
“ad astra per aspera.”

Abstract

Steganographic systems provide a secure medium to covertly transmit information

in the presence of an arbitrator. In linguistic steganography, in particular, machine-

readable data is to be encoded to innocuous natural language text, thereby provid-

ing security against any arbitrator tolerating natural language as a communication

medium.

So far, there has been no systematic literature available on this topic, a gap the

present report attempts to fill. This report presents necessary background information

from steganography and from natural language processing. A detailed description is

given of the systems built so far. The ideas and approaches they are based on are sys-

tematically presented. Objectives for the functionality of natural language stegosys-

tems are proposed and design considerations for their construction and evaluation are

given. Based on these principles current systems are compared and evaluated.

A coding scheme that provides for some degree of security and robustness is

described and approaches towards generating steganograms that are more adequate,

from a linguistic point of view, than any of the systems built so far, are outlined.

Keywords: natural language, linguistic, lexical, steganography.

ii

Acknowledgements

Stefan Katzenbeisser is, of course, the first person I owe special thanks to. I feel

very lucky that, despite the formal hassle of acting for the first time as an external

supervisor at the UDA, and despite his busy schedule, he decided to give a stranger

from Leonding and his odd ideas on natural language and steganography a chance.

He has dedicated an irreplaceable amount of work and time, helping me to cultivate

these ideas and to put them down in a written form. Without his commitment the

project would never have been possible in this way.

In addition, I would like to thank Manfred Mauerkirchner, the UDA, and the

University of Derby for offering the ambitious program of study that allowed me to

efficiently continue my HTL-education, taking it on to an academic level. Our Final

Year Project Coordinator Helmut Hofer has been a very cooperative partner when it

came to formal and administrative issues.

Furthermore, I would like to thank Gerhard Höfer for supervising the project on

computational linguistics I carried out last year, and for many interesting discussions

on artificial intelligence and its philosophical background. I would like to thank the

faculty at HTL-Leonding and UDA, especially Peter Huemer, Günther Oberaigner,

iii

and Ulrich Bodenhofer for the influence they have had on my picture of computer

science.

I would like to thank the Johannes Kepler Universität Linz, the Technische Uni-

versität Wien, the Technische Universität München, the ACM and the IEEE, whose

libraries and digital collections were important resources for this project.

Last, but not least, I would like to thank my parents who have supported me

and my work in every thinkable way, especially my mother, Dorothea Bergmair, for

proofreading many drafts of the report.

Contents

1 Introduction 10

2 Steganographic Security 16

2.1 A Framework for Secure Communication 17

2.2 Information Theory: “A Probability Says it All.” 24

2.3 Ontology: “We need Models!” . 30

2.4 AI: “What if there are no Models?” . 32

3 Lexical Language Processing 37

3.1 Ambiguity of Words . 39

3.2 Ambiguity of Context . 41

3.3 A Common Approach to Disambiguation 43

3.4 The State of the Art in Disambiguation 46

3.5 Semantic Relations in the Lexicon . 51

3.6 Semantic Distance in the Lexicon . 52

4 Approaches to Linguistic Steganography 55

4.1 Words and Symbolic Equivalence: Lexical Steganography 56

v

4.2 Sentences and Syntactic Equivalence: Context-Free Mimicry 62

4.3 Meanings and Semantic Equivalence: The Ontological Approach 69

5 Systems For Natural Language Steganography 74

5.1 Winstein . 75

5.2 Chapman . 82

5.3 Wayner . 85

5.4 Atallah, Raskin et al. 87

6 Lessons Learned 94

6.1 Objectives for Natural Language Stegosystems 94

6.2 Comparison and Evaluation of Current Systems 99

6.3 Possible Improvements and Future Directions 102

7 Towards Secure and Robust Mixed-Radix Replacement-Coding 105

7.1 Blocking Choice-Configurations . 105

7.2 Some Elements of a Coding Scheme . 110

7.3 An Exemplaric Coding Scheme . 114

8 Towards Coding in Lexical Ambiguity 124

8.1 Two Instances of Ambiguity . 124

8.2 Two Types of Replacements and Three Types of Words 126

8.3 Variants of Replacement-Coding . 129

9 Conclusions 131

10 Evaluation & Future Directions 135

A Project Proposal 139

A.1 General Information . 139

A.2 Background and Related Research . 140

A.3 Motivation . 140

A.4 Aims and Objectives . 141

A.5 Expected Deliverables . 142

B Project Specification 143

B.1 General Information . 143

B.2 Background and Related Research . 144

B.3 Motivation . 144

B.4 Problem Statement . 145

B.5 Aims and Objectives . 146

B.6 Remarks on Project Proposal . 146

C Project Plan 148

C.1 Milestones . 148

C.2 Tasks . 149

C.3 Workflow . 155

C.4 Schedule & Deliverables . 158

D Meetings with Supervisor 161

D.1 First Meeting . 161

D.2 Second Meeting . 162

D.3 Third Meeting . 164

D.4 Fourth Meeting . 165

D.5 Fifth Meeting . 166

E Contents of the CD 167

References 168

List of Figures

0.1 Unilateral frequency distribution of a ciphertext 2

0.2 Ciphertext . 2

0.3 Unilateral frequency distribution of English plaintext. 4

0.4 Two similar patterns. 5

0.5 Cleartext . 5

0.6 A code for a homophonic cipher. 6

0.7 Homophonic ciphertext with code . 8

0.8 Homophonic ciphertext . 8

2.1 Framework for cryptographic communication 18

2.2 Framework for steganographic communication. 19

2.3 Two kinds of weak cryptosystems. 24

2.4 Parts of a stegosystem . 28

2.5 Mimicry as the inverse of compression. 29

2.6 A perfect stegosystem. 29

2.7 A tough question for a computer. 35

3.1 Ambiguity in the matrix-representation. 38

ix

3.2 Ambiguity illustrated by VENN-diagrams. 39

3.3 Results of senseval-2 . 49

3.4 VENN-diagram for the levels of abstraction for guitar. 50

3.5 A sample of WordNet’s hyponymy-structure. 50

4.1 A Huffman-tree of words in a synset. 61

4.2 An example for relative entropy. 63

4.3 A context-free grammar . 67

4.4 A systemic grammar . 70

5.1 A text-sample of Winstein’s system . 75

5.2 Encoding a secret by Winstein’s scheme. 77

5.3 The word-choice hash . 79

5.4 An example of coinciding word-choices 80

5.5 A NICETEXT dictionary . 84

5.6 A text-sample of Chapman’s system . 85

5.7 A text-sample of Wayner’s system . 86

5.8 A text-sample of Atallah’s system . 88

5.9 ANL trees as produced by Atallah’s system 89

6.1 Comparison of schemes. 99

6.2 Disjunct synsets . 100

7.1 How word-choices are assigned to blocks. 106

7.2 Blocking by Method I . 109

7.3 Blocking by Method II . 110

7.4 Splitting word-choices into atomic units. 111

7.5 Assigning Blocking-Methods to elements. 114

7.6 An exemplaric coding-scheme. 115

7.7 Encoding a secret . 119

7.8 Decoding the secret again . 120

8.1 Two kinds of ambiguity. 125

Dear Diary,

Jan-07: Eve’s Diary

���������	�
������
 ����������� �������
� �!�"�#�$��%&�����'�$(���)*�,+-�.���/�$���0�1��+2+3�54768���96:+3�!�$�
�#�");���<6��=�>�#?@?@�A����?B�
�C�$�"�ED:�*?F�G6:+
�A)$��
H�2IJ�$�"�K�.�#�L6:+3���C68���96:+3�>+2�NMA�O�B�<?P��+2IQ
R4=���
����S���� �5�$�<�
� �UT �V�*�;�#�R�$�W���G�$�����B�$�BT:�$���5MG�$�"��?P�G);�:���#?X�A�����
� %

Y"���<�#�Z�$�"�K�=?P���<�[�>�\��� �A�$�"���])*�
6"�"�#�*�$�$(��^�;�=T:�$�#��M_TA�`���W���2+a
�T�b��[?c�
�")$�_�������^de�
�;�,b�?F���$�<�
?f�>�:���#�;�G?F�,b�g]
9� h9b:�3)$M5+-�=?P);�,�NT�T�+3���`���54_���$�"�i�$�$(��j�����$�Z��6:�3��)$�U�AI<6���68�#�
kml �3�nb��$�=o8p
q�rcp

�R?P���9�E�$�#��+2�ts@���!�$�����JT:�$�#��M5�
� �_�$�<�
?_);�:���u);��b:+3�>� �5�XT �G�Lb8);�v��I[�L)$����+2+3�#� ���:p
Y �"�>��+
6"���5T �n�U4���?u6��$�V�*�a�w+2�
�L�t�;���[pyx	��+-�z�$�"��q�{}|9� �V+2�
?K�1��+
6"����T �V�,�3)u)$�����*��)*�;�#�*?
�:);),b��;�$���[p��/�"���0S<�#�\���A�Eb�?P���W�$�<�
?�);�:���=4_��?U�:���-S����#� ��b �#�!�$�E6��$��S9�3���G�>�G4Z�t�$�
���<�3)$�V+-�}+
���3�.��b���~U���F�v�����9���a�.�#�8�Q�t�^�8�#�;���#�8�*
�?P�/�$���#��T�+
���:M�?���6�68�#���$���z�
�1�$�"�
�#�"),�
6"�"�#�$�����>�#?@?@�A���Z��?\)*+3�#���*�$�$(��P
��n�-S9�
� ���>��SA��+2b���T�+3�Z�
��Im�9�$�L���,�3�9���5T ��b���4=�"���$�
?c�
� �n+3�U4`�9�$�<?iT ���V���!��� �W�#�"�����[p

Y �"�	D��*?F�"�$�<�
� �\�9b�?cb���+2+-�G���\�
��?cb8)$�=)*��?P�#?f�
?��$�_)$����)$M\�$���=���9�
���9���#�*�������F�5�8�9�#�8�*�
�5�N���a�*�a�8�9���a���^p`�5�w�f4��$�A�;�L���54_�>�$�"�W);�����*�A)*�$���*?���� �v);��b��<�;���/�"�54��AI��$���w����)$�1��I
�$�"������6�68�����$���B�
�B�$�"�=)*�
6"�"�#�*�$�$(���p��[��+
?P�G4��$�A�;�U�t�J����4�����?X�G68���$)$���<�*�A��� k�l �3�Vb:�$�

1

2

Figure 0.1 Unilateral frequency distribution for the ciphertext.

