermore that they, indeed,
have the same likelihood of occurence.

Topics surrounding polysemy, metonymy, and other productive phenomena which often
come under the heading of lexical semantics are dealt with by Harris using further in-
equalities of likelihood besides the zero/non-zero distinction. This would be the sort of
theory we would need to employ in order to interpret the sentence about green ideas.8

This is outside the scope of our work, but it’s nevertheless important to realize that, under
this viewpoint, compositional semantics informs syntax, and lexical semantics informs
compositional semantics, in the same way as syntax informs compositional semantics
and compositional semantics informs lexical semantics. To the extent that one comes
across citations of Harris in the context of bag-of-words semantics, one must keep in
mind that this is almost certainly not what he had in mind.

All of this seems unsurprising to the linguistically informed reader. We have arrived sim-
ply at the idea of subsuming words under tags and writing grammars for tag sequences
rather than individual words, yet have somehow managed to turn it into a two-page ex-
egesis of three sentences written by Harris. – But what is important here is not what we
have concluded, but how we have arrived at this conclusion. We have not yet had any
need to define what a word is, how to assign tags to words, and how to assign grammat-
ical dependencies to tag sequences: A word is simply the sort of thing which goes into
equivalence classes that enter into dependencies. And dependencies are the sort of thing
which establish relations between equivalence classes of words. This is taken by Harris
as axiomatic and as a characteristic property which is inherent to the nature of linguistic
distributionality. And it is this we must have in mind when addressing the much more
complex problem of what constitutes a word, what defines a word class, and what makes
a good grammatical dependency. This is different from starting out with a given theory
of grammar and concluding what is merely a special case of this axiom.

7In that sense, word-classes in Harris’ methodology might be seen as serving a similar sort of purpose
as confidence intervals in statistical methodology when dealing with random variates over continuous
ranges.

8Here is my submission to the contest: The green party is in a crisis. Their ideas appear to the electorate
as colorless. Some also say the Greens are sleeping when it comes to addressing the relevant issues.
Their lack of policial capital is leaving members furious. – a 39-word outline of a newspaper article
with the headline “Colorless Green Ideas Sleep Furiously”.
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Having arrived at this point, we can now move on to put forward a working hypothesis
which may, indeed, seem surprising, particularly to the linguistically informed reader:
Under the metatheoretical constraints of operator grammar, it seems no less justifiable to
define a word as what we have so far been calling a semantic head than it is to define a
word as the sort of thing which occurs between white spaces.

Under this viewpoint, the semantic head �pay in� has all the properties in the metatheory
surrounding SNF dependency structures which a word has in Harris’ operator gram-
mar. This is true, despite the fact that it is not even a subsequence of consecutive space-
deliminted tokens in a string like ‘Scillonians pay taxes in Britain’ which might produce
such a semantic head. And the dependencies which SNFs impose on semantic heads
have all the properties which are imposed on words by operator grammar. This seems
to be more than coincidental. In fact, Harris explicitly mentions in a footnote that the
dependencies in his operator grammar “have similarity to the predicate structure in Aris-
totelian logic” (Harris 1991, p. 28). In what follows, we will argue that the similarity is
perhaps much more concrete than he might have expected.

4.5.3. Dependence & Distributional Analysis

In operator grammar, dependence is defined as follows:

“If A is a simple word and b, . . . , e is an ordered set of classes of simple words,
then A is said to depend on (or, require) b, . . . , e if and only if for every sen-
tence in the base, if A is in the sentence then there occurs in the sentence a
sequence of simple words B . . .E which are respectively members of b, . . . , e.
Within the given sentence, A may then be said to depend on the word se-
quence B . . .E. If in the given sentence there is no other word G such that A
depends on G and G depends on the given occurence of B . . .E, then A de-
pends immediately on that occurence of B . . .E. A is then called the operator
on that B . . .E, which in turn is called the argument of A in the sentence; B
may be called the first argument, and so on.” (Harris 1991, p. 55)

He then goes on to discuss dependence by using examples on how verbs depend on
the presence of nouns. For example, an intransitive verb would act as an operator,
denoted O, and depend on the presence of an argument, denoted N due to the fact
that it will usually be a noun, as a subject. Such an intransitive verb would be of a
word-class denoted ON , as it is an operator which takes one argument. A transitive verb
(ONN ) would, in addition, require a second argument as a direct object, and a ditransitive
(ONNN ) would require a third argument as an indirect object. A coordinating sentential
conjunction (OOO) would have two operators as arguments, etc. – Let us discuss briefly
how this idea of dependency differs from the one which is underlying GRs.
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Harris does not put labels on dependencies as the Carroll-Briscoe scheme does (subj,
dobj, obj2, iobj, xcomp, . . . ). In Harris’ scheme, a dependency either exists or not. If it
does exist then, by making a word depend on a sequence of word classes, rather than an
unordered set, all we can say from the point of view of operator grammar is that subj
and comp are distinct arguments. We would not try to assign a label with any kind of
interpretation which is significant beyond distinguishing the arguments of a given word.

Harris also gives an empirical test which makes dependencies trivial to recognize for any
given word class: A dependency of a word A on a word B of class b can be ruled out,
as soon as we can show the existence of one sentence in which A occurs without any
word of class b. This test is qualified only by requiring that the sentence providing such a
counterexample be chosen from the basic fragment, i.e. a sentence where transformations
or reductions have not occured.

But, conversely, this means that, if we know that A must depend on a b in any sentence,
we know that a sequence of words in which A does occur without a b is not licensed
syntactically. Now recall that, to Harris, syntax is about the distinction between zero
and non-zero occurence likelihoods for word sequences, not about the magnitudes of
such likelihoods. And what we have here is a test, based on syntactic theory, which
distinguishes a zero likelihood of occurence from a likelihood of occurence which is
not zero, but which can be arbitrarily close to zero. This is a distinction which would
otherwise be very difficult or impossible to make on purely empirical grounds.

But a similar sort of empirical test could not reveal distinctions between GR labels. Con-
sider, for example, the conj relation as in ‘Jones arrived or Smith left’ and the cmod relation
as in ‘Jones arrived because Smith left’. If one does insist on this distinction, one would
have to admit that the empirical evidence which informs it is overt only in some but not
all sentences, hence a single counterexample in which the distinction is not present would
not rule out the possibility that the distinction could exist.

So, an important implication of Harris’ approach to distributional analysis is that it
precludes the possibility of using optionality as an empirical test identifying a type of
dependency, as optionality is the very thing which rules out the existence of a dependency
in Harris’ methodology.

For example, when, in the sentences ‘He gave an example’ and ‘He gave me an example’, we
feel tempted to postulate an optional complement to ‘gave’, Harris would admit as basic
only the latter sentence, deriving the former by a reduction (i.e. ellipsis-like) process. This
has important implications on the dependencies which, in the GR scheme, fall under the
mod type, as optionality is an important empirical test for identifying them. Consider, for
example, the sentence
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Dogs chase cats relentlessly.

subj comp
mod

Clearly, we must distinguish the sort of dependency which exists between ‘chase’ and
‘relentlessly’ from the sort of dependency which exists between ‘chase’ and ‘Dogs’ or ‘cats’.
In operator grammar, we do not allow ourselves to make the distinction simply by putting
labels on dependencies.

Harris’ solution lies in using a transformation, whereby the above sentence results from
transformation of ‘Dogs chase cats, which is relentless’, which, in turn would result from
‘Dogs chase cats; Dogs’ chasing of cats is relentless’. Here we can see that, in the second
clause, ‘chase’ and ‘relentless’ provide non-optional arguments to the copula.

Our solution would be to simply remain agnostic to the exact mechanism by which the
relation comes about and to allow the semantic head �chase relentlessly� to enter into the
dependency structure as a single operator:

Dogs [ chase relentlessly ] cats.

Although, rather than just remaining agnostic to the internal structure of �chase relentlessly�,
one might also say that it reflects precisely the meaning of Harris’ second clause: ‘The

chasing is relentless’.

The same also goes for adjectives, where we would assign dependency structures like

We sell [ fake books ].

As far as compositional semantics is concerned, there is no reason why we would need
to work out the internal structure of the semantic head ‘fake book’. In fact, there is good
reason to believe that this should be left to the domain of lexical semantics and ontology.
Just to repeat the usual argument: An illegal gun is a gun, a fake gun is not a gun. One
might suspect that a fake book is similarly not a book, but to a Jazz musician it will
be known that a fake book is a book containing simplified scores helping one “fake” a
song, as opposed to playing the notes which exactly reproduce it.9

9Noun compounds in English can become rather complex. One example (proper attribution unfortu-
nately unknown to me), is a sign at Gatwick Airport in the late 70s / early 80s, which read ‘airport

long term car park courtesy vehicle pick up point’. When faced with this phrase, the approach of putting
it in brackets and accepting defeat may just be the honest thing to do for a grammar. One would
almost certainly have to resort to the use of real world knowledge, as derived from lexical semantics
or ontology, to work out the system of relationships implied.
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4.5.4. Projectivity Properties

Harris goes on to say the following about dependencies and their relation to observable
word sequences:

“When the sentence consists only of A and its B . . .E, the operator is nec-
essarily contiguous to its arguments – before, after, or between them. When
another word F depends on A as A depends on B . . .E, the constraint would
be simplest if the F is similarly contiguous (the resultant of) A together with
its B . . .E; this is indeed seen to be the case. The contiguity of operator to
argument in the base makes it easy to check if no word G as above intervenes
in the operator-argument relation of A to B . . .E. In I know sheep eat grass,
know is the operator on the pair I, eat as its argument, with eat in turn as the
operator on the pair sheep, grass as argument.” (Harris 1991, p. 55)

The notion of dependency which we arrive at by methodological observation of co-
occurences, as described in the previous section, is transitively closed. By looking only at
the set of words which co-occur in a sentence, we cannot distinguish the situation where
one word directly depends on another from the situation where one word depends on a
word which depends on the other. In order to make this distinction, we have to look not
at a set of words, but at a sequence of words, and devise an empirical test which makes
the distinction.

Harris gives such a test, which is based on the projectivity property of dependency struc-
tures. For GR-based dependency structures, the projectivity property means that the
projection tree looks like a constituency tree. This is shown in Figure 4.4. But the
projectivity property is also fulfilled for Harris’ operator grammar, and for SNF-based
dependency structures. This is true, despite the fact that a semantic head like �pay in� is
not a set of words which occur consecutively, as Harris does not require this stronger
form of projectivity. He merely requires that the projection under every operator be a set
of words which are consecutive.

In the syntax tree, this means that the following sets of words must be consecutive:

• �pay, taxes�,

• �in,Britain�,

• �pay, taxes, in,Britain�,

• �Scillonians,pay, taxes, in,Britain�
In the SNF dependency tree for the same sentence, this reduces to the somewhat trivial
observation that the words which must be consecutive are �Scillonians,pay, in, taxes,Britain�.
Looking at a more nontrivial example, however, we might arrive at the following sets of
words which must be consecutive:
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pay

Scillonians pay

pay

pay taxes

in

in Britain

(a) projection of GR-based dependencies

�pay in�

Scillonians �pay in� taxes Britain

(b) projection of SNF-based dependencies, example 1

arrived

representative of

�a �representative of�� �the manufacturer�

arrived

(c) projection of SNF-based dependencies, example 2

Figure 4.4.: projections of dependency structures

• �the,manufacturer�,
• �a, representative,of, the,manufacturer�,
• �a, representative,of, the,manufacturer, arrived�.

Another interesting piece of information we get from the projection structure is the lo-
cations of the splits which we can find along any line of heads which appear at the same
vertical level in the projection tree. For example in a syntax tree for ‘Most white cats are

deaf’, we would get, among others, the split

�Most,white, cats� ~ �are,deaf�.

The simple metatheoretic property that there is a split occuring here somewhere between
‘white’ and ‘deaf’ helps us distinguish the sentence from ‘Most deaf cats are white’. Such a
split also occurs in an SNF dependency structure, and in a logical formula in FOPC.

This is notably different from DMRS. Copestake (2009) explicitly mentions this exam-
ple and encodes the distinction by putting labels on DMRS dependencies which indicate
whether or not the codependants form what we would call a semantic head. Further-
more, Copestake (2009) mentions that EPs in DMRSs can have multiple heads, and that
a head and its dependants are not necessarily consecutive in DMRS.
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In essence, what we have shown in this section is that SNFs provide interpretations for
the sort of information which is encoded in DMRSes in the form of labels on depen-
dencies. By making this information explicit, which is only implicit in DMRS, we have
arrived at a dependency structure which, in terms of its metatheoretic properties, looks
more like what we would expect of a dependency structure. As we have pointed out ear-
lier, this might be useful for machine learning and in lexical semantics, where one would
not expect a machine learner to automatically pick up on what the equalities and in-
equalities in a DMRS actually mean, whereas one might reasonably expect, for example,
a tree-kernel to make use of the information which comes with splits in a tree.
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5. Monte Carlo Semantics

We now have all the relevant pieces of the puzzle in place. In this, final, chapter, we can
put them together and describe the design of a rudimentary inference engine based on the
theory we have developed. (Appendix C gives pointers concerning its implementation).

Recall from the statement of our main goals in the introduction (chapter 1), that we
require two properties of our reasoning mechanism: (1) semantic informativity, the
ability to take into account all available information; and (2) robustness, the ability to
proceed on reasonable assumptions where such information is missing.

In section 5.1, we will give a description of what we mean by informativity and robust-
ness and then, in section 5.2, we will discuss some ideas on how one might optimize
the informativity/robustness tradeoff through deep/shallow integration. In particular, we
will show how our theoretical framework allows us to formulate a theory of logic and
epistemology which has bag-of-words logic as a limit case on the shallow end of the spec-
trum, and traditional theorem proving as a limit case on the deep end of the spectrum.
Finally, section 5.3 describes a reasoning mechanism which addresses the general case.

5.1. The Informativity/Robustness Tradeoff

5.1.1. Semantic Informativity

Figure 5.1 gives some examples of candidate inferences one might consider in connection
with a semantic informativity claim.

The non-starred examples 5.1–5.8, given all the necessary lexico-grammatical informa-
tion, can be handled within our approach, while the starred examples �5.9–�5.13 all rely
partially on knowledge sources which are outside the scope of our present treatment. Our
system can therefore not reproduce these decisions in absolute terms. However, in the
next section we will see that the robustness properties of our approach still apply, so the
presence of these phenomena in inferences is not a problem as such.

Examples 5.1 and 5.2 demonstrate insertion and deletion of words in a sentence, where,
depending on the semantic scope, such an insertion or deletion may or may not be li-
censed by the logical operators involved. Similarly, examples 5.3 and 5.4 demonstrate
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Socrates is a Greek & man.


 Socrates is a man.
(5.1a)

Every Greek & man is mortal.

~
 Every man is mortal.
(5.2a)

Socrates is a man.

~
 Socrates is a Greek & man.
(5.1b)

Every man is mortal.


 Every Greek & man is mortal.
(5.2b)

(a) Insertions into and deletions from different semantic scopes

Some mortal & man is Greek.


 Some Greek & man is mortal.
(5.3)

Every mortal & man is Greek.

~
 Every Greek & man is mortal.
(5.4)

(b) Movement across semantic scopes

Socrates is a man.

~
 Socrates is not a man.
(5.5)

Every man is mortal.

~
 Not every man is mortal.
(5.6)

Socrates is a man and every man is mortal.


 Socrates is mortal.
(5.7)

Socrates is a man and some men are mortal.

~
 Socrates is mortal.
(5.8)

(c) Logical interpretations

Socrates addressed his accusers at the court.

Socrates was at the court.
(�5.9)

After Meletus accused Socrates, he apologized.

