# Closed Domain Question Answering Using Fuzzy Semantics

## Richard Bergmair

### Acknowledgments

thanks for supervising the project! Ann Copestake (Cambridge Computer Lab) thanks for helping with the fuzzy logic! Ulrich Bodenhofer (Johannes Kepler University Linz) thanks for reading related manuscripts! Ted Briscoe (Cambridge Computer Lab) Daniel Osherson (Princeton Psychology Dept) thanks for participating in the experiment! MPhil students, NLIP Group, RMRS-list, personal friends

### Motivation

*a small city near San Francisco* (example due to Zadeh)

What does small'(x) mean in terms of population? What does near'(x,y) mean in terms of distance?

How do we deal with the vagueness in **small** and **near**?

### Motivation

#### Natural Language Database Demo Interface

Query: hot dry city

Submit

| dof   | mainid x4.placeid | x4.placename         | x4.type | x4.lat  | x4.long x4.pop | x4.temp | x4.wet |
|-------|-------------------|----------------------|---------|---------|----------------|---------|--------|
| 1.000 | 76 76             | Blythe               | city    | 984201  | -19999748428   | 21      | 26     |
| 1.000 | 90 90             | Brawley              | city    | 995189  | -2016437 18923 | 21      | 26     |
| 1.000 | 103 103           | Calexico             | city    | 1000449 | -2015868 18633 | 20      | 27     |
| 1.000 | 106 106           | Calipatria           | city    | 992616  | -2016162 2690  | 21      | 26     |
| 1.000 | 218 218           | East Blythe          | CDP     | 984161  | -1999751 1511  | 21      | 26     |
| 1.000 | 233 233           | El Centro            | city    | 998552  | -2016891 31384 | 21      | 26     |
| 1.000 | 326 326           | Heber                | CDP     | 999477  | -2016206 2566  | 20      | 27     |
| 1.000 | 340 340           | Holtville            | city    | 998089  | -2013714 4820  | 21      | 26     |
| 1.000 | 351 351           | Imperial             | city    | 997621  | -2017094 4113  | 21      | 26     |
| 1.000 | 535 535           | Niland               | CDP     | 990674  | -20160841183   | 21      | 26     |
| 1.000 | 727 727           | Seeley               | CDP     | 998519  | -2019000 1228  | 21      | 26     |
| 1.000 | 842 842           | Westmorland          | city    | 994195  | -2017975 1380  | 21      | 26     |
| 0.950 | 70 70             | Big River            | CDP     | 974939  | -1995968 705   | 20      | 30     |
| 0.950 | 75 75             | Bluewater            | CDP     | 974337  | -1994399 261   | 20      | 30     |
| 0.688 | 152 152           | Coachella            | city    | 982953  | -2027239 16896 | 18      | 32     |
| 0.688 | 354 354           | Indio                | city    | 982274  | -2028572 36793 | 18      | 32     |
| 0.688 | 483 483           | Mecca                | CDP     | 984786  | -2025833 1966  | 18      | 32     |
| 0.625 | 529 529           | Needles              | city    | 963175  | -2000378 5191  | 18      | 37     |
| 0.562 | 81 81             | Bonita               | CDP     | 1000641 | -2042556 12542 | 17      | 33     |
| 0.562 | 114 114           | Camp Pendleton South | CDP     | 990765  | -2048554 11299 | 17      | 33     |
| 0 560 | 117 117           | Carlahad             | oitu    | 000676  | 2017021 62126  | 1.7     | 00     |

-

Fuzzy Logic

# In classical logic: A is a set on domain X iff $\exists$ characteristic function $\chi_A: X \to \{0,1\}$ such that $\chi_A(x) = 1$ iff $x \in A$ .



# In fuzzy logic: A is a fuzzy set on domain X iff $\exists$ characteristic function $\mu_A: X \to [0,1]$ such that $\mu_A(x)$ is a degree of membership.

Fuzzy Logic

Let A,B,C be fuzzy sets on X. Then  $C = A \cap B$  with  $\mu_C(x) = \mu_A(x) \wedge \mu_B(x)$  iff  $\wedge:[0,1] \times [0,1] \rightarrow [0,1]$  with

(1)  $a \wedge b = b \wedge a$ (2)  $a \wedge (b \wedge c) = (a \wedge b) \wedge c$ (3)  $a \leq b \Longrightarrow (a \wedge c) \leq (b \wedge c)$ (4)  $a \wedge 1 = a$ 

For example: numeric product!

### Ordering-based semantics

What exactly is it that a fuzzy set represents in a theory of natural language semantics?

A first approach: The meaning of a vague expression is a fuzzy set.

Alternatively: meaning is the ordering imposed on the domain by a fuzzy set.

### Ordering-based semantics

Problem: no universal intuitions about sets.

The decision boundary for a *tiny* city is sometimes placed higher than for a *small* one, for different subjects (Bergmair 2006)

*very* only shifts decision boundaries when subjects can directly contrast them. (Cliff 1988, Smith et al. 1988, O' Muircheartaigh et al. 1993, Wright et al. 1995)

### Conclusions

We've *introduced fuzzy semantics* as a new approach to semantics which provides a more adequate model of vague language.

We've *implemented* the model in the form of an *NLID*, and provided *empirical evidence* in support of our model.

# Closed Domain Question Answering Using Fuzzy Semantics

## Richard Bergmair