Figure 0.2 The ciphertext that is to be broken.

o8p2�#rcp
Y �"�X)$�����*��)*�;�#�,�
?F�,�3)*?H�<Im��b�� �Z);�9��D:�$�>���_�B�U?cb�?@6:�3),�3�����$����� �$�"�#�$�]4_��?[�X�:���,b:�*��+

+
���"�Vb��A���_�9�
�$��)*�,+-�`b:� ���#�,+-�9�
� �X�$�"�Z);�����*�A)*�$���@�$?P��h9b8�#�);�9
9T ��)Q��b:?P�U?P���>�Z)$�����*��)*�;�#�*?
�:);),b��;�$���O�Lb)$�/�>�9�$�uI3�$��h9b8���<�,+-�!�$�����1�A�$�"���*?�p`x	� �W),+
��?@?c�3)U�E�V�$�"�:�!Ia�9���#�");���<68�
�,�3�9���
?J�����A�������$�������A�8
�4=�<�3)$�u�
?i?c�
�W6:+-�G�$�G�$�#6:+
�A)$�U+3�V�*�;�#�*?	�
���$�"�_),+3�����*�$�$(���T5�L�A�$���#�
+3�V�*�;�#�*?#
��A)$);�9�$�9�
� �J�$��?P�9�E�\?,�<?F�;�#�W�#�,�3)j?P)$�"�#�E�9
<�9�^�$���\�*�5T�+3� k �$�"�=�F�����0r;
#�;�=�W�5MA�
�t�Hb��:�$�����<�5T�+3��pf�H� �5�$�"�#�H�>�V�$���:���
?=�a�*���<�$�j�5�c�a���a���8
�4=�<�3)$�W�
?J�$�W);����� ���_�$�"�`���$���#�
�
�B4=�9�3)$���$�"�Z+3�n�*�$���*?X��6�68�#���H�
�B�$�"�G),+3�����*�$�$(���p

�X)$��b�+3�}h9b:�3)$M5+-�1�9�
?@�$���V���$�O�$�"��68�9?@?c�NT��2+2�t���z��I]�W�;�*���:?@68�9?c�t�,�3�9� �$?*�<?F�$���v
^?c�
�);�

3

�$�"��+3�n�*�$�#�L ¢¡8£9�9�3�W� �A�i��6�68������pXY �"��+3�n�*�$�#�L ¢¡8£��
?#
��
�>�W���9�!+
��� �Vb:�����#?#
:b�?P���Oh9b:�t�$�
I��$��h9b8�#�9�,+-�[pC��I]�$�<�
?B),�
6"���#�*�$�$(��_�<���1T ���#�C6��$�:�9b)$���zTA�w�E�;�*���:?@68�9?c�t�,�3�9�w?,�<?F�;�#�v

�$�"�`��b��$���9�	4`��b:+3�>���#S<�u�W���:�������E�;�E�#S<���3�!b:?c�
� �G�$�9�
?�+3�V�*�;�#��������+2+Qp_Y �<�
?��
?\4����
�t�=4_��?�I3���`�E�9�$���$�#��?P���:�5T�+3�>�$�}��?@?cb��>���t�����A�y�9�,�3�n�
�:���;���'I3�$�9� ?P�9�>�OIa���$� ��I
?cb"T:?F�,�t�,b��,�3���jp

Y �"�E+3�n�*�$�#�w ¢¤i£�);��b:+3��
RIa�9�`�$(����W6:+3�9
H����S��v�9�,�3�V�
�����$���1I��$�9� ?cb�T:?F�,�t�,b��,�3�9�1Im�9�
 ¢¡8£-
"?c�
�);�u�t���
?Z�>�9?F�JI��$��h9b �#�<�,+-�Eb:?P���>�
�O�$�"��),�
6"�"���,�;�$(���pU¥j�n���9� �u����?��;�E�$�#�L���
�
)Q��b��,�3��b:?#
�?c�
�")$�E�$�"�L�$�$(��Z�
?GS<�#���1?K�"�9�*�P
f��� �w�$�"�>?F�Q���,�
?F�,�3)Q?����$�!�$�"���$��Im�9�$�E�*�#�$�"�#�
�
�:?c�3�V���2D8)Q���<��p��m���$���	���;�B�\�$�"�K�_���A�\�*��b �#�9���>���$���#� �t�"4G��b:+3�U?cb:¦�)$���;�§�$�#�>���!T �#�
¨ ¡:©�ª*«�¬�ªF­K®�
9�Z4`�9�$�W);�9�<�Q���
���
� ���$�"�_�E�9?F�]I��$��h9b8�#�9�,+-�Bb�?P���u+3�n�*�$���*?J�
�/|<�"�V+2�
?K��p

������)*�3�����z�$�v��?@?cb��>�E�/�>�9� ����+
6"����T �V�,�3)=?cb"T:?F�,�t�,b��,�3���zD��*?F��p¯�m�}�$�<�
?u),�
6"�"�#�
�9��+-�u�9�"�\+3�V�*�$���f�
?�?cb"T:?F�,�t�,b��;���G���j���,�
�>��
9T�b<�j�"�54°)$�Ab:+3�W�^);�*�A)$M��$���#�])$�:����%=�/���#�
?cb"T:?F�,�t�,b��,�3���`���A�`6��$���9b8)$���_�$�<�
?),�
6"�"���,�;�$(��c%��/�<���R�9�3���$�<�
?f�*��T�+3��+3�:�<MU+2�NM���%Z��I��;�#�
����S9�
� �_�B)*+3�9?P�#�H+3�:�<M����]�$�"�ZI��$��h9b �#�),�3��?#
8���$��);�:�V���ts@���L�`6����*�;�#�;���$���#���f�<����?P�����
T ��Im�9�$�:p

�^�$���<M��$���<�#�8d±?i�
?@?cb8�=��I��$�"�Z�O��?K�<�
�"�n�;�9�v²���?F�f�$���#�f4���?X?F�,�2+2+�+-�9�
�"�Z���$��b�� �W���
�B����¦�)$�_����?KMG��� ��)$�Ab��<�$���u?P�9�E��+3�n�*�$���*?	�
�O|9� �n+2�
?K��6:+
���
�<�;�$(��P
A��� �G�$�"�#�$�§�t�j4_��?#³
�$�"�Z6����*�$���$�>�������LT ���#�L+3���<M5�
� �UIm�9��p

Y �"��I3�$��h9b8���),�3�#?]Im�9�^�$�"��+3�V�*�;�#�*?G ¢¡8£´
* ¢µ"£´
Q ±¤	£´
���� �w ¢¶B£P�
�W|9� �n+2�
?K�G6:+
���
�9�$�$(��^4`���$�
��{9·�
2¸5·�
t�A·�
f��� �.¹5·fp1Y �"�WI��$��h9b �#�),�3��?�Ia�9���$�"�W+3�V�*�;�#�*?} ¢ºj£-
Q ¢«§£-
Q »©B£´
Q »¼½£ k � �A�;�W�$�"�
�$�KS����*?P�Z��+
6"���5T �n�,�3)J�9�$���#�*r �
�B�$�"�_),�
6"���#�X� 4����<�$�����$�`T:�$���5M�4`���$�=�#¾:·�
´o9·�
-�A·[
5��� �
¹5·jp������<�L�t�P
5�$�"���$�G);��b:+3������S��_T ���#�WT �V�*�$���	�KS9�3���#�);�9
:T�b<�f�$�<�
?J?c�
���2+
���,�t���u4���?i��+2+
�����A�[p

4

Figure 0.3 Unilateral frequency distribution of English plaintext.