Socrates apologized.
(�5.10)

(d) PP-attachment, anaphoric reference

Socrates drank hemlock.


 Socrates drank poison.
(�5.11)

Socrates drank the poison and died.


 Socrates is mortal.
(�5.12)

Socrates is an Athenian & man.


 Socrates is an Athenian & citizen.
(�5.13a)

Xanthippe is an Athenian & woman.

~
 Xanthippe is an Athenian & citizen.
(�5.13b)

(e) Lexical knowledge, common sense knowledge, world knowledge

Figure 5.1.: Different kinds of information and background knowledge
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the movement of words across semantic scopes. This is valid in the case of the restrictor
and body of a some quantifier, but not in the case of an every quantifier. Our approach
can correctly decide such inferences due to the fact that SNF decompositions would put
the different semantic heads into different quantifier scopes. Our logic assigns a model-
theoretic interpretation to the quantifiers involved and the conjunction operator, leading
to correct decisions concerning inference phenomena of quantifier scope.

Examples 5.5–5.8 demonstrate inference patterns that require the inference engine to
interpret logical function words such as determiners (e.g. ‘every’, ‘some’, ‘a’), coordina-
tors (e.g. ‘and’), the copula (‘is’, ‘are’, . . . ), or the negation not (e.g. ‘is not’, ‘not every’).
Logical interpretations also need to be applied to operators that do not directly corre-
spond to words but are introduced by the grammar. For example, following our previous
definitions of semantic composition (section 4.2), we denote the operator for intersective
composition of an Adj and an N’ as ‘ & ’. All of these are interpreted within our approach
by model-theoretic implementations of the logical operators involved.

Example �5.9 demonstrates a PP-attachment ambiguity. Despite the fact that we have
not had anything to say herein about problems such as this, a parse selection mechanism
might be able to contribute this knowledge to our approach. The two different PP-
attachments would lead to different MRS-based compositions, which, in turn would be
reflected in different logical formulae, even after SNF decomposition. At this point, our
inference engine would take the information into account model-theoretically. For the
FraCaS-based experiment (appendix D), such problems are taken care of by using hand-
selected syntactic analyses.

As we do not attempt to model discourse phenomena such as anaphora, candidate infer-
ences of the type of example �5.10 are not addressed by our approach either.

Inferences such as examples �5.11–�5.13 require particular background knowledge. We
need to know that ‘Hemlock is poison’ in example �5.11, that ‘Socrates is a person and

every person who dies is mortal’ in example �5.12, and that ‘Athenian women are not citi-

zens’ in example �5.13b. Note that we would be perfectly able to draw these inferences,
if those sentences were part of the stated antecedents. As for example �5.11, we might
be able to draw such an inference if the required knowledge is represented in WordNet
as a hyponymy link. The kind of common sense knowledge needed for example �5.12,
however, is not a straightforward case of hyponymy, as it involves a more complex rela-
tionship between entities of different syntactic types. Example �5.13, although it could
be justified on the basis of straightforward hyponymy, as in example �5.11, presupposes
ancient Greece as a discourse context and particular knowledge of a historic fact.

It should be stressed once again that all of these examples are merely desiderata. When
the required lexico-grammatical information is present, our inference should fulfill them
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by guaranteeing that all candidate inferences of the types we just discussed will be de-
cided correctly. This is equally true for the traditional approach which uses FOPC trans-
lation. As a matter of fact, in this special case where all lexico-grammatical information
is present, our approach reduces to being functionally equivalent to an FOPC theorem
prover. However, in addition to this, our approach takes into account the case of missing
lexico-grammatical information.

5.1.2. Robustness

We call a reasoning mechanism robust, iff it makes use of heuristics which enable it
to proceed on reasonable assumptions where hard information is missing. Figure 5.2
gives some examples of candidate inferences one might consider in connection with a
robustness claim.

Our particular robustness heuristic does not decide upon the validity of a candidate
inference in absolute terms. It only enables comparisons between candidate inferences,
deciding, for a given pair of candidate inferences, which should be favoured.

We will see in section 5.2.2 how such comparisons are possible as a result of our many-
valued logic and as a result of relaxing the usual completeness assumption concerning
background knowledge in moving towards a probabilistic model of uncertainty about
such information.

Throughout the rest of this section, we will discuss on purely intuitive grounds how the
examples in Figure 5.2 can be decided even in the absence of background knowledge
(Figures 5.2a and 5.2b) or lexico-grammatical knowledge (Figures 5.2c and 5.2d).

The examples in Figure 5.2a all rely on missing background knowledge about relations
between certain words (e.g. philosopher and heretic). The inferences demonstrate the
impact of the insertion or removal of a word (e.g. Greek) into a given semantic scope or
its movement across semantic scopes.

Our approach here will be to let these preferences, intuitively, quantify the number of
syllogistic premises which would have to be added to the background theory in order to
make the inference valid, or it could be seen as quantifying the minimal number of illegal
steps necessary in a proof of the candidate inference.

For example, if it were the case that every philosopher is an heretic, then the right-hand
inference in example 5.14 would have to go through. But in order to justify the left-hand
inference as well, we would, in addition to that, have to assume that everything Greek is
mortal. Intuitively, the right-hand inference is easier to justify. One can also argue that
the left-hand inference requires two invalid substitutions while the right-hand inference
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Some Greek & heretic is mortal.

~
 Some old & philosopher is mortal.
@

Some Greek & heretic is mortal.

~
 Some philosopher is mortal.
(5.14)

Some heretic is mortal.

~
 Some philosopher is mortal.
A

Some heretic is mortal.

~
 Some Greek & philosopher is mortal.
(5.15)

Some Greek & heretic is mortal.

~
 Some Greek & philosopher is mortal.
�

Some Greek & heretic is mortal.

~
 Some mortal & philosopher is Greek.
(5.16)

Every Greek & heretic is mortal.

~
 Every old & philosopher is mortal.
A

Every Greek & heretic is mortal.

~
 Every philosopher is mortal.
(5.17)

Every heretic is mortal.

~
 Every philosopher is mortal.
@

Every heretic is mortal.

~
 Every Greek & philosopher is mortal.
(5.18)

Every Greek & heretic is mortal.

~
 Every Greek & philosopher is mortal.
x

Every Greek & heretic is mortal.

~
 Every mortal & philosopher is Greek.
(5.19)

(a) Quantifiers, world knowledge missing only

Meletus accused Socrates.

~
 The people accused Socrates.
A

Meletus accused Socrates.

~
 Socrates accused the people.
(5.20)

(b) Predicate arguments, world knowledge missing only

Some&Greek&heretic&is&mortal.

~
 Some&old&philosopher&is&mortal.
@

Some&Greek&heretic&is&mortal.

~
 Some&philosopher&is&mortal.
(5.21)

Some&heretic&is&mortal.

~
 Some&philosopher&is&mortal.
A

Some&heretic&is&mortal.

~
 Some&Greek&philosopher&is&mortal.
(5.22)

Some&Greek&heretic&is&mortal.

~
 Some&Greek&philosopher&is&mortal.
�

Some&Greek&heretic&is&mortal.

~
 Some&mortal&philosopher&is&Greek.
(5.23)

Every&Greek&heretic&is&mortal.

~
 Every&old&philosopher&is&mortal.
A

Every&Greek&heretic&is&mortal.

~
 Every&philosopher&is&mortal.
(†5.24)

Every&heretic&is&mortal.

~
 Every&philosopher&is&mortal.
@

Every&heretic&is&mortal.

~
 Every&Greek&philosopher&is&mortal.

(†5.25)

Every&Greek&heretic&is&mortal.

~
 Every&Greek&philosopher&is&mortal.
x

Every&Greek&heretic&is&mortal.

~
 Every&mortal&philosopher&is&Greek.

(†5.26)

(c) Quantifiers, lexico-grammatical information missing as well

Meletus&accused&Socrates.

~
 The&people&accused&Socrates.
A

Meletus&accused&Socrates.

~
 Socrates&accused&the&people.
(†5.27)

(d) Predicate arguments, lexico-grammatical information missing as well

Figure 5.2.: Robust inferences
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requires only one invalid substitution, the deletion being perfectly valid in this particular
semantic scope.

In example 5.15, we are dealing with insertion on the right-hand side, rather than dele-
tion, so this is an invalid step and leads to the left-hand side being preferred. In example
5.16, we have only one illegal substitution, which is the same on the left and the right.
Given the antecedent and one of the consequents, we could always infer the other. So
both inferences are equally well justified. As we would expect from the previous section,
the effect of insertion, deletion and movement of words is the opposite for the restrictor
of ‘every’ compared to that of ‘some’. This is why the preferences reverse for examples
5.17–5.19 compared to examples 5.14–5.16.

Example 5.20 relies on missing background knowledge about the relation between the
referent of the people and that of Meletus. In order to justify the left-hand inference, we
only need to assume that Meletus spoke for the people. But, in order to justify the right-
hand inference, we would need to postulate further background knowledge to justify the
reversal of the arguments of the predicate accuse. In terms of SNF decompositions, it
can also be seen that, in the left-hand inference, one of the two syllogistic premises is
the same for the antecedent and the consequent (Socrates was accused), whereas, in the
right-hand inference, neither of the two syllogistic premises entails the other.

We have seen that lexico-grammatical information about predicates and their arguments
as well as semantic scopes can be usefully applied for inferencing purposes, even when
predicates are involved which cannot be related to each other due to missing background
knowledge. But traditional logic fails in this respect. It loses the information concern-
ing preferences among the candidate inferences we just discussed, as they would all fall
within the same category, being considered satisfiable but not valid, a case that logicists
usually rule out by requiring completeness for the theories providing the background
knowledge. We will discuss this in greater detail in section 5.2.1.

What if we are missing lexico-grammatical information about the text, as well as back-
ground knowledge? As an extreme case, assume we only have information about to-
kenization. We can then take the individual words as atomic expressions of the logic,
in the case of SNF-based reasoning perhaps syllogistic premises asserting the existence
of an individual satisfying the predicate. We would combine these atoms using the bag
aggregation operator, which we write as ‘&’. Since this operator must not require infor-
mation about the structure of the text, it is necessary that this operator be commutative
and associative but not idempotent. Incidentally, the strong conjunction of Łukasiewicz
logic fits the bill perfectly (section 3.1.4).

Figures 5.2c and 5.2d now demonstrate what happens when we discard the lexico-
grammatical information from the inferences we were considering in Figures 5.2a and
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5.2b. The insertions, deletions, and movements of words in examples 5.21–5.23, which
use the some quantifier, show the same behaviour under bag-of-words logic as in ex-
amples 5.14–5.16, where the same inferences do take into account lexico-grammatical
information. This, however, is not true for examples †5.24–†5.27, which we mark with
a dagger to indicate that the desired preferences are not being modeled correctly under
bag-of-words logic. These candidate inferences, involving the every quantifier, exhibit the
right behaviour when, as in examples 5.17–5.19, they can rely on lexico-grammatical in-
formation, but incorrect behaviour in bag-of-words logic, where such information is
missing. Example †5.27 demonstrates that the same is true for predicate argument struc-
ture, which is not correctly accounted for by bag-of-words logic.

This theoretic framing of bag-of-words logic suggests a number of reasons which might
explain why bag-of-words approaches have been so successful despite their linguistic
naı̈veté: (1) Positives significantly outnumber negatives, and particulars and definites
significantly outnumber universals in any corpus of naturally occuring text. So, cases in
which bag-of-words logic responds correctly to insertions, deletions, and movements of
words are more frequent than cases in which it responds incorrectly. (2) A given bag
of words often has a strong tendency to occur in a particular semantic configuration.
For example, occurences of ‘The dog bit the man’ or ‘The man was bitten by the dog’

would outnumber occurences of ‘The man bit the dog’ or ‘The dog was bitten by the man’

due to underlying ontological relationships. Compositional semantics, however, is not
concerned with this prior but only with modelling semantic interpretation as a posterior
to the information represented in the text. (3) Applications requiring the classification
of text or the recognition of textual patterns predominantly apply target criteria which
are invariant to semantic distinctions. For example, the aboutness and relevance criteria
which feature in information retrieval exhibit this behaviour. Sentences like ‘Some man is

mortal.’, ‘Some man is not mortal.’, and ‘Every man is mortal.’ might all be equally relevant
to the same sort of information needs about the mortality of man.

This explains why it is counterproductive to force text into a form of representation
making more fine-grained distinctions when these distinctions cannot be made reliably.
Incorrect distinctions would negatively affect the applicability of the above three proper-
ties, leading to a comparatively small gain in semantic informativity being traded off for
a comparatively large loss of robustness.

It would be interesting to test the above three hypotheses in a rigorous empirical study,
but they hardly seem contentious. Furthermore, it is widely recognized that bag-of-words
logic is highly robust and surprisingly hard to outperform, even with techniques that
might promise a great deal more semantic informativity. The results of Bos & Markert
(2005a,b, 2006a,b) and of MacCartney (2009) on the RTE task certainly agree with this.
For these reasons, we will study bag-of-words logic in further depth, in an attempt to
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carry over its robustness properties into our generalized theoretical framework.

Finally, I must, once again, stress that our technique will only fall back on robust de-
cisions of this kind when lexico-grammatical information is missing, thus preventing
more semantically informative decisions. In the case where no lexico-grammatical in-
formation is available at all, our approach reduces to being functionally equivalent to
bag-of-words overlap measurement. However, our approach can also take advantage of
lexico-grammatical information whenever such information is provided.

5.2. Logic/Probability & Deep/Shallow Integration

Currently, systems which either explicitly or implicitly perform textual inference employ
inference techniques which can be situated anywhere along a spectrum between deep and
shallow techniques. A typical example for deep techniques is the RTE system of Bos &
Markert (2005a,b, 2006a,b) which parses natural language texts using the CCG-based
C&C tools (Curran et al. 2007) and translates them via Boxer (Bos 2005) to DRSes
and ultimately to FOPC formulae. It then applies standard FOPC theorem provers and
model builders against a theory of background knowledge derived from WordNet (Fell-
baum 1998). On the other hand, many RTE systems have used variants of bag-of-words
encoding as a frontend to a machine learning system. These systems mark the shallow
end of the spectrum. Most systems are perhaps to be positioned between the two ex-
treme ends, employing some symbolic, usually graph-based, representation mechanisms,
and aligning the graphs in some way. A literature review making this distinction has
been undertaken by MacCartney (2009). It comes as little surprise though, that shallow
methods are robust but not semantically informative, while deep methods are semanti-
cally informative but not robust. Intermediate-level systems provide intermediate levels
of both semantic informativity and robustness, but don’t escape the tradeoff altogether.

I believe that successful deep/shallow integration in textual inference requires the for-
mulation of a unified theory, such as the one we will consider in this section, where
classical theorem proving, on one hand, and bag-of-words overlap measurement, on the
other, can both be understood as special cases of the more general theoretic framework.
Given that, the key to deep/shallow integration is to build a system that is robust on one
hand, but which, on the other hand, also has a monotonicity property concerning lexico-
grammatical and ontological information. Whenever such information is provided, this
property must enable the inference mechanism to match the logical consequence relation
of interest more closely. Conversely, whenever such information is required but missing,
this property must ensure that the missing piece of the puzzle only has a local effect, with
a robustness heuristic taking over to fill in the gap.
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Such a monotonicity property is currently not available. Inference mechanisms on the
deep end of the spectrum rely on correct information all of the time, even though it is
often unavailable, while those on the shallow end of the spectrum remain ignorant to
it all of the time, even though it is often available. Intermediate-level inference mecha-
nisms restrict themselves to relying on certain kinds of information all of the time while
remaining ignorant to others all of the time. In this section, we lay some groundwork for
inference engines featuring truly monotonic deep/shallow integration.

5.2.1. Deep: From Completeness & Consistency to Uncertainty

The usual approach to knowledge representation in logic is to perform reasoning within
a theory T , a set of formulae accepted without proof. We write T à χ iff formula χ is
valid within T .

The deduction theorem then defines when exactly a candidate entailment of the form
“ϕ � ψ” is valid. It states that T à ϕ � ψ iff T 8 �ϕ� à ψ. So, if we assume that
the antecedent ϕ is valid, in addition to the formulae already in T and we can conclude
that ψ is also valid then we also know that the candidate entailment ϕ � ψ is valid
in T . – A slightly modified version of this deduction theorem also holds for our ¯0-
valued Łukasiewicz logic. So, when evaluating a given candidate entailment, there are
traditionally four cases to distinguish with regard to our knowledge about it:

(i) T 8 �ϕ� à ψ and T 8 �ϕ� ~à  ψ;

(ii) T 8 �ϕ� ~à ψ and T 8 �ϕ� à  ψ;

(iii) T 8 �ϕ� à ψ and T 8 �ϕ� à  ψ;

(iv) T 8 �ϕ� ~à ψ and T 8 �ϕ� ~à  ψ.

Consider, for example, the following formulae:

ϕ � Socrates is a man,

 ϕ � Socrates is not a man,

ψ � Socrates is mortal.

Assuming the empty theory T � g, the candidate inference ϕ � ϕ falls under the case of
validity (case i). The candidate inference ϕ �  ϕ falls under the case of unsatisfiability
(case ii). It is quite common for a logicist to require that a given theory T 8 �ϕ� be
consistent, i.e. that case (iii) be ruled out.

But what aboutϕ� ψ? In the absence of further knowledge, this would be a contingency
(case iv), so we are dealing with an incomplete theory. In order to make the theory T8�ϕ�
complete, we could, for example, add χ � ‘Every man is mortal’ to T . We would then have
�χ,ϕ� à ψ and �χ,ϕ� ~à  ψ, so the candidate inference would now fall under case (i)
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and be considered valid. Or, we could have added some χ�, e.g. ‘No man is mortal’, to
make it fall under case (ii) and be considered unsatisfiable.

For practical open-domain NLP applications, this background knowledge will be, to a
large extent real-world and common-sense knowledge. How can we enter this into our
logical theory? Bos & Markert, for example, use WordNet. Here, one might derive

¦ �x� �ScatS �KEY � x �� SanimalS �KEY � x ��.

from a noun hyponymy hierarchy, or one might get

¦ �x,y,z�

¢̈̈
¦̈
¤̈
§ �e� �buyFrom �KEY � e, ARG1 � x, ARG2 � y, ARG3 � z ��
� § �e�� �sellTo �KEY � e, ARG1 � z, ARG2 � y, ARG3 � x ��

£̈̈
§̈
¥̈
,

from a role-labelled verb lexicon. Knowledge of a more general type might be automat-
ically acquired from text, and, given careful knowledge engineering, one might even be
able to ensure that the resulting theories are consistent in a logical sense. But a com-
pleteness assumption still seems unrealistic given the present state of the art in natural
language processing and real-world or common-sense ontology.

So this means that we cannot rule out what we have called case (iv) by the usual com-
pleteness assumption. Quite to the contrary. One would expect almost all candidate
inferences to fall under case (iv), with cases (i) and (ii) occuring only as limit cases of
theoretical interest. This is due to the fact that inferences will often hinge on real-world
or common-sense knowledge, which is neither represented in the grammar nor the logic.
This is perhaps the central problem when it comes to applying logical reasoning tech-
niques for NLP applications.

“Although in theory the method of finding proofs should work, in practice it
does not work that well. This is mostly due to the lack of appropriate back-
ground knowledge without which many true entailments cannot be found.”
(Bos & Markert 2005a)

We will return to how Bos & Markert approached the problem in the next section (sec-
tion 5.2.2). Our approach is as follows.

90. Let Λ � `p1,p2, . . . ,pNe be a propositional signature, and let W be a set of �V¯0 ,Λ�-
valuations. The degree of validity of a formula χ over W and Λ, denoted JχKΛ

W, is defined
as follows:

JχKΛ
W �

1

SWS Qw>W

YχYΛ
w.

This generalizes the traditional logical notion of the validity of a formula within a theory
towards a graded notion of validity, which we call degree of validity. For example, χ
could be valid to a degree of 0.7, written JχK � 0.7. Given this generalization, we can
now get a new general case (iii) with limit cases (i), and (ii):
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(i) JχK � 1.0: Here, T 8 �ϕ� à ψ and T 8 �ϕ� ~à  ψ.

(ii) JχK � 0.0: Here, T 8 �ϕ� ~à ψ and T 8 �ϕ� à  ψ.

(iii) 0.0 @ JχK @ 1.0: Here, T 8 �ϕ� àt ψ and T 8 �ϕ� àt�  ψ, for some degree of validity
0 @ t, t� @ 1.0.

In the new case (iii), we can now compare two given candidate entailments for their
degree of validity; let us call them candidate 1, denoted T 8�ϕ1� àt1 ψ1, and candidate 2,
denoted T 8 �ϕ2� àt2 ψ2. It now may well be the case that we are missing knowledge, so
that neither of them is strictly provable, in a proof-theoretic sense, that neither of them
is a tautology, that neither of them is traditionally valid. But we can still determine, on
the basis of the information we do have in T , which of them we would rather prove than
the other, which of them is closer to being a tautology, which of them is valid to a higher
degree. If t1 A t2, we prefer candidate 1, if t2 A t1, we prefer candidate 2. – So, this is why
a graded notion of validity is useful. But why did we define it in this particular way, and
what is its interpretation?

In a first step, consider the set of all �V2,Λ�-valuations, and denote this set asW. So SW S �
2SΛS. This definition can then easily be understood both logically and probabilistically. –
For its logical interpretation, first recall the definitions of the classical notions of validity
and satisfiability within such a model-theoretic framework.

Here, χ is considered classically valid, iff the truth value YχYw equals 1 in all valuations
w >W. We could also say, χ is classically valid iff the minimum truth value minw>W YχYw

across all w is C 1. So the formula p � q would not be considered valid, as it has an
assignment of truth values which make it false.

Similarly, χ is considered classically satisfiable, iff YχYw equals 1 in some valuation w,
i.e. iff the maximum truth value maxw>W YχYw across all w is A 0. So the formula p � q

would not be considered valid, as it has an assignment (three, in fact) of truth values
which make it true.

But, from a knowledge-engineering perspective, this traditional notion of validity is too
strong, and this notion of satisfiability is too weak. This is why we use a statistic between
the minimum and maximum. We use an arithmetic mean. So the formula p � q would
now be considered valid to a degree of 0.75, as it has one assignment in which its truth
value is 0.0, and three assignments in which its truth value is 1.0

This definition happens to coincide precisely with the definition of probability given by
(De Finetti 1974) in his treatment of subjective probability. But let us first consider the
more well-known formal epistemology of frequentist probability. Here, one would think
of YχY as a random variable indicating the truth value YχYw, when a valuation w is chosen
at random. The value of JχK is then the probability that the truth value of χ, for such
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a valuation w chosen at random, is 1, assuming for this choice a uniform distribution,
which is easily motivated on the basis of an assumption of maximum entropy, i.e. max-
imum uncertainty and minimum knowledge about the missing postulates which would
make our theory complete. For De Finetti, the question is not “Why assume a uniform
distribution?” but rather “Why not?”, as this assumption fulfills all of his coherence
axioms from which he derives the notion of probability.1

In the special case of a complete theory of background knowledge, our approach re-
duces to being functionally equivalent to classical theorem proving. When background
knowledge is missing, this raises uncertainty, which is dealt with probabilistically.

5.2.2. Shallow: From Overlap Measurement to Bag-of-Words Logic

In order to illustrate the definition of graded validity, let us consider an example which,
at first sight, seems to have little to do with logical inference: bag-of-words inference.

When we have a bag-of-words level of analysis for two pieces of text T and H, we can
think of them in a logical representation as conjunctions, in which the atomic conjuncts
are simply words. Consider, for example, the Woody Allen mood of the syllogism:

�T� socrates & is & a & man

� �H� so & every & man & is & socrates
.

Note that those atoms could have additional internal structure. For example, they can
be syllogistic premises.

Let’s call the antecedent ϕ and the consequent ψ, and let’s try to determine the degree of
validity Jϕ� ψK for the bivalent case. This is possible using only basic combinatorics.

Let Λϕ be the set of propositional symbols, in this case words, appearing only in the an-
tecedent, not in the consequent, i.e. Λϕ � �a�. Similarly, let Λψ be the set of propositional
symbols appearing only in the consequent, not in the antecedent, i.e. Λψ � �so, every�.
Finally, let Λω be the overlap, i.e. the set of propositional symbols appearing both in the
antecedent and the consequent; Λω � �socrates, is,man�.

There are N � SΛϕ 8 Λψ 8 ΛωS � 6 atomic propositions. We are dealing with the bivalent
case, so there are 2N � 26 � 64 possible valuations for this signature altogether. There
are 2SΛϕS � 21 � 2 ways of assigning truth values to the antecedent, 2SΛψS

� 22 � 4 ways of

1Another interesting property of De Finetti’s theory of probability is that it readily deals with the gener-
alization where we move from the bivalent case of using only �V2,Λ�-valuations to the ¯0-valued case
of choosing random �V¯0 ,Λ�-valuations. De Finetti calls this a prevision of the random quantity YχY
and establishes the mathematical properties of prevision in great detail.
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assigning truth values to the consequent, and 2SΛωS � 23 � 8 ways of assigning truth values
to the overlap.

In order to make the implication ϕ � ψ false, we must make the antecedent ϕ true, and
the consequent ψ false. Clearly, only one out of the 2SΛϕ8ΛωS � 21 �23 � 16 ways of assign-
ing truth values to the antecedent makes the antecedent true. This is the case in which we
assign the value 1 to all of the four conjuncts, thereby making the conjunction true. Out
of the five conjuncts appearing in the consequent, this leaves only two unassigned, as we
have already assigned truth values to the three conjuncts in the overlap set. There are 22

ways of assigning such truth values to the consequent, and only one of them makes the
conjunction true, so the other 22 � 1 � 3 all make the consequent false.

Therefore, out of the 26 possible valuations, only 1�3 � 3 valuations make the implication
false. If we count zero for each of these three valuations, count one for all of the others,
and divide the result by 26, we arrive at the value Jϕ� ψK � 64�3

64 � .953125.

More generally,

Jϕ� ψK � 1 �
2SΛψ S � 1

2SΛψ S�SΛϕS�SΛω S
.

So, we can express the degree of validity for a given candidate entailment in a closed
form depending only on the forms of the words and how they match up against each
other, assuming we encode a given piece of text simply as a conjunction in bivalent logic.

Note that this closed form shares the same ordering properties with Dice’s coefficient,
the Jaccard index, or any other set overlap metric. These properties are as follows. (1)
It acts as an overlap measure: Given ϕ or ψ, the ordering imposed by Jϕ� ψK on all ψ or
ϕ, respectively, of the same length, is the same as that imposed by SΛω S. (2) It performs
length normalization: Given ϕ or ψ, the ordering imposed by Jϕ � ψK on all ψ or ϕ,
respectively, given a fixed overlap set Λω, is inverse to the length of such ψ or ϕ.

So, we have arrived at a basic bag-overlap logic. Given an antecedent and a conse-
quent, both of which are conjunctions of a number of propositions, the degree of validity
Jϕ� ψK measures bag overlap.

Now note that SNF decompositions of possibly complex sentences are conjunctions of
syllogistic premises, each syllogistic premise contributing one proposition. So, let’s return
to the previous example of predicate-argument structure:

Meletus accused Socrates.

~
 The people accused Socrates.
A

Meletus accused Socrates.

~
 Socrates accused the people.
(5.20)

Here we have one syllogistic premise in the overlap on the left-hand side, viz. the one
which asserts that Socrates is being accused. On the right-hand side, the overlap set is
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empty. So the degree of validity would reflect exactly this preference. Similarly, the other
preferences from Figure 5.2 are all fulfilled as indicated, given this approach.

This relationship between the form of a formula and its model-theoretic interpretation
is precisely the reason why the bag-of-words approach works at all. The basic intuition
is that the more conjuncts we have in a conjunction, the harder it will be to fulfill the
constraint on the models which the conjunction represents. Consequently, the proportion
of all models which fulfill the constraint will become smaller.

This also seems to be the intuition behind the approach taken by Bos & Markert, whose
approach to missing background knowledge is to run a model builder and to use the size
of the model which provides the counterexample as an entailment score. For our above
example, a counterexample would be socrates & is & a & man & every. If we now increase
the size of the overlap set, for example

�T� socrates & is & an & old & man

� �H� so & every & old & man & is & socrates
,

the size of the counterexample grows with the overlap set.

But this approach reacts differently to a conjunct being added to the non-overlap set, as
the same counterexample would still apply to a longer sentence, e.g.

�T� socrates & is & a & old & man

� �H� so & every & old & man & is & socrates
.

Also consider our previous example:

Some Greek & heretic is mortal.

~
 Some old & philosopher is mortal.
@

Some Greek & heretic is mortal.

~
 Some philosopher is mortal.
(5.14)

This preference must clearly be fulfilled, as the right-hand consequent can be inferred
from the left-hand consequent, but not the other way around. However, the size of the
smallest counterexample is the same in both cases (e.g. Greek & heretic & philosopher).

5.3. Monte Carlo Semantics

In the previous section, we have seen that, if we could work out the value of Jϕ� ψK, then
that score would provide us with enough information to reproduce all of the semantic
informativity properties of classical theorem proving, and all of the robustness properties
of bag-overlap measurements.
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But how do we go about this computationally? The general idea will be to consider
various valuations w > W and run a model checker on each valuation. Recall that, if
ϕ� ψ is a formula over Λ, then, there are 2SΛS such valuations.

Now, in order to work out traditional validity or satisfiability, we need to find the min-
imum or maximum truth value Yϕ � ψYw we encounter for any w, so this means we
would have to run a model checker 2SΛS times in the worst case.

But in our case of graded validity, we can exploit the fact that the arithmetic mean, in
contrast to a maximum or a minimum, is very well behaved, when it comes to statistically
estimating it. We will not attempt to logically determine its exact value. Instead, we
will take a random sample W b W and use Jϕ � ψKW as an estimator for Jϕ � ψKW .
By statistical sampling theory, we know that the former will approach the latter as the
sample size SWS approaches the population size SW S. This sampling can be automated
using a Monte Carlo method.

5.3.1. 2-Valued vs. ¯0-Valued Logic and Simulation Error

The central question that arises then is how much information we obtain about Jϕ � ψK
by simply assigning truth values to atomic propositions at random using a random num-
ber generator.

Let’s consider a simple implication involving only atomic propositions: Jp � qK � 0.75.
We know that the truth table for this formula assigns the value 0 to only one valuation
(YpY = 1, YqY = 0), and the value 1 to three valuations. Thus we have a 3

4 chance of hitting
the value 1.0 (error 0.25), and a 1

4 chance of hitting the value 0 (error 0.75), which makes
for a mean error of 3

4 � 0.25 � 1
4 � 0.75 � 0.375.

If we do this twice, we still have a 3
4 �

3
4 �

9
16 chance of hitting an average value of 1.0

(error 0.25), a 3
4 �

1
4 �

1
4 �

3
4 �

6
16 chance of hitting an average value of 0.5 (error 0.25) and

finally a 1
4 �

1
4 �

1
16 chance of hitting an average of 0.0 (error 0.75). We have a mean error

of 9
16 � 0.25 � 6

16 � 0.25 � 1
16 � 0.75 � 0.28125.