�H4_�$�A�$�!���54_�z���1��+
6"���5T �n�P
���?@?P�:),�
�#�$���¿ ¢¡�£�4_�t�$�½ ±ºj£´
§ ¢µ"£<4_�t�$�½ ¢«§£-
§ ¢¤	£94Z�t�$�
 »©B£´
���� �. ¢¶B£V4_�t�$�¯ À¼½£2p<Y8���#�$��T5��
"���<���B�
�LI3��)*�	T:�$�<MA�#�LIm��b��);�:���n4`���$�<?�p��[?c�
�W6:+-�
);�9�<�,�
��b8���E�$�"�u��+
6"���5T �n�X�
�O�$�"��?@���>���9�
�$��)*�,�3����
"4��,�t�,�
� �u���54��>+3�V�*�$���*?U���"�E�$�"���
�
?cb"T:?F�,�t�,b��,�3�����
�v�L�*��T�+3�u�$�����_���$�"��b8���9��);��b:+3�v����S��LT �����/�$�"�W);�:��� kml �3�nb��$�Lo8p±¾Arcp
��b�?P���z�$���#�Z�*��T�+3�E�$�z�$��6:+
��);�z);�����*�A)*�$���*?B�
�}�$�"��),�
6"�"�#�*�$�$(��=��� �}�$�#��+2�ts@���}�$���#�_�t�
�W�A���_68�#�,Ia��)*�]?P���:?P� k�l �3�Vb:�$��o8p
¹�rcp��w�V+2+a
9�t���L�����_?P���>�Z?P���:?P�U���]+3����?F�P
9T�b��]�t�f4���?
b�� ���Ab"T<�*��T�+-�E|9� �V+2�
?K��6:+
���
�<�;�$(���p

Jan-11: Alice’s Diary

�������X�	�
������
 Y"�:�<����
����"�A�$�"�#�]�9� �Z��I:�B���E�#?@?@�����#?]�$�WÁ��<T=4���?��
�<�;�#�$);�#6��$���u��� �
����);�:�����[p¯Y8���z| |:�n� k |5S���d±?!|5S9�2+J�5��),b:�;�t�a�z�i�����)���r_)Q��+2+3���'�>�Ob�6C�$�<�
?u�>�9�;���
� �
���"�14����$�"���C�>�>�$��������4G��b:+3�¯���n�=�
�¯?P�#�,�3��b�?`�;�$��b�T�+3�>�2IZ�_�9�3�<�^de�=?F�$��6C4_��?F�,�
� �
�$�"�V�
�f�,�
�>�9
�?P�#� �9�
�"�U���$��b�� ���#�),���<6��$���EÂ�b��W?cIm��+3���@h9b8�A�;�#?�p���6����*�RI��$���Ã�$�"�_h9b8��?P�
�,�3�9�B4��"�V�$�"���n
:�9�R4=�"�V�$���#�i�"�A�P
8Â�b:�W?cIa�V+3���@h9b8�A�$��?�)$�9��?F�,�t�,b��$�Z�`?P�#�,�3��b�?i�$���$�������$�
�:�#�,�3�9�:��+j?P��)*b��;�t�a��
R�	��?KM����/�B�<?P�V+2I��"�547�J);��b:+3�z��S<�#�$);�9�>�B�$�<�
?�4`�#��MA� �#?@?_�
�w�B�
),�
6"�"���#p

5

Figure 0.4 Two similar patterns.

Donald H. Rumsfeld

Feb. 12, 2002, Department of Defense news briefing

Figure 0.5 The cleartext.

6

934

863

822

617 348

217 435

978 769

132 195 239

242 368 773 437

406 896 301 259

276 279 790 991

311 122 110 475

148 405 802 154

238 076 210 571

362 581 517 744

364 843 626 537 443

092 145 740 928 341 833

913 780 119 910 086 187

485 444 569 897 776 861 530

591 363 173 003 212 550 915

034 662 588 963 941 261 178 890 169

121 722 630 243 719 093 801 245 430 126

369 199 179 474 346 635 168 163 075 803

857 248 417 919 968 104 837 912 929 712

511 095 370 411 618 125 300 693 796 050

533 755 355 705 359 760 384 083 634 628

241 315 167 479 920 783 531 449 674 636 373

082 166 345 298 720 158 052 436 313 434 738 812 033

458 478 921 196 360 408 989 621 974 800 289 516 170 513 365

469 251 037 937 302 551 186 498 642 942 016 514 772 156 204 975 647 529

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Figure 0.6 A code for a homophonic cipher.

�5�9�E���"�54B
��f�<���B�$�!���V�	�,�3�>�AI��$�"��?F�Q���,�
?F�,�3)UÄ0D��"�����$6��,�
�<�*?�Å§�B�W?cb"T:?F�,�t�,b��,�3�9� �
),�
6"�"���§+3�VI��\�
���$�"�uI3�$��h9b8���)��z�9�
?F�;�,�NT�b��,�3�9�jpGY �"�#�C�	���A�/�L?c�
�W6:+3�B�3���#��
f����6:�3)*�$���
�
� l �3�Vb:�$�uo8p-{8p§x	�")$�����V���
��
^�j�;�:�<MB�B�WI3�#S<��b��,�t�$�G6:�3��);���AI[6:+
���
�<�;�$(�� kml �3�Vb��$��o8p
¹�rcp
�m�:?F�;�#���u��I")$�Ab��<�,�
� �i�$�"�\��b��WT �#���AI<�,�
�>��?J����)$����I9�$�"��+3�n�*�$�#�*?i�:);),b��;�$����
��W�5M5�
� �\�
�W���FM`Ia���J����)$�>��)$),b:�$�#�);�9
���4`�Ab:+3����+2+3�:)Q���;�=�Gb����3h9b ����b��!T ���X����)$���,�
�E���G+3�V�*�;�#�
�:);),b��;�$���[p

Y �"�#�Æ�Z?cb"T:�L�t�*�;��� l �3�Vb��$�vo8p-{w�;�ÆÁ��<TÇ��S������w�;�,b�?F�$���y)$�<���:� �V+Qp°Y �"�z���:���
�$�<�
� ��4���?	�$���#�P
Ab:?c�
� ���$�9�
?\)$�����9
��j)$�Ab:+3�B?P�#�"�B�>�#?@?@�A����?i�$�!Á^�9T�
�4Z�t�$�"��b��H�<�#S9�
� �
�$���$�#68�����H�B�<?P�V+2I$p l �9�i�$(����W6:+3�9
9�2If�84����<�$���B�$�u?P��� �u�$�"�Z�>�#?@?@�A���

HELLO

�H);��b:+3�E?c�
�W6:+-�!+3�:�9MBb�6v�9� �B��I^�$�"�u)$�����n4`�9�$�<?_�]�<���E��+2+3�:)Q���$���E�$�È ¢¶B£-
 ��p2��p
551

�$�"���z�9� �L�H�����O��+2+3�:)Q���$���>�$�É ¢¡8£´
8�:p2��p

617

 �$���#�

642
Ia�9�W ¢Ê�£2p Y �"���O�$�"�G+3�V�*�$���E ¢Ê:£

7

4`��b�+3�O��6�68�#�����A�����
�jpuY �"�G4��"��+3�u�3�����O��I��$�9�
?�?P���@)*��+2+3���w�8�������^� ���9�a�_�Q�2�^� �#�K
"�
?
�$���#�j�t���
?	T �V�*�;�#�P
��
�`�$�<�
?�?c�t�,b����,�3�9�^
�� �A�[�$��b:?P�X�$�"�Z);�:���n4`���$�

642
���V���
��
5?c�
�")$�\�$�<�
?

4`��b�+3�L+3���#S<�`���O�<T:?P�#��SA�5T�+3�=6��#�*�$�#�;�L�
�W�$�"�_I3�$��h9b8���)a���@�9�
?F�;�;�NT�b��,�3���jp\Á�b��P
�?c�
�);�B�
���A�u��+2+3��)*�#�$���u?P�0S<�#�*��+8)$�����n4`�9�$�<?#
���+2+8��I�4��<�3)$�!����)$�������$�1 ±Ê:£´
<��);��b:+3��?c�
�W6:+-��b�?P�
���9�2g����$�#�<���9� ��
��:���>��+-�

621

:?P�u�$����?P��);�9� �>�:);),b��$�#�")$�B��I§ ¢Ê:£�4`��b�+3�!T �����);�:�����

�9�2g����$�#�<�,+-��
R��� �wD�����+2+-�z�$�"�É ¢«§£�);��b:+3�}T �����);�:�����w�;�
514

pz�/���#�u|5S��W��� �yÁ��<T
4`��b�+3�LT �Z+3��IN�f4_�t�$���
?i�$���G),�
6"�"���,�;�$(��P

551,617,642,621,514

?c�
�);�����9�3�<�^de� ����S��H�	?cb:�t�*��T�+3�H��+
6"�<�5T �V�"Im�9���#�);�:�9�
� �R��b��WT �#�*?^�$�����:+
���$���:p kmË �#��T �9

�f);��b:+3�L����S��_b�?P�����;�*���9�t�,�3���:��+ Ë ��� �<���,�
�W?c�3�V�:?Frcp

Á�����+2+3�54_�
� �\�$�<�
?iMA�
�"����I"���!T��3�nb:�t����
:���<���`��)*�,b���+2+-�B���������u�*��� ���9�Ì�
��Ia���$�W�A�
�,�3�9�U�$�\�$�"��);���<6��;�:�V�*���v
V?c�
�);���");��b:+3�Z�W�5M��J���*��� �����Ì)$�����3)$�J���"��
��2I Á��<T�4����9�$����

�"��)$�Ab:+3�`�$�"���9�$�V�,�3)Q��+2+-�L�<�#S����
�<�;�#�;6��$�V�$�����t�]�
�B?P�9�>�\4����[p	²"�*�A)*�,�3)Q��+2+-��
��$���#�$��4���?#

TA�����VD����t�,�3�9�^
�� �_�
�9�$�#�;6��$�V�Q���,�3�9�^
�?P�BÁ��<Tu);��b:+3�=?@��Ia�V+-���9�
?@�$���V���$�_�$�<�
?f�
�<Ia�9�;�W���,�3���
��?Zb�?P�V+3�#?@?�� ���
?P��
�4��<�2+3�9
^Ia����|5S���
8�$�<�
?_�
��Ia�9�;�W�#�,�3�9�>4`��b�+3�/?P���;�3�Ab�?c+-�������>�$�E�$�"�
);�9�W6:+3�$(5�t���!�AI �$�"�=����);�:�9�
� �U6��$�:);�#?@?�p

Y �"�#�¯�\�9�3���$�"�L?@���>�B4_�t�$�/�$�"��+3�9� ���#���$�$(�� kml �3�nb��$�!o8p�ÍVrFpw���
�)$�/�X���A�vb�?P���
�$�<�
?=�;�$(��U�$�1���V�;�#�;�L�
� �O�"��4Î�W���9�.)$�:���P4`�9�$�<?B�i4`��b:+3�z�"�����zIm�9�G�#�A)$�}+3�V�*�;�#�P
	�
�9�3�<�^de���<�#S����$�Gb�?P�U���9�W);�:���P4`�9�$�`�Q4Z�3)$��pRY �"��),�
6"�"���,�;�$(��j4���?	�$�"�#�$�VIa�9�$��?c�
�W6:+-���
?P��h9b �#�);����I�);�:���n4`���$�<?[4_�t�$���Z);�9�W6:+3�n�$��+-�>�����������;�Ï�5�N���a�*�a�8�9���a���
��Qp2��p�4_�t�$���KS<�#���
);�:���n4`���$�B��6�68�����,�
� �=�$(���)*�,+-�!���)$��p\º"�#�*���5�@�8���5�P���Q�����8Ð

8

A S W E K N O W T H E R E A R

469 156 647 937 498 016 514 365 204 551 921 772 345 458 289

E K N O W N K N O W N S T H E

315 989 974 800 033 052 158 920 436 373 359 516 170 360 755

R E A R E T H I N G S W E K N

313 095 082 531 248 738 298 186 618 302 434 628 199 479 968

O W W E K N O W W E A L S O K

783 050 712 722 705 346 760 803 126 662 241 642 449 125 411

N O W T H E R E A R E K N O W

719 104 169 674 167 591 384 485 533 300 913 919 963 635 915

N U N K N O W N S T H A T I S

173 975 569 474 119 093 530 740 083 634 355 511 796 408 693

T O S A Y W E K N O W T H E R

929 941 912 857 529 187 092 243 843 003 833 075 370 364 837

E A R E S O M E T H I N G S W

362 369 168 238 163 897 942 148 430 417 720 581 196 245 443

E D O N O T K N O W B U T T H

311 037 910 076 928 890 588 405 626 744 251 513 550 861 179

E R E A R E A L S O U N K N O

276 801 406 121 261 242 034 621 178 517 812 122 363 279 210

W N U N K N O W N S T H E O N

571 896 636 368 444 195 802 154 769 212 086 630 132 110 435

E S W E D O N T K N O W W E D

978 776 475 217 478 790 348 341 780 822 301 991 259 617 166

O N T K N O W

773 863 537 145 934 239 437

Figure 0.7 The same ciphertext, encoded with the homophonic code.

Jan-13: Eve’s Diary

�������B�	�
������
 Y"�:�<���/�$�"�K�z?P���<�_�>�W��� �5�$�"�#�G);�:���L�;�zT:�$���5M�p1x	�);�>�A�����
�w��+2�3);�
���A�w?P�#�9�U�E�>��?@?@�����L�;�'Á��<T�
�� �A��4����<�,�
� �u�$�"�>|"|:�n�Ñ�$�/MA� �54Ã4=���#�§4���?��
��?c�3���
�$���#�J�>��?@?@�����:p	��6�6����$���<�,+-��
���+2�3);�B����?§?P���>�V�$�<�
�"�_�$�W�<�3���9
:��� �zÁ��<T!�
?§?P���>���"��4
�
�9S<��+-S����[p

469 156 647 937 498 016 514 365 204 551 921 772 345 458 289 315

989 974 800 033 052 158 920 436 373 359 516 170 360 755 313 095

082 531 248 738 298 186 618 302 434 628 199 479 968 783 050 712

722 705 346 760 803 126 662 241 642 449 125 411 719 104 169 674

167 591 384 485 533 300 913 919 963 635 915 173 975 569 474 119

093 530 740 083 634 355 511 796 408 693 929 941 912 857 529 187

092 243 843 003 833 075 370 364 837 362 369 168 238 163 897 942

148 430 417 720 581 196 245 443 311 037 910 076 928 890 588 405

626 744 251 513 550 861 179 276 801 406 121 261 242 034 621 178

517 812 122 363 279 210 571 896 636 368 444 195 802 154 769 212

086 630 132 110 435 978 776 475 217 478 790 348 341 780 822 301

991 259 617 166 773 863 537 145 934 239 437

Figure 0.8 The pure ciphertext.

9

�<�������i+3���<M\�#���$�"�J),�
6"���#�*�$�$(��8?K�"�	���A��?P�#�<�"�$�<�
?^�,�
�>� k�l �3�Vb:�$�Xo8p-Ò�r���� �_h9b:�3)$M5+-�
�$��);�:�V���ts@���L�$�����	�;���9�
� �Z�$�WT:�$���5MB�$���#�§);�:���_4`��b:+3�ET �G68���
�<�,+3�#?@?�pUÓG�54Ã)*���1�fD:� �
6����*�;�#�;�:?L�
�É�1?P��h9b8���);�C��I§��b��!T ���*?#
�����)$�Ç��I�4��<�3)$�Æ�:);),b��*?O�$(���)*�,+-�É���)$��% xHI
);��b��*?P�L�H);��b:+3�>��+-4��#�<?��$�<�
�:ME��I����9�E6����*�$���$��?\�
�O�$���#�$�:p�Y �"�`68���
�<�	�
?#
8� �W�W���*�;�#�
4=���#�X�
�<�;�#�;6��$�V�*�#�,�3�9�1��4`��b:+3�/);�9�>�`b�6>4_�t�$��
[�);��b:+3�O�L�5M��`b�6EÔ3b�?F����?U�W�����>�
� �
�$���$6��$�n�*�#�,�3�9�:?��
�L�B���L�
� �B��?H�$�"���$�Z���$�U6:+
���
�<�$�$(��R�>�#?@?@�A����?	�$�<�
?X),�
6"�"�#�*�$�$(��H)$�Ab:+3�
����S����9�,�3�V�
�:�#�$���ZI��$���v
�?P�G�<�L�3���9� Ô3b�?F�^��?�4`��+2+A���9�V�@�^�$�"��);�9�<�$���<�*?]��I5�$�"�	�>��?@?@�����:p

�]?c�
�W6:+-�E�$�#68�9�*�$���L�;�!�B����¦�)$���i�$�����i�$�"�#�$�_4���?U� �B4��#�w�H)$��b�+3�/�KS��#�\T:�$���5M
�$���#�i)$�����:p

Jan-13: Alice’s Diary

���������	�
�����[p������Õ),b:�$�$���<�,+-�`�
�u6��,�
?P�9�jp]ÓG��4Ö�9�3�W�����n�]���#�$��%������9�^de�fMA� �54!p	Äc¥j��b
��?KMA���LIa�9�]�t�0Å5
A4���?J�$�"�V�
�\)$���W�>�#�9�H4=���#�W�$�"�K�E�<�*���������W�E���
�<�$����68��+2�3);��)Q���J��� �
T:�$��b8���9���E�=�"�#�$��p[��� �!�nb8�#?@?	4=���`4���?���+
�$�#���A��4_���t�,�
� ���$�"�#�$�U4��"�#���[���$�,�-S����B�
�
6��,�
?P�9� %×Á��<TjpzÄ@¥���bz���"�O��+2�3);�9
�����bw�Q4`�8
���6�6����$�#�<�,+-�w���#S<�!?P���>�V�$�<�
�"�u�$�/�<�3���9

���"�u�2I"�<��b!���9�^de�j4����<�]b�?��$��MA� �54�
5�$�"�#�u�t���Lb:?F�HT �Z?P���>�V�$�<�
�"���KS9�2+;Ð�Å�
54���?H4=���#�
�$�"�K�`�������;��+3�G�<�
�1p�Y ���#�0dØ?j4������H�^)*��+2+<�
�$���9�[p]��I<4`�\������
��
�`I3��)*�P
��<�3�����#�����9���$�<�
� �
4`��4`��b:+3�O�<TAS9�3�Ab�?c+-�E� �KS<�#�\���#S<��+
��� �����E�
�O6��;�
?P����
<4`��b:+3��4`��%Çpmpmp-T�b��H�$�<�
?_�V�#S<�
�>�����L�3���#�"p

Chapter 1

Introduction

“Everyone has the right to freedom of opinion and expression; this right

includes freedom to hold opinions without interference and to seek, receive

and impart information and ideas through any media and regardless of

frontiers.”