As we increase the number of trials, the mean error will decrease. But can we speed up
the process? We can increase the number of truth classes. This is what a truth table for
3-valued Łukasiewicz logic would look like:

p 1.01.01.0 1.0 1.01.01.0 0.5 0.5 0.5 0.00.00.0 0.0 0.00.00.0
q 1.01.01.0 0.5 0.00.00.0 1.0 0.5 0.0 1.01.01.0 0.5 0.00.00.0

p� q 1.01.01.0 0.5 0.00.00.0 1.0 1.0 0.5 1.01.01.0 1.0 1.01.01.0 µ � 0.77

Four of these nine assignments coincide with bivalent logic, but we also insert five new
values. We now have a mean truth value Jp � qK � 0.77. We have a 6

9 chance of hitting
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the value 1.0 (error 0.23), a 2
9 chance of hitting the value 0.5 (error 0.27), and a 1

9 chance
of hitting the value 0.0 (error 0.77). The mean error is 6

9�0.23� 2
9�0.27� 1

9�0.77 � 0.296. If
we run the model checker twice, with three truth values, we get a mean error of 0.19753.

We could also add a fourth truth value, which would give us a mean error of 0.26042

after running the model checker once, compared to a mean error of 0.28125 for using two
truth values and running the model checker twice. So we get a better reduction in mean
error by using more truth values than we do by using fewer truth values and running the
model checker more often.

We can increase the number of truth values in the logic to ¯0, where Jp � qK, which is
1.0 iff p B q, takes on the value 1.0 only at a 0.5 chance. – Of course we can do this
only in theory. Computationally, there will have to be a limit. On a 64-bit machine,
for example, choosing M � 263 and using an unsigned long integer to represent a truth
value might make sense. The point is that we do not want to restrict the number of truth
values any more than necessary, certainly not to anything as low as two, as this would
be a waste of computation time, and a waste of entropy in estimating Jp� qK.

5.3.2. Summary & A Worked Example

We now have all ideas in place needed to describe the inference engine in its entirety, and
we will then conclude this section with a worked example.

• Step 1: Use the ERG (Flickinger 2000) to convert sentences in the antecedent and
the consequent to MRS representations. In the case of our FraCaS experiment
(appendix D) parse selection was performed manually.2

• Step 2: Convert the MRSes to ProtoForms and perform SNF decomposition. If
antecedent and consequent consist of multiple sentences, conjoin them using strong
conjunction. The candidate inference itself is represented as an implication (section
4.4) consisting of antecedent and consequent.

• Step 3: SNF formulae belong to the language of the predicate calculus. By inter-
preting quantifications as ranging over a finite domain of three individuals, we can
embed this predicate calculus into a purely propositional calculus (section 3.2).

• Step 4: Construct a valuation by assigning truth values to the atomic propositions
at random.

• Step 5: Work out the truth value of the candidate inference, as represented by the
implication, in the given valuation. Add the truth value to a running sum.

• GOTO Step 4. REPEAT � 1000 times.

2I would like to thank, at this point, Dan Flickinger for having undertaken this treebanking effort.
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• Step 6: Divide the running sum by 1000, giving the average truth value. This is our
entailment score.

The number of iterations will have to be chosen based on the required error bounds
and could be dynamically assigned on the basis of the length and complexity of the
formula. The number 1024 is what was chosen for the FraCaS experiment to work out
the distinction between degrees of validity � 1.0 and @ 1.0. This way we could correctly
distinguish degrees of validity differing by an ε-magnitude in about 95% of all cases. The
results reported in appendix D were obtained by increasing the number to 16384, which
could distinguish the ε-difference in 100% of all cases. For many practical applications, it
will be possible to choose a much smaller number, if we are content, for example, to be
able to recognize differences of magnitude over 0.01 in 95% of all cases. The exact choice
of the parameter will thus have to be tuned to particular application needs.

Steps 1 & 2

Let’s consider a simple sentence:

ϕ � Some elephants are intelligent

Upon semantic composition in the ERG, SNF decomposition, and assignment of first-
order quantifiers interpreting the generalized quantifiers, we would be left with a form
like this:

�§ �x� � SelephantS �KEY � x �� � SintelligentS �KEY � x ���

Step 3

By using a finite domain for its range, we can rewrite the existential quantification bind-
ing the variable as a disjunction of predications over constants:

�SelephantS �KEY � ~1~ � , SintelligentS �KEY � ~1~ ��
- �SelephantS �KEY � ~2~ � , SintelligentS �KEY � ~2~ ��
- �SelephantS �KEY � ~3~ � , SintelligentS �KEY � ~3~ ��.

These can be seen as atomic propositions in a propositional logic:

�e1 , i1� - �e2 , i2� - �e3 , e3�.

For brevity, we will work with only two individuals, rather than three in what follows.
Let’s consider as an example the following three sentences

ϕ � Some elephants are intelligent,

ψ � Some grey elephants are intelligent,

χ � Some clean grey elephants are intelligent.
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which can then be represented by the formulae

ϕ � �e1 , i1� - �e2 , i2�
ψ � �e1 , g1 , i1� - �e2 , g2 , i2�
χ � �e1 , c1 , g1 , i1� - �e2 , c1 , g2 , i2�

Step 4

e1 i1 e2 i2 �e1 , i1�-�e2 , i2�� ϕ� ψ � �ψ� ϕ� χ �ϕ� χ� g1 g2 c1 c2

w1 .99 .55 .47 .38 .55 .38 .55 .39 .84 1 .19 .64 .39 .19 .12 .97

w2 .10 .58 .29 .00 .10 .00 .10 .10 1 1 .10 1 .98 .85 .62 .44

w3 .13 .93 .59 .96 .13 .59 .59 .32 .73 1 .25 .66 .16 .32 .08 .25

w4 .26 .64 .68 .74 .26 .68 .68 .68 1 1 .13 .45 .80 .99 .02 .13

w5 .47 .10 .03 .76 .10 .03 .10 .10 1 1 .10 1 .65 .54 .10 .74

.91.91.91 111 .75.75.75

Now we can assign truth values to these propositions at random. Above, we have listed
five different assignments of truth values. The truth values listed in the first and last four
columns have been randomly generated, in this case using a standard spreadsheet tool.
The values of the other columns are computed from these.

Recall from definition 36 that

Yp� qYw � max�1,1 � YpYw � YqYw�,

and from corollary 38 that

Yϕ , ψY � min�YϕY, YψY�,
Yϕ - ψY � max�YϕY, YψY�.

In the first valuation of the example, we have Ye1Yw1 � 0.99, Yi1Yi1 � 0.55, so Ye1 , i1Yw1 �

.55, so ‘individual 1 is an intelligent elephant’ is true to degree .55. Similarly, Ye2,i2Yw1 � .38,
so ‘individual 2 is an intelligent elephant’ is true to degree .38. Finally YϕYw1 � Y�e1 , i1� -
�e2 , i2�Yw1 � max�.55, .38� � .55, so ‘some individual is an intelligent elephant’ is true to a
degree .55.

If we use the values Yg1Y and Yg2Y, we can analogously determine YψYw1 � .39. Since
1 � .55 � .39 � .84, the implication stating “if some elephants are intelligent, then some
grey elephants are intelligent” is true to a degree .84 in valuation w1. The converse
implication is true to a degree 1.0. Similarly, we can determine Yϕ � χYw1 � .64. Note
that Yψ � ϕY C Y�Y � 1.0, in accordance with (2.a), that 1.0 � Y�Y @ Yϕ � ψY, in
accordance with (2.b), and that Yϕ � ψY @ Yϕ � χY, in accordance with (2.c). It should
be obvious, at this point, that this is not a coincidence.
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Steps 5 & 6

While the fundamental logical properties are already fulfilled for the truth values in the
above example, the exact truth values are still a function of the random valuation we
started out with. This is why we now repeat the process for different valuations w2,
w3, etc., to obtain mean truth values, i.e. degrees of validity, of Jψ � ϕK � 1.0, and
Jϕ � ψK � .91, and Jϕ � χK � .75. Observe that we have not entered any information at
all giving ontological or lexical defintions of elephants, intelligence, etc. But these degrees
of validity do reflect the robustness properties of Figure 5.2.
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6. Conclusions

In this chapter, we will reiterate the particular claims we have made throughout this
thesis and will then offer a viewpoint as to how these claims relate to each other and
how they reflect on the broader fields to which they relate.

6.1. Empirical Review & Methodology

In chapter 2, we conducted a review of the methodology employed at the RTE recogniz-
ing textual entailment challenge.

Results & Claims

Formal Logic vs. Intuition vs. Application There are three different criteria which can
lead to decisions on candidate inferences: The logical criterion, the intuitive criterion
and the application-oriented criterion (section 2.1.2). Much of the attractiveness of RTE
stems from the contention that the intuitive criterion by which the datasets are derived
coincides with the application-oriented criterion which motivates the task, which is a
hypothesis that has remained untested.

Textual Entailment as an Abstraction over Applications Another basic assumption
underlying RTE is that the task can be seen as an abstraction over the application-
oriented tasks of question answering, information extraction, information retrieval, sum-
marization, etc. Two of our findings about RTE-4 submissions (section 2.2.1) cast doubts
on this: (1) Systems generally performed better on information retrieval than they did
on summarization, and better on summarization than they did on question answering
and information retrieval. (2) Rank correlation was low when comparing rankings of
submissions based on the different applications.

Relevance vs. Validity The notion of textual entailment employed at RTE fails to draw
a clear distinction between relevance and validity (section 2.1.1). While much of what
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has been written about RTE treats the task as if it were primarily about logical validity,
and while some participants specifically addressed the problem of validity (section 2.1.3),
we found that the RTE-4 dataset put much more statistical weight on relevance than on
validity (section 2.1.6) and also that systems were generally better at deciding relevance
than they were at deciding validity (section 2.2.1). As it is primarily the problem of valid-
ity which requires logical inference, this means that the usefulness of RTE for evaluating
logically-motivated approaches to inference is limited.

Evaluation Measures We found three problems with the various evaluation measures
used at RTE (section 2.1.4): (1) The distribution of three-way gold standard labels is
neither balanced nor representative of an application scenario. Yet, systems are rewarded
by higher accuracy scores for learning this artificial bias from training data, while there
is no indication of whether they could learn a different bias (section 2.1.6). (2) Average
precision fails to properly reflect the symmetry imposed on textual entailment decisions
by the possibility of negation (sections 2.1.3 and 2.1.5). (3) The notion of confidence
ranking is misleading in the context of evaluating a ranking by average precision. This
has lead to some confusion among participants who submitted confidence-ranked 3-way
labellings at RTE-4 (section 2.1.5).

Bag-of-Words Equivalence At RTE-4, a bag-of-words baseline achieves an accuracy
score of around 60%, which was outperformed by only about a quarter of all submis-
sions. This raises the following question about the submissions which did: Are their
incorrectly labelled instances random deviations from the gold standard, or are their cor-
rectly labelled instances random deviations from the baseline? In section 2.2.2, we show
that, with the exception of two or three systems, the latter seems to be the case.

Concluding Remarks

Our review of the RTE evaluation scheme was relevant to us primarily in connection with
the question of what sort of methodology to employ for our own studies into the subject
of textual inference. In the introduction we mentioned two kinds of methodology: (1)
The RTE scheme reflects a kind of empiricism where data is collected purely “out in the
wild”, as a corpus linguist would. (2) One can rely on introspection in much the same
way as a linguist would, when using carefully chosen examples and counterexamples to
substantiate a given working hypothesis, and connect the dots by logical deduction.

Our findings on the RTE scheme are by no means sufficient to contradict the entire
approach of empiricsm. But, upon critical reevaluation, we do find that the state of the
art in empirically driven computational semantics, promising as it seems on the basis of a
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superficial reading of the literature, has so far fallen short of delivering on those promises.
So, despite the prominence which this approach has gained in the scientific discourse at
this point in time, one can ill afford to neglect evidence obtained by introspection and
deduction of the kind we put forward in this thesis.

6.2.  Lukasiewicz Logic & Syllogistic Semantics

Chapter 3 established basic logical results. Ultimately, the chapter led up to a model-
theoretic completeness proof of the syllogism. The particular properties of this model
theory have had an important role to play throughout the rest of this thesis, notably the
fact that it is based on an ¯0-valued logic and the fact that it has a strong conjunction
operator which is commutative and associative but not idempotent.

Results & Claims

Choice of Propositional Logic The results outlined in section 3.1 are well-known and
were summarized herein for the convenience of readers without a background in many-
valued logic and for purposes of establishing notation and terminology. Despite the fact
that, in and of itself, Łukasiewicz logic is well understood, it should however be pointed
out that our choice to use Łukasiewicz logic, rather than any other many-valued logic,
is a nontrivial result. For example, the completeness proof of the syllogism (section 3.3)
would not have been possible with Gödel’s many-valued logic or the product logic which
results from a naive reinterpretation of probability theory as logic.

Finite Domain Size and Interpretations of Quantifiers Section 3.2 established an
interpretation of quantifiers over finite domain sizes. We established that domains must
contain a minimum of three distinct individuals and that universal quantification must
be interpreted as weak rather than strong conjunction, and, similarly, that existential
quantification must be interpreted as weak disjunction. Note that with a different choice
of domain size and interpretation for quantifiers, the completeness proof of the syllogism
(section 3.3) would not have been possible.

An ¯0-valued Model Theory for the Syllogism The result which the entire chapter led
up to is the completeness proof of the syllogism (section 3.3) based on the model theory
of our non-standard logic.
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Concluding Remarks

The paradigm of bivalent logic is so deeply ingrained in our understanding of natural
language semantics that Boolean algebra is often seen as synonymous with the very idea
of propositional logic. The results of this chapter suggest that such an assumption of
bivalence, however, may not be an inherent property of natural language. These results
seem relevant not only to the present work, but also for search applications, natural
language interfaces to databases, and as a model for vagueness in natural language (see
Bergmair 2006a,b, Bergmair & Bodenhofer 2006, van Deemter 2010a,b).

The highly influential paradigm pursued by Montague and others of translating natural
language to the language of FOPC may mislead one to think that the logic of FOPC
is not only sufficient but necessary in its entirety for the purposes of interpreting those
predicate calculus expressions. Herein, however, we established a result which lends a
great deal of gravity to the notion that, as far as natural language is concerned, the move
from propositional logic to predicate calculus may be nothing but syntactic sugar. The
limit case of infinite domain sizes may be useful for certain theoretical purposes, but the
property does not seem to be inherent to natural language reasoning. This leaves us with
a logic which is different from the standard FOPC as implemented by out-of-the-box
reasoning tools.

6.3. Semantic Decomposition

Chapter 4 showed how to translate natural language expressions into the language of
the syllogism.

Results & Claims

ProtoForm Representation Language In section 4.1, we established ProtoForms as a
new semantic representation language which is inspired by the MRS language, but which
differs from previous designs of semantic underspecification languages in one important
respect: It is recursive in the sense that a ProtoForm may be a subform of another Proto-
Form and can therefore represent not only minimally recursive semantic structures but
also partially scoped semantic structures and fully recursive logical formulae. In partic-
ular, the concept of a maximally recursive ProtoForm is constitutive of the notion of a
semantic head, which played a central role throughout the rest of the chapter.

Using the MRS Algebra for ProtoForm Composition In section 4.2, we showed, on
the example of a toy grammar, that ProtoForms are not only useful for scoping and de-
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composition, but are also an adequate form of representation for composition purposes.
Otherwise, section 4.2 largely served to summarize relevant ideas for the convenience of
readers without a background in compositional semantics.

Syntactically vs. Semantically-Driven Substitution Logic In section 4.3.3, we showed
that syntactically driven substitution logic of the kind used by MacCartney (2009) does
not adequately deal with semantic scope.

Limitations of Substitution Logic In section 4.3.4, we showed that substitution logic,
more generally, cannot adequately represent the distinction between intersective modi-
fication and optional argument-taking. We showed that substitution logic is hopelessly
inadequate when it comes to representing the kind of common sense ontology which
would be needed to justify even very basic natural language inferences.

SNF Decomposition In section 4.4, we showed how the ProtoForms derived from
MRS-style composition can be decomposed into conjunctions of syllogistic premises. We
call these structures syllogistic normal forms (SNFs).

Operator Grammar & SNF Dependency Structures Section 4.5 reinterpreted SNFs as
grammatical dependency structures, and showed that they fulfill all the metatheoretical
properties set out by Harris (1982, 1991) for dependency structures. Thus, SNFs are not
only artefacts which arise as a byproduct if one wants to define an inference engine on
the basis of syllogistic logic, but rather they have an interpretation which is linguistically
interesting in and of itself.

Concluding Remarks

When it comes to the interpretation of semantic representation structures, there are tra-
ditionally two different kinds of approaches. (1) On one hand, one can translate them
to a logical language, such as FOPC. In practice, this translation has usually assumed a
Montague-style relationship between natural langauge and the language of the predicate
calculus, where quantifier nesting corresponds to quantifier nesting in natural language.
(2) On the other hand, one can rely on the metatheoretical properties of semantic struc-
tures and treat them simply as graphs for purposes of graph-alignment, pattern rewriting,
machine learning etc.

Our approach to the decomposition of semantic structures leads to a different kind of
representation which is at the same time a logical formula in a fragment of FOPC and
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which has metatheoretical properties which make it a linguistically plausible dependency
structure. This kind of dual interpretation has been highly useful herein as a theoretical
framework for understanding the relationships between logically-based approaches to
inference on one hand, and shallow and intermediate-level approaches on the other.

6.4. Monte Carlo Semantics

In chapter 5, we introduced some ideas on epistemology and, on the basis of a unified
theory of deep and shallow inference, put forward a novel kind of inference mechanism
which aims to be at the same time robust and semantically informed.

Results & Claims

Semantic Informativity & The Deep Limit Case We call a reasoning mechanism
semantically informed, iff it is able to take into account all available information. We
defined this notion in greater detail in section 5.1.1. In section 5.2.1, we established
traditional theorem proving as the limit case of our approach which arises as a result of
a complete theory of background knowledge and deep lexico-grammatical analysis.

Robustness & The Shallow Limit Case We call a reasoning mechanism robust, iff
it makes use of heuristics which enable it to proceed on reasonable assumptions where
hard information is missing. Section 5.1.2 defined this in detail, and, in section 5.2.2,
we established bag-of-words pseudo-inference as the limit case of our approach which
arises for empty theories of background knowledge and no lexico-grammatical analysis
beyond tokenization.

Monte Carlo Semantics In section 5.3, we finally moved on to define the algorithm
which scores candidate entailments for their grade of validity in the general case. The
algorithm is based on the idea of assigning truth values to predications at random and
running a model checker to determine for each randomization the truth value of a can-
didate entailment as represented by a material implication. The average truth value thus
obtained is an estimate of our degreee of validity.

Implementation The ideas discussed in this dissertation were generated and tested to
a proof-of-concept level in the course of an explorative software prototyping effort. In
appendix C, we give some pointers concerning this software which is now freely available
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for use, modification, and redistribution, inviting future work to build on the various
ideas surrounding ProtoForms, SNF decompositions and Monte Carlo semantics.

Concluding Remarks

Consider the following keywords used in different kinds of NLP publications:

(a) shallow processing, robustness, probability, statistics, machine learning;

(b) deep processing, semantics, logic, ontology, linguistics.

Furthermore, consider the following two expressions of opinions:

(a) “. . . you must be very naive to believe you can reason about language in logic. Even
if you could, you’re missing the knowledge to prove things. Even if you had that,
logic would still be too computationally complex.”

(b) “. . . you must be rather ignorant to believe a machine learner will magically acquire
language competence if you don’t build into it everything we know, and, in fact,
some things we don’t, about logic, epistemology, and linguistics, as well as common
sense and real world knowledge.”

Here, we are not saying that anyone in particular holds one of these viewpoints in its
extreme form. But the stereotypes themselves are certainly recognizable for the deeply
entrenched ideological divide which they represent.

To anyone subscribing to viewpoint (a), overly restrictive consistency and completeness
assumptions, as well as the theoretical limitations of the traditional notion of validity
seem like a bad idea. This is why we took the viewpoint that probability theory can do
better than that.

To anyone subscribing to viewpoint (b), the formula ‘every & man & is & mortal’ will seem
like a particularly bad idea, indeed. So, we took the viewpoint that existing methods of
semantic composition can do better.

But, in response to viewpoint (a), we can now also say that knowledge engineering issues
and problems of computational complexity are completely separate from the question
of whether or not logic itself is a useful theoretical framework for approaching textual
inference. It is all a question of how one represents text in logic. With SNF decomposi-
tions, we have identified a fragment of logic which is semantically informed almost1 to
the same extent as the full predicate calculus, but which is much more manageable in
terms of knowledge engineering and computational complexity and can even reduce to
bag-of-words reasoning where this is necessary.

1The exception is quantifier nesting.
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In response to viewpoint (b), we took some steps towards accounting for the practical
success of naı̈ve approaches. We have shown that, in particular, the robustness properties
associated with a gradual notion of validity are a key element.

So, we can emphasize, once again, that our approach subscribes neither to viewpoint (a)
nor to viewpoint (b) exclusively. Rather it is an attempt at a unified theory which covers
both and which tries to learn lessons from the failures and successes of each.
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A. Statistical Tables

µ̂ σ̂ min q1 med q3 max

IR .072 .0630 .000 .022 .066 .103 .327
SUM .052 .0531 .000 .013 .042 .077 .282
QA .022 .0463 .000 .001 .003 .011 .205
IE .020 .0451 .000 .000 .001 .010 .229

(a) summary statistics on I��G�Q,S�G�Q,S�G�Q,S; �L�Q,S�L�Q,S�L�Q,S�

µ̂ σ̂ min q1 med q3 max

IR .631 .0742 .477 .567 .643 .683 .820
SUM .610 .0647 .495 .560 .620 .655 .780
QA .537 .0711 .435 .495 .515 .545 .760
IE .534 .0587 .443 .500 .513 .543 .773

(b) summary statistics on AQ,S�G; L�

Figure A.1.: scores for 81 systems on different applications at RTE-4 (i)
(section 2.2.1)

r N 2BN�r; N, 1
2
�

IR vs. SUM 15 79 � 0

SUM vs. QA 13 79 � 0

QA vs. IE 33 78 0.213

(a) sign statistics on I��G�Q,S�G�Q,S�G�Q,S; �L�Q,S�L�Q,S�L�Q,S�

r N 2BN�r; N, 1
2
�

IR vs. SUM 15 78 � 0

SUM vs. QA 12 78 � 0

QA vs. IE 39 78 � 1

(b) sign statistics on AQ,S�G; L�

Figure A.2.: scores for 81 systems on different applications at RTE-4 (ii)
(section 2.2.1)
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U1 U2 2N�min�U1,U2�; µ̂, σ̂2�
IR vs. SUM 2544.5 4016.5 .014
SUM vs. QA 1477.5 5083.5 � 0

QA vs. IE 2902.0 3659.0 .205

µ̂ �
812

2
� 3280.5

σ̂2
�

812 � 82

12
� 44833.5

(a) Mann-Whitney U-statistics on I��G�Q,S�G�Q,S�G�Q,S; �L�Q,S�L�Q,S�L�Q,S�

U1 U2 2N�min�U1,U2�; µ̂, σ̂2�
IR vs. SUM 2589 3972 .0205
SUM vs. QA 1277 5284 � 0

QA vs. IE 3258.5 3302.5 .9413

µ̂ �
812

2
� 3280.5

σ̂2
�

812 � 82

12
� 44833.5

(b) Mann-Whitney U-statistics on AQ,S�G; L�

Figure A.3.: scores for 81 systems on different applications at RTE-4 (iii)
(section 2.2.1)

IR QA SUM IE

.15 .60 .41 IR

.12 .21 QA

.52 SUM

IE

(a) Kendall’s τ on I��G�Q,S�G�Q,S�G�Q,S; �L�Q,S�L�Q,S�L�Q,S�

IR QA SUM IE

.25 .63 .39 IR

.26 .24 QA

.40 SUM

IE

(b) Kendall’s τ on AQ,S�G; L�

Figure A.4.: ranking 81 systems on different applications at RTE-4
(section 2.2.1)
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µ̂ σ̂ min q1 med q3 max

tp~n .036 .0356 .010 .036 .062 .136
t~np .030 .0395 .006 .018 .040 .187
tn~p .019 .0433 � 0 .004 .012 .229

(a) summary statistics on I��G��G��G�; �L��L��L��

r N 2BN�r; N, 1
2
�

tp~n vs. t~np 4 34 � 0

tp~n vs. tn~p 8 34 0.003

(b) sign statistics on I��G��G��G�; �L��L��L��

U1 U2 2N�min�U1,U2�; µ̂, σ̂2�
tp~n vs. t~np 500 796 0.096
tp~n vs. tn~p 300 996 � 0

µ̂ �
362

2
� 648

σ̂2
�

362 � 37

12
� 3996

(c) Mann-Whitney U-statistics on I��G��G��G�; �L��L��L��

Figure A.5.: scores of 36 systems on components of the 3-way decision at RTE-4
(section 2.2.1)
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B. Proofs

B.1. Proofs for section 3.1

Proof of corollary 50. It can be seen that �V, - , & , � has a DeMorgan identity as fol-
lows. By (�MV12), we have  x& y �  �  x -   y�, hence, by (�MV7),  x& y �

 �x - y�. Now consider the algebra BBB � �V�, - �, �,0
��, where VVV� � �x�Sx > V, x� �  x�,

where a - �b �  �a - b�, where  �a �   a, and where 0
�
�  0. It is clear that, whenever

a - b � c, in AAA, a� - �b� � c�, in BBB. Similarly, whenever a - 0 � b or 0 - a � b in AAA, we must
have a� - �0

�
� b� or 0

�
- �a� � b� respectively, in BBB. Also, whenever  a � b in AAA,  �a� � b�

in BBB. So it follows from the fact that AAA is an MV algebra, that BBB is an MV algebra.
But we know, by (�MV7) and the fact that V is closed under  , that V� � V. Similarly,
we know from DeMorgan’s identity that - � � & , and from (�MV7) that  � �  . Finally,
we know from (�MV8) that 0

�
� 1. Also observe that definitions (�MV15) and (�MV16)

are duals of each other.

�91. Let AAA � �V,�,0� be a Wajsberg algebra and let AAA� � �V,�, , & , - ,,,-,�, ~�,0,1�
be its Wajsberg-induced algebra. For all x, y > VVV, we have

x � y iff x� y � 1 and y � x � 1; (†W13)

if x� y � 1 and y � z � 1 then x� z � 1. (†W14)

Furthermore, the following identities hold for all x, y, z > V:

 0 � 1, (†W21)

 1 � 0, (†W22)

x� x � 1, (†W15)

x� 1 � 1, (†W16)

0� x � 1, (†W17)

 x�  y � y � x, (†W18)

x� �y � x� � 1, (†W19)

x� �y � z� � y � �x� z�, (†W20)

  x � x. (†W23)

Furthermore, the identities from definitions 48 and 49 hold.

Proof.

(†W15) By (�W2), we have � 1 � 1 � � � �1 � x� � �1 � x� � � 1, hence, by
(�W1), 1 � �x� x� � 1, hence, by (�W1), x� x � 1.
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(†W21) By (�W6) we have  0 � 0� 0, hence, by (†W15),  0 � 1.

(†W22) By (�W6) we have  1 � 1� 0, hence, by (�W1)  1 � 0.

(†W16) By (†W15), we have x � 1 � x � �x � x�, hence, by (�W1), x � 1 � �1 � x� �
� �1 � x� � x �, hence, by (�W4) and (�W10), x � 1 � �1 � x� � � �x � 1� �
1 �, hence, by (†W15), x � 1 � �1 � x� � � �x � 1� � �1 � 1� �, hence, by
(�W2), x� 1 � 1.

(†W17) By (�W3), we have � x �  0� � �0 � x� � 1, hence, by (†W21), � x � 1� �
�0� x� � 1, hence, by (†W16), 1� �0� x� � 1, hence, by (�W1), �0� x� � 1.

(†W13) The “only if”-part of (†W13) follows directly from (†W16). To see that the
“if”-part holds, note that by (�W1), we have x � 1 � x, hence, given that y �
x � 1, we have x � �y � x� � x, hence, by (�W4) and (�W10), x � �x � y� � y,
hence, given that x� y � 1, we have x � 1� y, hence, by (�W1), x � y.

(†W18) By (�W2), �y � x� � � �x � 0� � �y � 0� � � 1, hence, by (�W6), �y �
x� � �  x �  y � � 1. By (�W3), � x �  y� � �y � x� � 1. So, by (†W13),
� x�  y� � �y � x�.

(†W19) By (�W1), x � �y � x� � 1 � � x � �y � x� �, hence, again by (�W1),
x � �y � x� � 1 � � �1 � x� � �y � x� �, hence, by (†W16), x � �y � x� �
�y � 1�� � �1� x�� �y � x� �, hence, by (�W1), x� �y � x� � 1.

(†W14) By (�W2), �x � y� � � �y � z� � �x � z� � � 1, hence, given that x � y � 1,
1� � �y � z� � �x� z� � � 1, hence, by (�W1), �y � z�� �x� z� � 1, hence,
given that y � z � 1, 1� �x� z� � 1, hence, by (�W1), x� z � 1.

(†W20) By (�W2)

� y � ��y � z�� z� �
� � � ��y � z�� z�� �x� z� �� � y � �x� z�� � � 1,

hence, (�W4) and (�W10),

� y � ��z � y�� y� �
� � � ��y � z�� z�� �x� z� �� � y � �x� z�� � � 1,

hence, by (†W19),

1� � � ��y � z�� z�� �x� z� �� � y � �x� z�� � � 1,

hence, by (�W1),

� ��y � z�� z�� �x� z� �� � y � �x� z�� � 1.

By (�W2) � x � �y � z� � � � � �y � z� � z � � �x � z� � � 1. By (†W14),
we therefore have � x � �y � z� � � � y � �x � z�� � 1, hence, by (†W13),
� x� �y � z� � � � y � �x� z��.
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(†W23) By (�W4) and (�W10), we have �x � 0� � 0 � �0 � x� � x, hence, by (†W17),
�x � 0� � 0 � 1 � x, hence, by (�W1), �x � 0� � 0 � x, hence, by (�W6),
  x � x.

(�MV8) By (�W5) and (�W6).

(�MV12) By (�W7), x& y �  �x �  y�, hence, by (†W23), x& y �  �  x �  y�, hence,
by (�W8), x& y �  � x -  y�.

(�MV13) By (�W8) and (†W23).

(�MV14) By (�W11).

(�MV15) By (�W10), x - y � �x � y� � y, hence, by (†W23), x - y �   �x � y� � y,
hence, by (�W8), x-y �  �x� y� - y, hence, by (†W23), x-y �  �x�   y� - y,
hence, by (�W7), x - y �  �x& y� - y.