United Nations

Universal Declaration of Human Rights

Technologies for information and communication security have often brought

forth powerful tools to make this vision come true, despite many different kinds of

adverse circumstances. The most urgent threat to security that has been addressed

so far is probably the exploitation of sensitive data by interceptors of messages, a

situation studied in the context of cryptography. Cryptograms protect their message-

content from unauthorized access, but they are vulnerable to detection. This is not a

problem, as long as cryptography is perceived at a broad basis, as a legitimate way of

protecting one’s security, but it is, if it is seen as a tool useful primarily to a potential

10

Chapter 1. Introduction 11

terrorist, volksfeind, enemy of the revolution, or whatever term the historical context

seems to prefer.

Throughout history, whenever the political climate got difficult, we could often

observe intentions to limit the individual’s freedom of opinion and expression. What

is new to the times we are living in, is that we now rely heavily upon electronic

media and automated systems to distribute, and to gather information for us. The

fact that these media do not, by design, rule out the possibility of central control

and monitoring is dangerous in itself. However, the fact that we can now watch the

necessary infrastructures being built should be highly alarming.

This is why I believe that today it is more important than ever before that we

start asking ourselves about the consequences of these infrastructures being controlled

by what we will often refer to as an arbitrator in this report. The connotations of this

English stem already define the setup we are thinking about very well. In German

we use words like willkürlich, tyrannisch, eigenmächtig, and launenhaft for arbitrary,

which could roughly translate back to despotic, tyrannical, high-handed, and moody.

Clearly, it is highly desirable to protect Alice’s and Bob’s freedom to communicate

securely in the presence of Wendy the warden, an individual who controls the used

communication channels and seeks to detect and penalize unwanted communication, a

well-understood setup in information-security studied in the context of steganography.

Whether we write books, articles, websites, emails, or post-it notes, whether

we talk to each other over the telephone, over radio or simply over the fence that

separates our next-door-neighbour’s garden from our own, our communication will

always adhere to one and the same protocol: natural language. So, when we talk

Chapter 1. Introduction 12

about information and communication security, we should be well aware that we

encode most of the information that makes up our society in natural language. The

security of steganograms arises from the difficulty of detecting them in large amounts

of data. Therefore, it seems reasonable to study natural language in the context of

steganography, as a very promising haystack to hide a needle in.

Today, the best-known steganography systems use images to hide their data in.

The most simplistic technique is LSB-substitution. We can think of digital images

with 24 bits of color-depth as using three bytes to code the color of each pixel, one

for the strength of each a red, a green, and a blue light-source producing the color

under additive synthesis. If we randomly toggle the least significant bit (LSB) of each

of these bytes, it will result in the respective color of the pixel deviating in ± 1
256

units

of light-strength. By substituting these LSBs by bits of a secret message, instead of

randomly toggling them, we can in fact encode a secret into the image, and if we do

not expect humans to be able to tell the difference between the original color of a

pixel and the color of the same pixel, after we have made it one of 256 degrees more,

say, reddish, we have in fact hidden a secret.

From linguistics we know that natural language has similar features. For example,

is there a significant difference between Yesterday I had my guitar repaired and I had

my guitar repaired yesterday? Is there a significant difference between This is truly

striking! and This is truly awesome!? We can think of many transformations that do

not change much about the semantic content of natural language text. In this report,

our attention will be devoted to using such transformations for hiding secrets.

Chapter 1. Introduction 13

While automatic analysis of images sent over electronic channels is already diffi-

cult, it is an undertaking that still seems feasible. Natural language text, however, is

so omnipresent in today’s society that arbitrators will hardly ever be able to efficiently

cope with these masses of data, usually not even available in electronic form.

If we already had the kind of technology we envision, it would be possible to

encode a secret PDF-file into a natural language text. It would be possible to dis-

tribute it, by having the resulting text printed, say, onto a t-shirt and showing the

text around on the streets and it would be possible for legitimate receivers to enter

the text into a computer and reconstruct the file again. Most importantly, it would

not be possible for any arbitrator to prove that there is anything unusual about the

text on that t-shirt.

Clearly this vision outlines a long way we will have to go, but we will necessarily

have to build upon two disciplines:

Steganography (also known as “information hiding”, and closely related to “wa-

termarking”) is the art and science of covert communication, i.e. the study

of making sensible data appear harmless. Good introductions to the topic are

given by Katzenbeisser & Petitcolas (2000) and by Wayner (2002a).

The fields of computational linguistics and natural language processing deal

with automatic processing of natural language. The book by Jurafsky & Martin

(2000) serves as a good point of reference.

Combining these two disciplines is not a common thing to do, so all the neces-

sary background, as far as it is relevant to the understanding of the issues discussed

in this report, will be introduced in chapters 2 and 3 for readers with traditional

Chapter 1. Introduction 14

computer science background. As far as steganography is concerned, we will rely on

information-theoretic models. As far as natural language processing is concerned,

we will mainly deal with lexical models. Although other investigations of the topic,

for example, based on complexity-theoretic approaches to steganography, or strictly

grammatical models of natural language, like unification grammars, would surely be

very interesting, we concentrated on these approaches, since they are well understood

and, for a number of reasons we will discuss in chapter 6, most promising to lead to

practical systems in the near future.

Unfortunately, the topic of natural language steganography has not been exten-

sively studied in the past. One significant theoretical result has been achieved, and a

small number of prototypes have been built, each following another general approach.

Currently there is no formal framework for the design and analysis of such systems.

No systematic literature covering relevant aspects of the field has been available, a

gap we will try to fill with this report. In chapter 5, we will investigate the few

systems built so far, and chapter 4 will try to systematize the ideas behind these im-

plementations. A number of issues that are of central importance for building secure

and robust steganography systems in a natural language domain have never been ad-

dressed before. Chapters 7 and 8 will identify some of these problems and will present

approaches towards overcoming them.

Natural language also offers itself to analysis in the context of another topic, fairly

new to computer security. Human Interactive Proofs (von Ahn et al. n.d., 2003, von

Ahn et al. 2004), or HIPs for short, deal with the distinction of computers and humans

in a communication system, and the applications of such distinctions for security

Chapter 1. Introduction 15

purposes. HIPs have been recognized as effective mechanisms to counter abuse of

web-services, spam and worms, denial-of-service- and dictionary-attacks. Throughout

this report, we will often find ourselves confronted with major gaps between the

ability of computers and humans to understand natural language. We will analyze

these with respect to their value to function as HIPs, making it difficult for arbitrators

to automatically process steganograms. This has already lead to the construction of

an HIP relying on natural language as a medium (Bergmair & Katzenbeisser 2004).

It provides a promising approach towards an often cited open problem.

Based on such considerations, we will discuss many properties of natural language

that are highly advantageous from a steganographic point of view. For example, using

natural language, it is possible to encode data in such a way that it can only be

extracted by humans, but not by machines. This provides for a significant security

benefit, since it is a considerable practical obstacle for large-scale attempts to detect

hidden communication.

Summing it all up, we can say that steganography is a highly exciting field to

be working in at the moment, investigating interesting technologies with rewarding

applications already in sight, and natural language is a particularly promising medium

to study in the context of steganography.

Chapter 2

Steganographic Security

Cryptography is sometimes referred to as the art and science of secure communica-

tion. Usually this is achieved by relying on the security of some other communication

system, a system that takes care of distributing a key, which is a piece of information

that makes some communication-endpoints “more privileged” than others. Based on

such a setup, communication channels not assumed to be secure (e.g. a channel where

we cannot disregard the possibility of an eavesdropper intercepting the messages) are

secured, by making them dependent on communication channels we can safely assume

to be secure (e.g. a key distribution system we can trust).

It is important for cryptographers to bear in mind that every piece of information

not explicitly defined as a key is available to everybody. Kerckhoffs’ principle (Ker-

ckhoffs 1883) states that the cryptologic methods used should be assumed common

wisdom.

One approach to security is to represent information in such a way that the re-

sulting datagram will be easily interpretable by privileged endpoints, i.e. ones that

have the right key, while interpretation of the same data by non-privileged endpoints

16

Chapter 2. Steganographic Security 17

poses a serious problem, usually incorporating vast computational effort. Systems

implementing such security are called cryptosystems. The study of how these sys-

tems can be constructed is referred to as cryptography, while the study of solving the

interpretation-problems posed by cryptosystems is referred to as cryptanalysis.

Another approach to security takes into account the awareness of the very exis-

tence of a datagram, as opposed to the ability of interpreting a given datagram. Here

information is represented in such a way that the resulting datagram will be known to

contain secret information only by privileged endpoints (i.e. ones that have been told

where to expect hidden information), while testing whether a given datagram does or

does not contain secret information poses a serious problem for non-privileged end-

points. Analogously, systems implementing such security are called stegosystems, the

study of their construction is called steganography and the study of testing whether

or whether not a given datagram contains a secret message is called steganalysis.