(�MV16) By (�W9), x,y � x& �x� y�, hence, by (�W7), x,y �  �x�  �x� y��, hence,
by (†W18) and (†W23), x , y �  ��x � y� �  x�, hence, by (†W18), x , y �

 �� y �  x� �  x�, hence, by (�W4) and (�W10), x , y �  �� x �  y� �  y�,
hence, by (�W7), x , y � � x�  y�& y, hence, by (�W8), x , y � �x -  y�& y.

(�MV17) By (�W12).

(�MV1) By (†W18),  x � y �  y �   x, hence, by (†W23),  x � y �  y � x, hence, by
(�W8), x - y � y - x.

(�MV2) By (†W18),  x � � y � z� �  x � � z �   y�, hence, by (†W20) and (†W23),
 x � � y � z� �  z � � x � y�, hence, by (†W18) and (†W23),  x � � y �
z� �  � x� y�� z, hence, by (�W8), x - �y - z� � �x - y� - z.

(�MV4) By (†W16),  x� 1 � 1, hence, by (�W8), x - 1 � 1.

(�MV5) By (�W6),  x � 0 �   x, hence, by (†W23),  x � 0 � x, hence, by (�W8),
x - 0 � x.

(�MV7) By (†W23).

(�MV9) By (�W4).

�92. Let AAA � �V, - , ,0� be an MV algebra and let AAA� � �V,�, , & , - ,,,-,�, ~�,0,1� be

its MV-induced algebra. For all x, y, z > V, we now have

x -  x � 1, (†MV3)

 �x - y� �  x& y, (†MV6)

Furthermore, the identities from definitions 46 and 47 hold.

Proof.
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(†MV3) By (�MV9) and (�MV15), �x& y� - y � �y& x� - x, hence, by (�MV12),
 � x -   y� - y �  � y -   x� - x, hence, by (�MV7) twice,  � x - y� - y �
 � y - x� - x, hence, by substituting 1 for y,  � x - 1� - 1 �  � 1 - x� - x,
hence, by (�MV4), 1 �  � 1 - x� - x, hence, by (�MV8), 1 �  �  0 - x� - x,
hence, by (�MV7), 1 �  �0 - x� - x, hence, by (�MV5), 1 �  x - x.

(†MV6) By (�MV12),  x& y �  �  x -   y�, hence, by (�MV7),  x& y �  �x - y�.
(�W5) By (�MV13), 0� 0 �  0 - 0, hence, by (†MV3), 0� 0 � 1.

(�W6) By (�MV13), x� 0 �  x - 0, hence, by (�MV5), x� 0 �  x.

(�W7) By (�MV12), x& y �  � x -  y�, hence, by (�MV13), x& y �  �x�  y�.
(�W8) By (�MV13),  x� y �   x - y, hence, by (�MV7),  x� y � x - y.

(�W10) By (�MV15), x - y � �x& y� - y, hence, by (�MV12), x - y �  � x -   y� - y,
hence, by (�MV7), x - y �  � x - y� - y, hence, by (�MV13) twice, x - y � �x�
y�� y.

(�W9) By (�MV16), x,y � �x -  y�& y, hence, by (�MV7), x,y � �  x -  y�& y, hence,
by (�MV13), x,y � � x�  y�& y, hence, by (�W7), x,y �  �� x�  y��  y�,
hence, by (�MV9) and (�W10), x , y �  �� y �  x� �  x�, hence, by (�MV13),
x,y �  � � y �  x�- x�, hence, by (�MV7), x,y �  � x- � y �  x��, hence,
by (�MV12), x , y � x& � y �  x�, hence, by (�MV13), x , y � x& �  y -  x�,
hence, by (�MV7), x , y � x& �y -  x�, hence, by (�MV1), x , y � x& � x - y�,
hence, by (�MV13), x , y � x& �x� y�.

(�W11) By (�MV14).

(�W12) By (�MV17).

(�W1) By (�MV13), 1 � y �  1 - y, hence, by (�MV8), 1 � y �   0 - y, hence, by
(�MV7), 1� y � 0 - y, hence, by (�MV5), 1� y � y.

(�W2) Let a be as follows:

a
def
� �x� y� � ��y � z�� �x� z��.

By (�MV13),
a �  � x - y� - � � y - z� - � x - z��,

hence, by (�MV1) and (�MV2),

a � � � x - y� -  x� - � � y - z� - z�,

hence, by (�MV1) and (�MV7),

a � � �  y -  x� -  x� - � � y -   z� - z�,
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hence, by (�MV12) and (�MV7),

a � �� y&  x� -  x� - ��y& z� - z�,

hence, by (�MV15),
a � � y -  x� - �y - z�,

hence, by (�W4),
a � � x -  y� - �z - y�,

hence, by (�W10),

a � �� x�  y��  y� - ��z � y�� y�,

hence, by (�MV13),

a � � � x�  y� -  y� - � �z � y� - y�,

hence, by (�MV1) and (�MV2),

a � � � x�  y� -  �z � y�� - � y - y�,

hence, by (†MV3) and (�MV4), a � 1, so, substituting for the definition of a,

�x� y� � ��y � z�� �x� z�� � 1.

(�W3) Let a be as follows:
a

def
� � x�  y� � �y � x�.

By (�MV13),
a �  �  x -  y� - � y - x�,

hence, by (�MV12) and (�MV7),,

a � � x&  y� - � y - x�,

hence, by (�MV2),
a � �� x&  y� -  y� - x,

hence, by (�MV15),
a � � x -  y� - x,

hence, by (�MV9),
a � � y -  x� - x,

hence, by (�W10),
a � �� y �  x��  x� - x,
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hence, by (�MV13),
a � � � y �  x� -  x� - x,

hence, by (�MV2),
a �  � y �  x� - � x - x�,

hence, by (†MV3) and (�MV4), a � 1, so, substituting for the definition of a,

� x�  y� � �y � x� � 1.

(�W4) By (�MV9).

Proof of theorem 51. This follows immediately from lemmata 91 and 92.

�93. Let �V,�, , & , - ,,,-,�, ~�,0,1� be a Łukasiewicz algebra. For all x, y, z > V, we

then have

 �x - y� �  x ,  y, (†�1)

y � �x - y� � 1, (†�2)

x� �x - y� � 1, (†�3)

�x , y�� y � 1, (†�4)

�x , y�� x � 1, (†�5)

x - x � x, (†�6)

x - �x , y� � x, (†�7)

x - 1 � 1, (†�8)

x - 0 � x, (†�9)

�x� z�� ��y � z�� ��x - y�� z�� � 1, (†�10)

�z � x�� ��z � y�� �z � �x , y��� � 1, (†�11)

�x& y�� z � x� �y � z�, (†�12)

�x& y�� z � � z& y��  x, (†�13)

�x& y�� z � �x& z��  y, (†�14)

x� � y � �x& y� � � 1, (†�15)

�x� y�� ��z&x�� �z& y�� � 1, (†�16)

��x1 � y1�& �x2 � y2�� � ��x1 &x2�� �y1 & y2�� � 1. (†�17)

Proof.

(†�1) By (�MV15),  �x- y� �  ��x& y� - y�. hence, by (�MV12),  �x- y� �  � � x -
  y�- y�, hence, by (�MV7),  �x-y� �  � � x-  y�-  y�, hence, by (�MV12),
 �x - y� � � x -   y�& y, hence, by (�MV16),  �x - y� �  x ,  y.
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(†�2) By (†W19), y � � �x� y� � y � � 1, so, by (�W10), y � �x - y� � 1.

(†�3) By (†�2), x� �y - x� � 1, so, by (�W4), x� �x - y� � 1.

(†�4) By (†�2),  y � � x -  y� � 1, hence, by (†�1) and (�MV7),  y �  �x , y� � 1,
hence, by (†W18), �x , y�� y � 1.

(†�5) By (†�3),  x � � x -  y� � 1, hence, by (†�1) and (�MV7),  x �  �x , y� � 1,
hence, by (†W18), �x , y�� x � 1.

(†�6) By (�W10), �x-x� � � �x� x� � x �, hence, �x-x�� x � � �x� x� � x �� x.
hence, by (�W4) and (�W10), �x - x� � x � � x � �x � x� � � �x � x�,
hence, by (†W15) twice, �x - x� � x � � x � 1 � � 1, hence, by (†W16) twice,
�x - x�� x � 1. By (†�2), x� �x - x� � 1, so, by (†W13), x � �x - x�.

(†�8) By (�MV15), x - 1 � �x& 1� - 1, hence, by (�MV4) x - 1 � 1.

(†�9) By (�MV15), x- 0 � �x& 0� - 0, hence, by (�MV8) x- 0 � �x& 1� - 0, hence, by
(†MV5�) x - 0 � x - 0, hence, by (�MV5) x - 0 � x.

(†�10) By (�W2),

�x� y�� � �y � z�� �x� z� �,

so, by (†W20),

�y � z�� � �x� y�� �x� z� �.

So we have

�x� z�� � ��y � x�� x� � ��y � z�� z� �,

so, by (�W4) and (�W10),

�x� z�
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

a

� � �x - y� � �y - z� �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

� 1.

As a special case of this, we get

�y � z�� � �y - z� � �z - z� � � 1,

and hence, by (†�6),

� y � z�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c

� � �y - z� � z �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

� 1.

Then, note that, by (†�3), we have

� �x - y� � �y - z� �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

� � ��y - z�� z�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

� ��x - y�� z�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e

� � 1.
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In what follows, we will continue the proof using the abbreviations a, b, c, d, e.
Now, by (†�3), we have

� a � b �� � �b� �d� e�� � �a� �d� e�� � � 1, (�)

hence, by (†�2) twice, a� �d� e� � 1, hence, by (†W20),

d� �a� e� � 1.

As a variant of (�), we also get

� c � d �� � �d� �a� e�� � �c� �a� e�� � � 1,

so, again by (†�2) twice, c� �a� e� � 1, and, by (†W20),

�x� z�
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

a

� � �y � z�
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

c

� ��x - y�� z�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e

� � 1.

(†�11) By (†�10),

� x�  z�� � � y �  z� � �� x -  y��  z� � � 1,

hence, by (†�1) and (�MV7),

� x�  z�� � � y �  z� � � �x , y��  z� � � 1,

hence, by (†W18) three times,

�z � x�� � �z � y� � �z � �x , y�� � � 1.

(†�7) By (†�10),
��a , b�� a�& �a� a��� ���a , b� - a�� a� � 1.

But, by (†�4), ��a , b�� a� � 1, and, by (†W15), a� a � 1. So, by (†MV5�),

��a , b� - a�� a � 1.

By (†�2),
a� ��a , b� - a� � 1.

So, by (†W13),
��a , b� - a� � a.

(†�12) By (�W7), �x& y�� z �  �x�  y�� z, hence, by (†W18) and (†W23), �x& y��
z �  z � �x �  y�, hence, by (†W20), �x& y� � z � x � � z �  y�, hence, by
(†W18) and (†W23), �x& y�� z � x� �y � z�.
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(†�13) By (†�12), �x& y� � z � x � �y � z�, hence, by (†W18), �x& y� � z � x � � z �
 y�, hence, by (†W20), �x& y� � z �  z � �x �  y�, hence, by (†W18) and
(�MV7), �x& y� � z �  z � �y �  x�, hence, by (†�12), �x& y� � z � � z& y� �
 x.

(†�14) By (†�13) and (�MV1), �y&x�� z � �y& z��  x.

(†�15) By (†W18), (†W23), and (†W13) �z �  x� � �x �  y� � 1, hence, by (†W20),
x � � �y �  x� �  y � � 1, hence, by (†W18) and (†W23), x � � y �  �y �
 x� � � 1, hence, by (�W7), x� � y � �x& y� � � 1.

(†�16) By (�W2), �z �  y� � �� y �  x� � �z �  x��, hence, by (†W20), � y �  x� �
��z �  y� � �z �  x��, hence, by (†W18), �x � y� � ��z �  y� � �z �  x��,
hence, by (�W7), �x � y� � � �z& y� �  �z&x��, hence, by (†W18), �x � y� �
��z&x�� �z& y��.

(†�17) First note that

x& y � y&x. (†MV1�)

We get this from (�MV1) via duality (corollary 50). Now, by (†MV1�) and (†�16),

�x1 � y1�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

� ��x1 &x2�� �y1 &x2��
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

� 1.

Now, using the abbreviations a and b, again by (†MV1�) and (†�16), we get

�a� b�� ��a& c�� �b& c�� � 1,

and hence, by (�W1),

�a& c�� �b& c� � 1. (�)

Similarly, by (†�16),

�x2 � y2�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c

� ��y1 &x2�� �y1 & y2��
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

� 1,

and, using the abbreviations c and d, and again by (†�16),

�c� d�� ��b& c�� �b&d�� � 1,

and hence, by (�W1),

�b& c�� �b&d� � 1. (��)
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Now recall that
b � �x1 &x2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

e

� �y1 &x2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f

and
d � �y1 &x2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f

� �y1 & y2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g

.

So, using the abbreviations e, f , g, by (�W2),

�e� f�� ��f � g�� �e� g��,

hence, by (†�12),

� �e� f�
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

b

& �f � g�
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

d

� � �e� g� � 1. (� � �)

Now, applying (†W14) twice to (�), (��), and (� � �), we get

�a& c�� �e� g� � 1,

and, by substituting for the abbreviations,

� �x1 � y1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

& �x2 � y2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c

� � � �x1 &x2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
e

� �y1 & y2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g

� � 1.

Proof of theorem 53.

(†MV3) See lemma 92.

(†MV6) See lemma 92.

(†MV10) First note that, by (†�2) and by (†�3), we have

�x - y�� ��x - y� - z� � 1,

z � ��x - y� - z� � 1,

x � �x - y� � 1,

y � �x - y� � 1,

And by (�W2), we have

� x � �x - y� � � � ��x - y�� ��x - y� - z��� �x� ��x - y� - z�� � � 1,

� y � �x - y� � � � ��x - y�� ��x - y� - z��� �y � ��x - y� - z�� � � 1,

hence, by (†�2) twice,
x � ��x - y� - z� � 1,
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y � ��x - y� - z� � 1.

From here on, let the abbreviation a stand for ��x - y� - z�. Now, by (†�10),

�y � a�� � �z � a� � ��y - z�� a�� � 1.

So, by (†�2) twice,
�y - z�� a.

Similarly, by (†�10),

�x� a�� � ��y - z�� a� � ��x - �y - z��� a�� � 1,

so, by (†�2) twice,
�x - �y - z��� a � 1.

Substituting for the abbreviation, we get

�x - �y - z��� ��x - y� - z� � 1.

By (�W4), this yields,

��z - y� - x�� �z - �y - x�� � 1,

which, by exchanging the roles of x and z through substitution, yields,

��x - y� - z�� �x - �y - z�� � 1.

So, by (†W13) we have

�x - y� - z � x - �y - z�.

(†MV11) By (†�16),

� y � �y - z� �� � �x& y� � �x& �y - z�� � � 1,

hence, by (†�3) and (�W1),

� x & y �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a

� � x & �y - z� �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c

� 1.

Similarly, by (†�16),

� z � �y - z� �� � �x& z� � �x& �y - z�� � � 1,

hence, by (†�2) and (�W1),

� x & z �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

b

� � x & �y - z� �
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c

� 1.
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Then, using the abbreviations a, b, c, we have by (†�10),

� a � c �� � �b� c� � ��a - b�� c� � � 1,

hence, by (†�2) twice, �a-b�� c � 1, hence, substituting for the abbreviations,

� �x& y� - �x& z� � � � x& �y - z� � � 1. (�)

Next, note that, by (†�15),

x� � z � �x& z� � � 1,

hence, by (†W20),
z � � x � �x& z� �

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d

� 1.

Then, using the abbreviation d, we have, by (†�10),

�y � d� � ��z � d�� ��y - z�� d�� � 1,

hence, by (†�2), �y � d� � ��y - z� � d� � 1, hence, substituting for the
abbreviation,

� y � � x � �x& z� � � � � �y - z� � �x� �x& z�� � � 1,

hence, by (†W20) twice,

� x � � y � �x& z� � � � � x � ��y - z�� �x& z�� � � 1,

hence, by (†�12),

� �x& y� � �x& z� � � � �x& �y - z�� � �x& z� � � 1,

hence, by (†W20),

�x& �y - z�� � � ��x& y�� �x& z�� � �x& z� � � 1,

hence, by (�W10),

� x & �y - z� � � � �x& y� - �x& z� � � 1. (��)

Applying (†W13) to (�) and (��), we get

x& �y - z� � �x& y� - �x& z�.

Finally, (†MV11) follows from this by duality (corollary 50).

Proof of theorem 55. This follows immediately from lemmata 91 and 93 and from corol-
lary 50.
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B.2. Proofs for section 3.3

Proof of lemma 73.

(�SYL�comm) By (†MV9�)

x1 , y1 � y1 , x1,

x2 , y2 � y2 , x2,

. . .

xN , yN � yN , xN ,

hence,

�x1 , y1� - �x2 , y2� - . . . - �xN , yN�
� �y1 , x1� - �y2 , x2� - . . . - �yN , xN�,

(1) By (†�4) and (†�5), we have

x1 , x2 � x1 � 1,

x1 , x2 � x2 � 1,

y1 , y2 � y1 � 1,

y1 , y2 � y2 � 1.

By (†�17),

��x1 , x2�� x1�� ���y1 , y2�� y1�
� ���x1 , x2�& �y1 , y2��� �x1 & y1��� � 1,

��x1 , x2�� x2�� ���y1 , y2�� y2�
� ���x1 , x2�& �y1 , y2��� �x2 & y2��� � 1.

So, by (�W1) twice,

��x1 , x2�& �y1 , y2��´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

� �x1 & y1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b1

� 1,

��x1 , x2�& �y1 , y2��´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

� �x2 & y2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b2

� 1.

By (�W2),

�a� b1�� ��b1 � z1�� �a� z1�� � 1,

�a� b2�� ��b2 � z2�� �a� z2�� � 1,
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hence, by (�W1),

�b1 � z1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c1

� �a� z1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d1

� 1,

�b2 � z2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c2

� �a� z2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d2

� 1.

By (†�17),

��c1 � d1�& �c2 � d2��� ��c1 & c2�� �d1 &d2�� � 1,

hence,
�1 & 1�� ��c1 & c2�� �d1 &d2�� � 1,

hence, by (†MV5�) and (�W1),

�c1 & c2�� �d1 &d2� � 1, (�)

By (†�17),

�a� z1� � ��a� z2�� �a� �z1 , z2��� � 1,

hence, by (†�12),

� �a� z1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d1

& �a� z2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d2

� � �a� �z1 , z2�� � 1, (��)

hence, by applying (†W14) to (�) and (��),

�c1 & c2�� �a� �z1 , z2�� � 1.

This is the same as

� � �x1 & y1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b1

� z1� & � �x2 & y2�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b2

� z2� �

� � ��x1 , x2�& �y1 , y2��´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

� �z1 , z2� � � 1. (1)

(�SYL�1�A) Suppose that

� �yn � zn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an

& �xn � yn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bn

�� �xn � zn�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cn

� 1, (�)

� � �y1 � z1� , �y2 � z2� , . . . , �yn�1 � zn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a�n�1

�

& � �x1 � y1� , �x2 � y2� , . . . , �xn�1 � yn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b�n�1

� �

� � �x1 � z1� , �x2 � z2� , . . . , �xn�1 � zn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c�n�1

� � 1.

(��)
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Then, by (1),

� ��a�n�1 & b�n�1�� c�n�1� & ��an & bn�� cn� �
� � ��a�n�1 , an�& �b�n�1 , bn�� � �c�n�1 , cn� � � 1,

hence, by (†MV5�) and (�W1),

� � �y1 � z1� , �y2 � z2� , . . . , �yn�1 � zn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a�n�1

, �yn � zn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a�n

�
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� � 1,

We can now go on to show (�SYL�1�A): By (�W2), (†�12), and (†MV1�),
we know that (�SYL�1�A) is fulfilled for N � 1, and, equivalently, that (�)
is fulfilled for any n and that (��) is fulfilled for n � 2.

Our proof of (�SYL�1�A) for the case N C 2 proceeds by induction. First
note that, for the base case N � 2, both (�) and (��) are fulfilled, and, by
the above argument, so is (�SYL�1�A). This also shows (��) for the case
n � 3. Then, by the same argument we also have (�SYL�1�A) for N � 3,
etc.

(�SYL�2�A) By (†�4), �x , y�� y � 1. By (†MV1�) and (†�16),

� �x , y� � y � � � ��x , y�& �y � z�� � �y& �y � z�� � � 1,

hence, by (�W1),

��x , y�& �y � z�� � �y& �y � z�� � 1,

hence, by by (�W9),

��x , y�& �y � z�� � �y , z� � 1.

By (†�4), �y , z�� z � 1. Hence, by (†W14),

��x , y�& �y � z��
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

� z � 1.
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Also note that, by (†�4), �x , y�� x � 1, so, by (†MV1�) and (†�16),

��x , y�� x� � ���x , y�& �y � z��� �x& �y � z��� � 1,

hence, by (�W1),

��x , y�& �y � z��� �x& �y � z�� � 1. (�)

Then note that, by (†W19),

x� ��y � z�� x� � 1,

so, by (†�12),
�x& �y � z��� x � 1.

So, by (†W14) on (�),

��x , y�& �y � z��
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

� x.

By (†�11),
�d� z�� ��d� x�� �d� �z , x���,

hence, by (�W1) twice,

��x , y�& �y � z��
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

d

� �x , z� � 1.

So, by (†MV1�),

� �yn � zn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
an

& �xn , yn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bn

�� �xn , zn�
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cn

� 1. (�)

Also, suppose

� � �y1 � z1� , �y2 � z2� , . . . , �yn�1 � zn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a�n�1

�

& � �x1 , y1� - �x2 , y2� - . . . - �xn�1 , yn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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� �

� � �x1 , z1� - �x2 , z2� - . . . - �xn�1 , zn�1�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c�n�1

� � 1.

(��)

hence, by (†�14),

�a�n�1 & c�n�1��  b�n�1 � 1,

�an & cn��  bn � 1.
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By (1),

� ��a�n�1 & c�n�1��  b�n�1� & ��an & cn��  bn� �
� � ��a�n�1 , an�& � c�n�1 ,  cn�� � � b�n�1 ,  bn� � � 1,

hence, by (†MV5�) and (�W1),

��a�n�1 , an�& � c�n�1 ,  cn�� � � b�n�1 ,  bn� � 1,

hence, by (†�1),

��a�n�1 , an�& �c�n�1 - cn�� �  �b�n�1 - bn� � 1,

hence, by (†�13),
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c�n�1

- �xn , zn�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
cn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
c�n

� � 1.

The rest of this proof of (�SYL�2�A) proceeds in analogy to the above
proof of (�SYL�1�A). We have (�SYL�2�A) for N � 1, and, equivalently, (�)
for any n and that (��) for n � 2.

For the induction, note that in the base case N � 2, both (�) and (��)
are fulfilled, and, by the above argument, so is (�SYL�2�A). This also
shows (��) for the case n � 3. Then, by the same argument we also have
(�SYL�2�A) for N � 3, etc.
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C. Implementation Notes

Available Now! PyPES/McPIET

I generated the various ideas discussed in this dissertation in the course of a software
prototyping effort, which has taken various approaches to a proof-of-concept level. The
next section will describe briefly how these ideas evolved.

The implementation of the various procedures and algorithms described herein is called
PyPES/McPIET, and it represents the final version of the software prototype. It is now
freely available for use, modification, and redistribution1. PyPES relies on various soft-
ware components distributed as part of the DELPH-IN family of tools2, such as the ERG
grammar, the Linguistic Knowledge Builder (LKB), and the [incr tsdb()] grammar
profiling and treebanking tool. PyPES is a collection of Python Procedures for Exper-
imentation with Semantics and provides ProtoForm handling functionality, as well as
various interface and framework components. One particular component of PyPES is
McPIET, the Monte Carlo Pseudo Inference Engine for Text.

The software comprises over 19k lines of code, written in Python3, 5k of which provide
unit testing functionality. The library was developed over 5 years and underwent many
revisions, some of the functionality undergoing two or three complete reimplementa-
tions. Documentation is available, as well as a website and a mailing list.

PyPES input/output and database storage:

• input of plaintext MRS or XML-MRS structures as produced by the LKB’s MRS
code either from the LKB or PET parser;

• through the use of [incr tsdb()] treebanks, hand-selected grammatical analyses
can be entered;

• as part of the MRS input process, data are checked against the grammar’s SEM-I;
currently only the ERG grammar is supported;

• input/output of ProtoForms via a text format either directly or via the PyPES
database.

1http://www.semantilog.org/pypes.html
2http://wiki.delph-in.net/moin
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PyPES ProtoForm processing:

• scoping and scope enumeration based on the Koller-Thater algorithm;

• Koller-Thater-style redundancy elimination;

• the improved implementation allows not only the usual exhaustive scoping and
scope enumeration, but also selective scoping and unpacking;

• conversion of minimally recursive ProtoForms to maximally recursive ProtoForms;

• conversion of minimally recursive ProtoForms to SNFs;

• ProtoForm subsumption and isomorphicity checking (i.e. reordering of subforms,
renaming of variables etc.)

• a copula resolution mechanism which resolves certain occurences of the copula not
handled by the grammar;

• approximation of ERG-derived word-prime semantics to operators in FOPC; if
used together with the scoping mechanism, this can be used to translate ERG se-
mantics to FOPC formulae that could be entered into FOPC theorem provers or
model builders.

PyPES inference testing framework:

• conversion of inference datasets in the RTE/AVE format or Bill MacCartney’s for-
mat into an internal format; plaintext sentences will be automatically cross-referenced
with treebank items;

• conversion of RTE system submission files into the internal format;

• analyses for the 640 sentences in the FraCaS testsuite have been hand-selected for
the ERG in [incr tsdb()];

• various kinds of “cosmetic” preprocessing such as fixing punctuation in RTE datasets;

• bag-of-words baseline inference engine;

• inference datasets are hierarchically structured, supporting distinction between tasks
in RTE and between sections in FraCaS;

• statistical evaluation for comparisons of results obtained by an inference engine;
this includes all evaluation measures and visualization techniques discussed in chap-
ter 2.

McPIET:

• McPIET is an implementation of the logic and the Monte Carlo inference algorithm
described in this chapter.
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McPIET@RTE4 vs. The New McPIET2

McPIET participated in the fourth RTE recognizing textual entailment challenge (RTE4)
at the text analysis conference (TAC) in September 2008 (teamID: cambridge) and was
submitted with a system report concentrating largely on some of the underlying theo-
retical ideas (Bergmair 2008), which were also presented at the workshop and in this
dissertation.

Many of the ideas described in this dissertation were developed so as to address the
shortcomings of this earlier version (McPIET@RTE4). The version of McPIET which is
available for download now (McPIET2) was completely reimplemented from scratch so
as to implement these new ideas.

The performance of McPIET@RTE4 was not significantly different in the evaluation
from random, which could be attributed to a number of reasons. These include, obvi-
ously, the lack of lexical knowledge, and the lack of knowledge about time and space, and
the lack of knowledge about names of people, places, and organizations. Also, McPIET
does not address discourse phenomena, leading to huge gaps in reasoning patterns which
involve semantic coreferences induced by anaphora etc.

All of these shortcomings are more or less to do with the scope and limited resources
available for this particular PhD project. But there remains one piece of criticism against
McPIET@RTE4 which seems more fundamental, and this is the particular setup of the
linguistic processing infrastructure in McPIET@RTE4: It forced the parse selection mech-
anism to venture a wild guess as to a top-1 parse for each sentence. The inference mech-
anism then worked with this parse without further qualification of confidence etc. This
means that, although McPIET@RTE4 does offer robustness when it comes to inference in
the presence of uncertainty, it does not practice what we preach in section 5.1.2 when it
comes to linguistic processing: By forcing fine-grained distinctions in the semantic repre-
sentation, it trades off natural robustness effects for a promise of semantic informativity
on which the grammar cannot be expected to deliver.

My current thinking on the subject is as follows: In order to set up the system robustly
so as to deal with RTE-style data, what would be required is an inference mechanism
which works directly off packed semantic representations for parse forests, rather than
the semantic representation for a top-1 parse. This might work within our framework by
running a model checker to determine the maximum and minimum truth value of a sen-
tence, given the ambiguity represented in the packed representation. Such an algorithm
could use dynamic programming to implement a lattice scoring mechanism.

Another approach could be to delete variables in SNFs which represent relationships
about which there is ambiguity in the lattice. For example, in the sentence ‘We saw a man

with a telescope’, one might simply delete the arg1 of the SwithS-predicate entirely. Most
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SPs would remain unaffected by this (We saw a man, a telescope was the object of a
with-relationship). This way, SNFs give us the option of putting less information into a
representation, rather than risking putting incorrect information into the representation.
Our robustness heuristics could take over from there to fill the informational gap.

These ideas are, of course, nothing more than speculation at this point, as we have not
implemented and tested them. It is therefore hard to anticipate the problems that would
be involved. But it should be noted that this idea of using SNFs for packed inference was
one of the major motivators for me to develop the theory surrounding SNFs. My hope is
that future work will be able to develop these ideas more fully and eventually produce a
version of McPIET2 which can be applied back to RTE-style data more successfully than
its predecessor. In the meantime, my work on FraCaS-style data (appendix D) serves as
an initial proof of concept.
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D. FraCaS Testsuite

D.1. Generalized Quantifiers

D.1.1. Conservativity

An Italian became the world’s greatest tenor.


 Was there an Italian who became the world’s greatest tenor?
(F.1)

Every Italian man wants to be a great tenor.

Some Italian men are great tenors.


 Are there Italian men who want to be a great tenor?

(F.2)

All Italian men want to be a great tenor.

Some Italian men are great tenors.


 Are there Italian men who want to be a great tenor?

(F.3)

Each Italian tenor wants to be great.

Some Italian tenors are great.


 Are there Italian tenors who want to be great?

(F.4)

The really ambitious tenors are Italian.


 Are there really ambitious tenors who are Italian?
12 (�F.5)

No really great tenors are modest.


  Are there really great tenors who are modest?
(F.6)

Some great tenors are Swedish.


 Are there great tenors who are Swedish?
(F.7)

Many great tenors are German.


 Are there great tenors who are German?
2 (F.8)

Several great tenors are British.


 Are there great tenors who are British?
(F.9)

Most great tenors are Italian.


 Are there great tenors who are Italian?
1 (�F.10)
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A few great tenors sing popular music.

Some great tenors like popular music.


 Are there great tenors who sing popular music?

(F.11)

Few great tenors are poor.

~
 Are there great tenors who are poor?
1 (�F.12)

Both leading tenors are excellent.

Leading tenors who are excellent are indispensable.


 Are both leading tenors indispensable?

7 (�F.13)

Neither leading tenor comes cheap.

One of the leading tenors is Pavarotti.


  Is Pavarotti a leading tenor who comes cheap?

10 (�F.14)

At least three tenors will take part in the concert.