2.1 A Framework for Secure Communication

The purely cryptographic scenario is depicted in Figure 2.1. Alice wants to send a

message to Bob, and she wants to do so via an insecure channel, i.e. a channel Eve the

eavesdropper has access to. One has to assume that whatever Alice submits over this

channel will be received by Bob and will also be intercepted by Eve. Alice and Bob

want to make sure that Bob will be able to interpret the message, and Eve will not.

Therefore, they rely on a trusted key-distribution facility, that will equip both Alice

and Bob, but not Eve, with random pieces of information – keys. Using the key and

the message that is to be transmitted, Alice computes a cryptogram, she encrypts the

Chapter 2. Steganographic Security 18

Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�ÙÙ�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù�Ù

Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�ÚÚ�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú�Ú

?

untrusted

breaking

encryption decryption

Eve

Alice Bob

trusted key−distribution facility

Figure 2.1 The cryptographic scenario. Information is “locked inside a safe”.

Chapter 2. Steganographic Security 19

Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�ÛÛ�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û�Û

Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�ÜÜ�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü�Ü

?

untrusted

contains
hidden
information?
y/n

breaking

Alice Bob

trusted key−distribution facility

cover

stego−object stego−objectmessage message

embedding extraction

Wendy

Figure 2.2 The steganographic scenario. Information has to be read “between the lines”.

message. The properties of the cryptogram make sure that, after transmitting it over

the channel, there will be a simple way for Bob to decrypt the message again (using

the key). However, there will not be a simple way for Eve to break the cryptogram,

i.e. reconstruct the secret message, given only the cryptogram but not the key.

The steganographic scenario is depicted in Figure 2.2. Instead of Eve, the eaves-

dropper, Alice’s and Bob’s problem is that they are now in prison, and their messages

are arbitrated by Wendy the warden. Alice and Bob want to develop an escape-

plan, but Wendy must not “see” anything but harmless communication between two

well-behaved prisoners. (Simmons 1984)

Again Alice wants to submit a message m ∈ M chosen from the message-space M

Chapter 2. Steganographic Security 20

to Bob, and again a secure key-distribution facility makes sure Bob has an advantage

over Wendy when it comes to reconstructing this message. That is, Bob and Alice

know exactly which key k in the key-space K is used (they could have agreed on one

before imprisonment), while Wendy only knows that k must be chosen in one of the

|K| possible ways.

Wendy has a set C, usually disjunct from M , of possible covers that she knows

are harmless, e.g. the set of English greetings. For example, let

C = {Hi!, Good morning!, How are you?}

and

M = {Escape tonight!, Don’t escape tonight!, Can we escape tonight?}.

If Alice sends Hi! to Bob, they can be sure Wendy will not suspect any escape-plans

being developed, but under no circumstances can they send Escape tonight!, since

Wendy will immediately put them into a high-security prison no one has ever escaped

from.

How can Alice and Bob exploit this communication system? A basic idea due

to Simmons (1984) is that of a subliminal channel. We can abuse a cover channel

to submit information (it is not supposed or even allowed to submit) by shifting the

interpretation of the signals sent over the channel. Channels operating under such

a shifted interpretation are called subliminal. A first approach might be to use an

invertible function e : M 7→ C. Then, Alice can map a message m to a steganogram

c, using e(m) = c. Since c ∈ C, Wendy will not find it suspicious, and since the

function is invertible, Bob will be able to compute e−1(c) = m in order to reconstruct

Chapter 2. Steganographic Security 21

the original message. In the simplest case this function could be expressed by a table:

e(Escape tonight!) = Hi!

e(Don’t escape tonight!) = Good morning!

e(Can we escape tonight?) = How are you?

Here e itself would have to act as a key, since if Wendy knows e−1, she can, just like

Bob, check whether or not e−1(c) is a message she should worry about. For example,

if Wendy knows that e−1(Hi!) = Escape tonight!, then she can break the stegosystem

by observing whether there is a correlation between Alice greeting Bob with Hi! and

attempts to escape that night.

A second approach might be to use a non-invertible function e : M × K 7→ C,

to encode a message and a function d : C × K 7→ M to decode it again (for example

assuming d(e(m, k), k) = m). This approach has the advantage that, following Ker-

ckhoffs’ principle, e and d can safely be assumed public knowledge. At this point, one

might see steganography merely as a special kind of cryptography, where we deal with

ordinary cryptograms, but have to use special representations for them, in particular

ones that will not arouse Wendy’s suspicion. This is, of course, only feasible if we

have a precise idea about what will and what will not be suspicious to Wendy. In

other words, we need a model characterizing C. However such a model will usually

only be available in very restricted cases, for example, when Wendy is known to be a

computer behaving according to a known formal model.

A core problem of steganography is therefore the semantic component that enters

the scene when we try to formalize what it means for a steganogram to be innocuous,

Chapter 2. Steganographic Security 22

i.e. when we try to determine C. For example, steganography systems are often

concerned with the set of all digital images. In this work we will be concerned with

the set of all natural language texts. Of course, images where random pixels have

been inverted in color or the like give rise to the suspicion that some unusual digital

manipulation has occurred. A sentence like, Hi Bob! Let’s break out tonight!, is perfect

natural language, but it will clearly not be innocuous. In fact, steganography systems

need to be somewhat more selective about the set of possible covers, e.g. “the set of

all digital images, that could have originated from a digital camera” or “the set of

all natural language texts that could have appeared in a newspaper”. As a result, a

steganography system dealing with JPEG images needs a model far more sophisticated

than the definition of the JPEG-file-format and, analogously, it is crucial for natural

language steganography systems to take semantic aspects into account.

A general design principle for steganography, following from these observations

is that we assume that Alice only uses a subset C ′ ⊆ C of covers. For example, she

could actually take a picture with her digital camera, or she could cut out an article

from today’s newspaper. Then, using the cover c′ ∈ C ′, she performs some operation

e : C ′ × M × K 7→ E called embedding, to map a message m ∈ M to a steganogram

e ∈ E in the set of all possible steganograms E, using a key k ∈ K. This operation

is subject to some constraints which make up a model for perceptual similarity. We

assume that there is some function1 simd(c
′, e) which can be used to determine the

1 Commonly similarity functions are used, where sim : C2 7→ (−∞, 1], such that sim(x, y) = 1

for x = y and sim(x, y) < 1 for x 6= y. Throughout this paper we will, however, use a function

simd(c
′, e), and see it as a distance, to highlight some isomorphisms. Note that simd(c

′, e) is

equivalent in meaning and purpose to sim, but establishes the reverse ordering. One could think

Chapter 2. Steganographic Security 23

perceptual distortion between a cover c′ and a steganogram e. Wendy will see e as

innocuous as long as simd(c
′, e) ≤ δ, i.e. as long as c′ and e differ only in some fixed

amount of distortion δ which cannot be perceived by Wendy. The design goal by

which the embedding function must be defined is that, given a message m that is to

be transmitted using a key k, Alice can select a c′ from the set of covers she actually

has available C ′ in such a way that, if e(m, c′, k) maps to x, there will be a c in the set

of all covers C, which is indistinguishable by Wendy from x, in terms of the perceptual

distance simd. Formally,

∀m ∈ M ∀k ∈ K ∃c′ ∈ C ′ ∃c ∈ C : simd(c, e(c
′, m, k)) ≤ δ. (2.1)

We adopt this approach because a model characterizing C, i.e. a system capable

of generating innocuous covers in the first place, is often difficult or impossible to

construct, whereas a model capturing what deviations from a given innocuous cover

will make it suspicious, is often available.

Of course, there must be a way for Bob to extract the message again. Most

commonly this is done using a function d : E × K 7→ M , the extraction-function.

Some stegosystems need the original cover available for extraction. This could be

viewed as a special case of the system defined so far by letting K = K ′×C ′, i.e. there

is a set K ′, the random keys are chosen from, and a key from the actual keyspace of

the stegosystem is constructed by choosing a k′ ∈ K ′, and by choosing a c′ ∈ C ′.2

In such a system it is necessary to view the choice of a cover, as part of the key,

of it as 1 − sim(c′, e).

2 This would, of course, impose an additional constraint on e, namely instead of e : C ′×M×K 7→

E we have e : {(c′, m, (c′, k′))|c′ ∈ C ′ ∧ m ∈ M ∧ k ∈ K} 7→ E.

Chapter 2. Steganographic Security 24

M
M
M
M
M

2

3

4

5

1 E
E
E
E
E

1

2

3

4

5
M E6 6

1/6
1/6

1/6

1/6

2/3
1/3
2/3
1/3

1/6
1/6
1/6

1/6

1/6
1/6
1/6

1/3
2/3
1/3
2/3

1/6

(a) exploitable keys

M
M
M
M
M

2

3

4

5

1 E
E
E
E
E

1

2

3

4

5
M E6 61/6

1/2
1/2
1/2
1/2

1/2
1/2
1/2
1/2

1/12

2/12
3/12

1/6
1/8

3/12
5/241/12

2/12
1/8

5/24

(b) exploitable messages

Figure 2.3 Two kinds of weak cryptosystems.

since it will be significantly easier for a warden to detect hidden information, given

the original cover. Therefore the choice of a cover (or the cover itself) should in such

systems always be transmitted over secure channels.

2.2 Information Theory: “A Probability Says it All.”

Where do security systems get their security from? What does it mean for a cryp-

tosystem to be perfectly secure? How can a stegosystem ever be secure in the sense

that it is equally difficult to break, than to break a cryptosystem? How can the

“amount of security” we can expect from a security system be measured, when it is

not perfectly secure?

The information-theoretic idea behind a cryptosystem could informally be stated

as “message - key = interceptible datagram”. The information theory behind crypt-

analysis, on the other hand is “intercepted datagram + educated guessing = message”.

Whenever it takes less cryptanalytic guessing than it would take to guess the message

in the first place, the system is, theoretically3 exploitable. Note that the information

3 “theoretically” in the sense of the scenario usually considered in the communication theory of

Chapter 2. Steganographic Security 25

theoretic point of view depends heavily on probabilistic models being available, char-

acterizing the choice of a message and the choice of a key. We saw in the diary-example

why it is reasonable to assume such models for simple cryptosystems.

Figure 2.3 shows two cryptosystems. Messages M1, ..., M6 and a probability-

distribution P (Mi) are given. The system depends on two keys K1, K2 chosen with

probabilities P (Ki). By deterministic processing, based only on the message and the

key, we obtain cryptograms E1, . . . , E6, with probabilities P (Ei|Ki ∧ Mi) depending

only on the key and the message.

Figure 2.3(a) shows a very weak cryptosystem. When cryptogram E1 is inter-

cepted, one can tell that the message this cryptogram originated from is most likely

M1 rather than M2, since the key transforming M1 into E1 is more likely to be chosen

than the key transforming M2 into E1. The impact of this possible exploit is measured

by Shannon (1949) by the key-equivocation4

H(K|E) =
∑

K,E

P (K ∧ E) log
1

P (K|E)
.

In the example, Eve exploited the fact that the substitution-table was not completely

random. Instead of randomly permuting the alphabet, the alphabet had only been

shifted and reversed.

Figure 2.3(b) shows another kind of weakness a cryptosystem could have. In

this system, all keys are equally probable but the messages are not. If message E1 is

secrecy systems, as explained by Shannon (1949). One assumption underlying this setting is

that the “enemy” has unlimited time and manpower available. Today it is more common to

analyze secrecy systems with regard to computationally bounded attackers.

4 Shannon uses the term equivocation in his original paper (Shannon 1949, p. 685). Today the

term conditional entropy is more common.

Chapter 2. Steganographic Security 26

intercepted, there is no way to tell whether the key generating E1 from M1 is more

or less likely than the key generating E1 from M2, but since M2 is, per se, more

likely than M1, M2 will possibly be the solution to this cryptogram. This exploit is

quantified by Shannon (1949) as the message-equivocation

H(M |E) =
∑

M,E

P (M ∧ E) log
1

P (M |E)
.

In the example, Eve exploited the fact that Alice had encrypted English-language-text,

so she knew some probabilities of the message underlying the cryptogram.

Therefore the most desirable cryptosystem is one with keys equally probable

and with messages equally probable. Shannon (1949) shows, in detail, why perfectly

secure cryptography can only be achieved if we allow at least as many keys as there are

messages. For our purposes, the intuitive picture shall suffice. When there are more

messages than there are keys, it will always be possible, by simply guessing the keys,

to determine the message (however, by possibly using vast computational resources).

Since guessing the key amounts to less information than guessing the message, this is

considered a weakness, from the information theoretic point of view.

What we have considered so far is the upper triangle (MKE) of Figure 2.4,

respectively that which is labelled R in Figure 2.6. Each arc in the relation R in

Figure 2.6 corresponds to the choice of one of six equally probable keys. (Keys were

not labelled with their probabilities here for the sake of clarity). From what was

defined so far, R is a perfect cryptosystem, if its input is uniformly distributed. As a

result, its output will be uniformly distributed as well.

For analyzing the impact of non-uniformly distributed messages, it might be

helpful to view the input of this cryptosystem as originating from a relation Q, which

Chapter 2. Steganographic Security 27

provides perfect compression. So, given that R is a perfect cryptosystem, Q ◦R offers

perfect secrecy, if Q offers perfect compression.

Turning back to Figure 2.4, there is one influence on E we have not yet considered.

A secrecy system that takes into account the influence from C to E, follows the basic

idea of mimicry (Wayner 1992, 1995). Here C is a set of possible covers, in the sense

of a steganography system, and we are given the probabilities P (Ci) for innocuous

covers to occur.

If the probabilities of our cryptosystem’s output E, given by P (Ei), which de-

pends only on P (Mi) and P (Ki), are different from the probabilities of innocuous

covers P (Ci), then a one-to-one correspondence between cryptograms E and sus-

pectedly innocuous covers C will clearly be exploitable, since covers will occur with

“unnatural” probabilities. This could be quantified by what one would be tempted

to call the cover-equivocation, although this term is not commonly used:

H(C|E) =
∑

C,E

P (C ∧ E) log
1

P (C|E)
.

Cachin (1998) goes yet a bit further and uses the relative entropy D(C||E), also called

Kullback-Leibler distance, to investigate, from a statistical point of view, a stegana-

lyst’s hypothesis-testing-problem of trying to find out whether or not covers have

originated from a stegosystem. For this purpose we need two distributions PC(c) and

PE(c), where the former is the probability of a cover being produced “naturally” and

the latter is the probability of a steganogram being produced from the stegosystem.

(Both distributions are over all datagrams that can be submitted over the channel,

e.g. C ∪ E):

Chapter 2. Steganographic Security 28

K

E

C

M

X

H(M
|X)

Q
R

S

H(K|E)

H(M|E)
H(C|E)

Figure 2.4 Message, key, steganogram, cover, and how they relate to each other

D(C||E) =
∑

c∈C

PC(c) log
PC(c)

PE(c)
. (2.2)

This measure is not a metric in the mathematical sense, but it has the important

property that it is a nonnegative convex function of PC(c) and is zero if, and only

if, the distributions are equal. The larger this measure gets, the less security we can

expect from the stegosystem.

For analyzing the impact of the cover-distribution, it is convenient to view the

output of a perfect cryptosystem (such as R) as the input to a relation S providing

mimicry. Given that R is a perfect cryptosystem, R ◦S will be a perfect stegosystem,

if S is the inverse of perfect compression, i.e. perfect mimicry. As can be seen in

Figure 2.5, mimicry is basically defined as a relation transforming a small message

space with equally probable messages into a larger message space with messages dis-

tributed according to cover-characteristics. The exact opposite is compression, which

is supposed to transform large non-uniformly distributed message spaces into small

ones.

Considering the parts of Figure 2.6, there is no commonly agreed upon notion of

Chapter 2. Steganographic Security 29

1/6
1/6

1/6
1/6

1

1
1
1

1

M
M
M
M
M
M

1

2

3

4

5

61/6

1/6
1/6
1/6

1

2

3

4

5

6

7

8
1

1/24
1/24
1/24
1/24

1/2
1/2

2/6
1

1/6
X
X
X
X
X
X
X

X

(a) compression

1/6
1/6

1/6

1/6
1/6
1/6

1/6
2/6
1/6
1/6

1

1

1

1
1

2/10
3/10
5/10

3/60
5/60

2/60

C
C
C
C
C
C
C

1

2

3

4

5

6

7

1

3

4

5

6

2

E
E
E
E
E
E

(b) mimicry

Figure 2.5 Mimicry as the inverse of compression.

1/6
1/6

1/6
1/6

1

1
1
1

1

1/6

1/6
1/6
1/6

1

1/24
1/24
1/24
1/24

1/2
1/2

2/6
1

1/6

1/6
1/6
1/24
1/24
1/24
1/24

2/6
1/6

1/6
1/6

1/6

1/6
1/6
1/6

1/6
2/6
1/6
1/6

1

1

1

1
1

2/10
3/10
5/10

3/60
5/60

2/60

1/6
2/6
1/6
1/6

3/60
5/60

2/60

X M E C
formalization compression encryption mimicry

P Q R S T

interpretation

Figure 2.6 A perfect stegosystem.

Chapter 2. Steganographic Security 30

what deserves to be called steganography. Wayner (1995) emphasizes the importance

of what we have called S as the very core of strong theoretical steganography, while

Cachin (1998) considers R ◦ S in his information theoretic model for steganography,

demonstrating the impact of the cryptographic aspects of a stegosystem. Of course,

reversing the mimicry on a cover that has not actually originated from a stegosystem

will produce “garbage”. A basic requirement is that it should not be possible to

distinguish this “garbage” from what comes out when reversing the mimicry on a

cover that has originated from a stegosystem.

2.3 Ontology: “We need Models!”

Recalling the idea behind practical steganographic covers (“images that could have

originated from a digital camera”, “natural language texts that could have appeared

as newspaper-articles”), the first problem of the information theoretic approach gets

obvious: that of finding a probabilistic model measuring probabilities of such covers.