 Are there tenors who will take part in the concert?
3 (F.15)

At most two tenors will contribute their fees to charity.

~
 Are there tenors who will contribute their fees to charity?
3 (F.16)

D.1.2. Upwards Monotonicity on 2nd Argument

An Irishman won the Nobel prize for literature.


 Did an Irishman win a Nobel prize?
(F.17)

Every European has the right to live in Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.


 Can every European travel freely within Europe?

(F.18)

All Europeans have the right to live in Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.


 Can all Europeans travel freely within Europe?

(F.19)

Each European has the right to live in Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.


 Can each European travel freely within Europe?

(F.20)

The residents of member states have the right to live in Europe.

All residents of member states are individuals.

Every individual who has the right to live in Europe can travel freely within Europe.


 Can the residents of member states travel freely within Europe?

(F.21)
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No delegate finished the report on time.

~
 Did no delegate finish the report?
(F.22)

Some delegates finished the survey on time.


 Did some delegates finish the survey?
(F.23)

Many delegates obtained interesting results from the survey.


 Did many delegates obtain results from the survey?
2 (F.24)

Several delegates got the results published in major national newspapers.


 Did several delegates get the results published?
(F.25)

Most Europeans are resident in Europe.

All Europeans are people.

All people who are resident in Europe can travel freely within Europe.


 Can most Europeans travel freely within Europe?

1 (F.26)

A few committee members are from Sweden.

All committee members are people.

All people who are from Sweden are from Scandinavia.


 Are at least a few committee members from Scandinavia?

(F.27)

Few committee members are from Portugal.

All committee members are people.

All people who are from Portugal are from southern Europe.

~
 Are there few committee members from southern Europe?

1 (�F.28)

Both commissioners used to be leading businessmen.


 Did both commissioners used to be businessmen?
(F.29)

Neither commissioner spends a lot of time at home.

~
 Does neither commissioner spend time at home?
5 (�F.30)

At least three commissioners spend a lot of time at home.


 Do at least three commissioners spend time at home?
5, 3 (F.31)

At most ten commissioners spend a lot of time at home.

~
 Do at most ten commissioners spend time at home?
5, 3 (�F.32)

D.1.3. Downwards Monotonicity on 2nd Argument

An Irishman won a Nobel prize.

~
 Did an Irishman win the Nobel prize for literature?
(F.33)
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Every European can travel freely within Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.

~
 Does every European have the right to live in Europe?

(F.34)

All Europeans can travel freely within Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.

~
 Do all Europeans have the right to live in Europe?

(F.35)

Each European can travel freely within Europe.

Every European is a person.

Every person who has the right to live in Europe can travel freely within Europe.

~
 Does each European have the right to live in Europe?

(F.36)

The residents of member states can travel freely within Europe.

All residents of member states are individuals.

Every individual who has the right to live anywhere in Europe

can travel freely within Europe.

~
 Do the residents of member states have the right to live anywhere in Europe?

(F.37)

No delegate finished the report.


  Did any delegate finish the report on time?
(F.38)

Some delegates finished the survey.

~
 Did some delegates finish the survey on time?
(F.39)

Many delegates obtained results from the survey.

~
 Did many delegates obtain interesting results from the survey?
2 (F.40)

Several delegates got the results published.

~
 Did several delegates get the results published in major national newspapers?
(F.41)

Most Europeans can travel freely within Europe.

All Europeans are people.

All people who are resident in Europe can travel freely within Europe.

~
 Are most Europeans resident in Europe?

1 (F.42)

A few committee members are from Scandinavia.

All committee members are people.

All people who are from Sweden are from Scandinavia.

~
 Are at least a few committee members from Sweden?

(F.43)

Few committee members are from southern Europe.

All committee members are people.

All people who are from Portugal are from southern Europe.


 Are there few committee members from Portugal?

1 (�F.44)

184



Both commissioners used to be businessmen.

~
 Did both commissioners used to be leading businessmen?
(F.45)

Neither commissioner spends time at home.


  Does either commissioner spend a lot of time at home?
5 (F.46)

At least three commissioners spend time at home.

~
 Do at least three commissioners spend a lot of time at home?
5, 3 (�F.47)

At most ten commissioners spend time at home.


 Do at most ten commissioners spend a lot of time at home?
5, 3 (F.48)

D.1.4. Upwards Monotonicity on 1st Argument

A Swede won a Nobel prize.

Every Swede is a Scandinavian.


 Did a Scandinavian win a Nobel prize?

(F.49)

Every Canadian resident can travel freely within Europe.

Every Canadian resident is a resident of the North American continent.

~
 Can every resident of the North American continent travel freely within Europe?

(F.50)

All Canadian residents can travel freely within Europe.

Every Canadian resident is a resident of the North American continent.

~
 Can all residents of the North American continent travel freely within Europe?

(F.51)

Each Canadian resident can travel freely within Europe.

Every Canadian resident is a resident of the North American continent.

~
 Can each resident of the North American continent travel freely within Europe?

(F.52)

The residents of major western countries can travel freely within Europe.

All residents of major western countries are residents of western countries.

~
 Do the residents of western countries have the right to live in Europe?

(F.53)

No Scandinavian delegate finished the report on time.

~
 Did any delegate finish the report on time?
(F.54)

Some Irish delegates finished the survey on time.


 Did any delegates finish the survey on time?
(F.55)

Many British delegates obtained interesting results from the survey.

~
 Did many delegates obtain interesting results from the survey?
2 (�F.56)

Several Portuguese delegates got the results published in major national newspapers.


 Did several delegates get the results published in major national newspapers?
(F.57)
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Most Europeans who are resident in Europe can travel freely within Europe.

~
 Can most Europeans travel freely within Europe?
1 (F.58)

A few female committee members are from Scandinavia.


 Are at least a few committee members from Scandinavia?
3 (F.59)

Few female committee members are from southern Europe.

~
 Are few committee members from southern Europe?
1 (�F.60)

Both female commissioners used to be in business.

~
 Did both commissioners used to be in business?
(F.61)

Neither female commissioner spends a lot of time at home.

~
 Does either commissioner spend a lot of time at home?
5 (F.62)

At least three female commissioners spend time at home.


 Do at least three commissioners spend time at home?
3 (F.63)

At most ten female commissioners spend time at home.

~
 Do at most ten commissioners spend time at home?
3 (�F.64)

D.1.5. Downwards Monotonicity on 1st Argument

A Scandinavian won a Nobel prize.

Every Swede is a Scandinavian.

~
 Did a Swede win a Nobel prize?

(F.65)

Every resident of the North American continent can travel freely within Europe.

Every Canadian resident is a resident of the North American continent.


 Can every Canadian resident travel freely within Europe?

(F.66)

All residents of the North American continent can travel freely within Europe.

Every Canadian resident is a resident of the North American continent.


 Can all Canadian residents travel freely within Europe?

(F.67)

Each resident of the North American continent can travel freely within Europe.

Every Canadian resident is a resident of the North American continent.


 Can each Canadian resident travel freely within Europe?

(F.68)

The residents of western countries can travel freely within Europe.

All residents of major western countries are residents of western countries.


 Do the residents of major western countries have the right to live in Europe?

11 (�F.69)

No delegate finished the report on time.


  Did any Scandinavian delegate finish the report on time?
(F.70)
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Some delegates finished the survey on time.

~
 Did any Irish delegates finish the survey on time?
(F.71)

Many delegates obtained interesting results from the survey.

~
 Did many British delegates obtain interesting results from the survey?
2 (F.72)

Several delegates got the results published in major national newspapers.

~
 Did several Portuguese delegates get the results published

in major national newspapers?

(F.73)

Most Europeans can travel freely within Europe.

~
 Can most Europeans who are resident outside Europe travel freely within Europe?
1 (�F.74)

A few committee members are from Scandinavia.

~
 Are at least a few female committee members from Scandinavia?
3 (F.75)

Few committee members are from southern Europe.


 Are few female committee members from southern Europe?
1 (�F.76)

Both commissioners used to be in business.


 Did both female commissioners used to be in business?
(F.77)

Neither commissioner spends a lot of time at home.


  Does either female commissioner spend a lot of time at home?
5 (F.78)

At least three commissioners spend time at home.

~
 Do at least three male commissioners spend time at home?
3 (F.79)

At most ten commissioners spend time at home.


 Do at most ten female commissioners spend time at home?
3 (�F.80)

D.2. Plurals

D.2.1. Conjoined Noun Phrases

Smith, Jones and Anderson signed the contract.


 Did Jones sign the contract?
(F.81)

Smith, Jones and several lawyers signed the contract.


 Did Jones sign the contract?
(F.82)

Either Smith, Jones or Anderson signed the contract.

~
 Did Jones sign the contract?
(F.83)
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Either Smith, Jones or Anderson signed the contract.


 If Smith and Anderson did not sign the contract, did Jones sign the contract?
13 (�F.84)

Exactly two lawyers and three accountants signed the contract.


  Did six lawyers sign the contract?
6 (�F.85)

Exactly two lawyers and three accountants signed the contract.


  Did six accountants sign the contract?
6 (�F.86)

Every representative and client was at the meeting.


 Was every representative at the meeting?
8 (�F.87)

Every representative and client was at the meeting.

~
 Was every representative at the meeting?
8 (F.88)

Every representative or client was at the meeting.


 Were every representative and every client at the meeting?
8 (�F.89)

D.2.2. Definite Plurals

The chairman read out the items on the agenda.


 Did the chairman read out every item on the agenda?
(F.90)

The people who were at the meeting voted for a new chairman.

~
 Did everyone at the meeting vote for a new chairman?
12 (�F.91)

All the people who were at the meeting voted for a new chairman.


 Did everyone at the meeting vote for a new chairman?
9 (�F.92)

The people who were at the meeting all voted for a new chairman.


 Did everyone at the meeting vote for a new chairman?
(F.93)

The inhabitants of Cambridge voted for a Labour MP.

~
 Did every inhabitant of Cambridge vote for a Labour MP?
12 (�F.94)

The Ancient Greeks were noted philosophers.

~
 Was every Ancient Greek a noted philosopher?
12 (�F.95)

The Ancient Greeks were all noted philosophers.


 Was every Ancient Greek a noted philosopher?
(F.96)
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D.2.3. Bare Plurals

This section of the FraCaS testsuite is outside the scope of our work. (see note 7)

D.2.4. Dependent Plurals

All APCOM managers have company cars.

Jones is an APCOM manager.


 Does Jones have a company car?

(F.103)

All APCOM managers have company cars.

Jones is an APCOM manager.

~
 Does Jones have more than one company car?

(F.104)

D.2.5. Negated Plurals

Just one accountant attended the meeting.


  Did no accountants attend the meeting?
(F.105)

Just one accountant attended the meeting.


  Did no accountant attend the meeting?
(F.106)

Just one accountant attended the meeting.


 Did any accountants attend the meeting?
(F.107)

Just one accountant attended the meeting.


 Did any accountant attend the meeting?
(F.108)

Just one accountant attended the meeting.


  Did some accountants attend the meeting?
4 (�F.109)

Just one accountant attended the meeting.


 Did some accountant attend the meeting?
(F.110)

D.2.6. Collective and Distributive Plurals

This section of the FraCaS testsuite is outside the scope of our work.

D.3. Notes

reservations, root causes for possibly incorrect decisions:
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1. The quantifiers most and few have not been implemented. (10 examples)

2. The quantifier many has not been implemented. (5 examples)

3. The quantifiers “at least X” and “at most X” have not been implemented. (12
examples)

4. Example �F.109 uses the quantifier some with a plural N’-phrase, the intended
meaning being that of ‘at least two’. This particular use of some has not been
implemented. (1 example)

5. The intended semantics of the phrase “a lot of X” in the testsuite is such that we
should have “a lot of X” � “X” but not the converse “X” � “a lot of X”. This
special semantics of ‘a lot of’ has not been implemented. (8 examples)

6. A theory of arithmetic has not been implemented. (2 examples)

7. The ERG represents bare plurals by injecting the underspecified definite quantifier
UDEF Q. Even when one restricts attention to cases where it stands with a plural
variable (i.e. stands with a plural N’), it is still nontrivial to distinguish the bare
plurals that can give rise to genericity from situations where a grammar-injected
UDEF Q must be interpreted as an existential quantifier. Thus, bare plurals have
not been implemented. Apart from the FraCaS section on bare plurals, this leads
to an error only in example �F.13. (1 section + 1 additional example)

8. Example F.88 is identical to �F.87, despite having a different annotation. Here the
testsuite appeals to a different reading for example F.88. Unfortunately, this dis-
tributive reading for the quantifiers can only be extracted from the ERG semantics
by nontrivial rewrite operations which induce ambiguity. The phenomenon was
not implemented, hence example F.88 is not covered either. (3 examples)

9. The particular use of ‘all the’ in example �F.92 (‘All the people . . . ’) is not supported
by the ERG. It always injects a PART OF predicate as in ‘All the world . . . ’. (1
example)

10. In example �F.14, the ERG returns a fragmented semantic representation. (1
example)

11. Example �F.69 is clearly a mistake in the testsuite. (1 example)

12. Plural the is not supported. (4 examples)

13. In example �F.84 there are two possible readings for the connective AND C. The
reading which licenses the answer given by the inference machinery, though con-
trary to the gold standard answer, is as follows: Let’s assume that there exists a
contract, which was signed by either Smith, Jones, or Anderson, in the sense that it
carries at least one signature, which is either that of Smith, that of Jones, or that of
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Anderson. Let’s also assume that this same contract was not signed by both Smith
and Jones, i.e. that it does not carry the two signatures of Smith and Jones; or
alternatively, we could assume that there does not exist any such contract. This
leaves open both the possibility of that contract (or any contract) to carry or not
carry the signature of Jones. (1 example)

statistics:

• In section 1, we can regard all 5 subsections as falling within the scope of our work.
These 5 subsections comprise 80 examples altogether.

• In section 2, 2 out of 6 subsections were out of scope. These 6 subsections comprise
30 examples. The 2 subsections which were out of scope account for 6 out of these
30 examples.

• Example �F.69 in section 1 must be discarded due to the gold standard decision
being incorrect.

• Among the 79 examples in section 1, our system made incorrect decisions for 16
of them.

• Among the 79 examples in section 1, we have reservations about 34 of them.

• Among the 24 examples in section 2, our system made incorrect decisions for 10
of them.

• Among the 24 examples in section 2, we have reservations about 11 of them.

• All incorrect decisions made by the system can be attributed to a root cause corre-
sponding to one of our reservations.

• Among all the 103 examples in the testsuite, 50 were entailing, 42 were unknow-
able, and 11 were contradictions. (48.5%/40.8%/10.7%)

• Among the 58 examples about which we had no reservations, 32 were entailing,
21 were unknowable, and 5 were contradictions. (55.2%/36.2%/8.6%)

• Out of the 103 examples, 78 were correct, which yields an accuracy of 75.7%.
(constant choice: 48.5%, random choice: 41.31%)

• Out of the 58 examples, all were correct, which yields an accuracy of 100%.
(constant choice: 55.2%, random choice: 44.27%)
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Peñas, A., Rodrigo, Á., Sama, V. & Verdejo, F. (2007), Overview of the answer validation
exercise 2006, in C. Peters, P. Clough, F. C. Gey, J. Karlgren, B. Magnini, D. W. Oard,
M. de Rijke & M. Stempfhuber, eds, ‘Evaluation of Multilingual and Multi-modal
Information Retrieval: 7th Workshop of the Cross-Language Evaluation Forum (CLEF
2006)’, Vol. 4730 of Lecture Notes in Computer Science, Springer, Alicante, Spain,
pp. 257–264.
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