What is the probability of a yellow smiley face on blue background? What is the

probability of Steve plays the guitar brilliantly? Theoretically, whenever a steganalyst

has such a model, then this model can be used in steganography as well, to construct

a stegosystem where probabilities arising from this model are not exploitable. In

practice, however, the idea of “public wisdom”, when it comes to knowledge about

steganalytic activities, should be doubted.

The second problem was already mentioned briefly. There is no point in producing

digital images, where the statistical distribution of colors of pixels matches that of

digital images taken from a digital camera, if the resulting steganogram is not even

Chapter 2. Steganographic Security 31

syntactically correct JPEG, and there is no point in producing character-sequences

with characters distributed as in English text, if the characters do not even make up

correct words.

The problem goes even beyond purely syntactic issues, into a semantic realm. A

stegosystem that produces covers that are suspicious under a cover’s usual interpre-

tation will clearly be insecure, no matter how low the relative entropy is. We can say,

relative entropy (equation 2.2, in particular) is a “degree of fulfillment” for equation

2.1 from an information theoretic point of view, but it will be necessary to enforce the

fulfillment also from the point of view of a model that takes into account this “usual

interpretation” of a cover.

Such models are available for many kinds of steganography and watermarking sys-

tems, since they can usually rely on simple measurements. In image-based steganog-

raphy, for example, one can compare the deviation in color of a pixel, resulting from

the embedding, to the deviation in color that will be perceivable to a human observer.

[p51] Color values can, for instance, be stored according to their Euclidean

distance in RGB space:

d =
√

R2 + G2 + B2.

Since the human visual system is more sensitive to changes in the lumi-

nance of a color, another (probably better) approach would be sorting the

pallette entries according to their luminance component. [p44]

Y = 0.299R + 0.587G + 0.114B

(Katzenbeisser & Petitcolas 2000)

Chapter 2. Steganographic Security 32

Here formulae are known that capture human perception from a physiologic point of

view, based on simple measurements. Clearly a computer has certain advantages over

a human when it comes to measuring whether or not the color of a pixel is 1 degree

in 256 more red than blue. Since 2004, the ACM even publishes a periodical called

“ACM Transactions on Applied Perception”.

In linguistic steganography this semantic requirement is probably the most diffi-

cult problem that has to be tackled, since we cannot rely on simple measurements.

“A semantic theory must describe the relationship between the words and

syntactic structures of natural language and the postulated formalism of

concepts and operations on concepts.” (Winograd 1971)

However, there is currently no such formalism that operates on all the concepts un-

derstood by humans as the meaning of natural language. If we do not wish to resolve

these problems we have to draw back to the pragmatic approach Winograd used, con-

centrating on a few specific aspects, when we go about postulating such formalisms,

yet have to remain aware of the criticism brought forth by Lenat et al. (1990) about

such approaches:

“Thus, much of the “I” in these “AI” programs is in the eye - and “I” - of

the beholder.” (Lenat et al. 1990)

2.4 AI: “What if there are no Models?”

We saw earlier that breaking a cryptogram should, by definition, amount to solving

a hard problem, such as the information-theoretic problem of “guessing” a solution,

Chapter 2. Steganographic Security 33

or the problem of finding an efficient algorithm that makes a solution feasible with

limited computational resources. The AI-community knows many problems a com-

puter cannot easily solve, therefore posing problems that are not merely difficult to

solve within a given formalism, but that are difficult to solve due to the very fact that

we do not know any formalism in which they could be solved at all. The value of

such problems from a cryptographic point of view has recently been discovered to tell

computers and humans apart.

Generally, such a cryptosystem is called Human Interactive Proof, HIP for short

(Naor 1997, First Workshop on Human Interactive Proofs 2002). The most prominent

characterization of an HIP is the Completely Automated Public Turing Tests to Tell

Computers and Humans Apart, CAPTCHA for short, as described by von Ahn et al.

(2003). The name refers to Turing’s Test (Turing 1950), as the basic scenario. Humans

and computers are “sitting in” black-boxes of which nothing but an interface is known.

This interface can equally be used by computers or humans, which makes it difficult

to tell computers and humans apart. However, the scenario differs from the original

Turing-Test in that it is “completely automated”, which means that the judges cannot

be humans themselves. Therefore the scenario is sometimes referred to as a Reverse

Turing Test. The requirement for the test to be “public” refers to Kerckhoffs’ principle.

The most prominent HIPs are image-based techniques, employed, for example,

in the web registration forms of Yahoo!, Hotmail, PayPal, and many others. In order

to prevent automated robots from subscribing for free email accounts at Yahoo!, the

registration form relies on having the user recognize a text appearing in a heavily

distorted image. There is simply no technique known to carry out such advanced

Chapter 2. Steganographic Security 34

optical character recognition, as it would take to automatically recognize the text.

However, humans seem to have no problem with this kind of recognition. Since the

distortion of these images can be done automatically, such methods can safely regard

their image-databases, lexica, and distortion-mechanisms as public knowledge. In the

end, security relies on the private randomness used by the distortion-filters, and since

the space of possible transformations is large enough, this method can provide solid

security.

The problem is closely linked to linguistic steganography. If natural language

steganograms could be constructed in such a way that they cannot be analyzed fully

automatically, it would make an arbitrator’s job much more difficult. A great advan-

tage of linguistic steganography over other forms of steganography arises from the

large amounts of data coded in natural language. Arbitrating such large amounts

of data is nearly impossible, and even more so if we manage to prevent computers

from doing the job. One of the highlights of the method presented herein is a layer of

security that arises from such considerations.

The creation of a true CAPTCHA in a text-domain, in the sense of an HIP

that does not rely on any private resources however, is still an open problem. It was

motivated by von Ahn et al. (2004) by the need for CAPTCHAs that can be used also

by visually impaired people. Human-aided recognition of text in the sense of an HIP

had already been under investigation in the context of this project, when Luis von

Ahn published the problem-statement in Communications of the ACM in February

2004. Bergmair & Katzenbeisser (2004) give a partial solution, an HIP which relies

on the linguistic problem of lexical word-sense disambiguation. The approach cannot

Chapter 2. Steganographic Security 35

Which of the following are meaningful replace-

ments for each other?

© She walked home alone in the dark?

© She walked home alone in the night.

© She walked home alone in the black.

© She walked home alone in the sinister.

© She walked home alone in the nighttime.

Figure 2.7 A tough question for a computer.

claim to provide a fully “public” solution, since it relies on a private repository of

linguistic knowledge. However, it has the ability to learn its language, therefore this

database can be viewed as a dynamic resource. The assumption that, based on an

initial private “seed” of linguistic knowledge, this dynamic resource grows faster than

that of any enemy is not unreasonable, and therefore the impact of the approach to

rely on a private resource is limited. Eliminating the need for such a private database

would be desirable, but remains an open problem.

The basic setup that allows distinguishing computers and humans in a lexical

domain is a lexicon’s inability to truly represent a word’s meaning. Linguists have

found out that it is hardly possible to “define” a word in a lexicon, or in any other

formal system, in such a way, that a word’s “meaning” would not change with the

syntactic and semantic context it is used in.

The creators of the most prominent lexical database WordNet, saw meaning

closely related to the linguistic concept of synonymy. By their definition “two ex-

Chapter 2. Steganographic Security 36

pressions are synonymous in a linguistic context C if the substitution of one for the

other in C does not alter the truth value” (Miller et al. 1993). A linguistic context

might for example be a set of sentences. Observing a set of sentences and their truth

values, if we find that the sentences’ truth values never change, when a specific word

is substituted for another, then the two words are synonymous.

Therefore we can never define what it means for a word to be synonymous to

dark. The best we can do is to state that there exists a linguistic context in which

dark can be interchanged by black or sinister, and there exists a context in which dark

can be interchanged by night or nighttime. Consider, for example, the sentence She

walked home alone in the dark. A native speaker would probably accept She walked

home alone in the night or She walked home alone in the nighttime but not She walked

home alone in the black or She walked home alone in the sinister. On the other hand,

consider the sentence Don’t play with dark powers. Here Don’t play with black powers

or Don’t play with sinister powers would be correct, but Don’t play with night powers or

Don’t play with nighttime powers would not. Therefore the question in Figure 2.7 will

be very difficult to answer for a computer relying on a lexicon while it is trivial for a

human.

Chapter 3

Lexical Language Processing

In the previous chapter we discussed what steganography is all about. Since we

want to put a strong emphasis on lexical steganography, we will dedicate this chapter

to lexical language processing. Especially the problem of sense-ambiguity is highly

relevant, not only because it enables linguistic HIPs, which were briefly presented in

the previous section. As we will see later on in this work, enabling stegosystems to

mimic these peculiarities of natural language can be highly security-relevant as well.

The problem of word-sense ambiguity can be traced back to the question, “What

is the meaning of a word?”. It opens up a philosophical spectrum of thought:

The Lexical View: Two symbols have the same meaning if they appear in

linguistic expressions, and the choice for one of the symbols does not affect the

meaning of the expression.

The Contextual View: Two symbols have the same meaning if they appear

in linguistic expressions, and the choice for one of the expressions does not affect

the meaning of the symbol.

37

Chapter 3. Lexical Language Processing 38

move impress strike motion movement work go run test

s1 1 1 1 0 0 0 0 0 0

s2 1 0 0 1 1 0 0 0 0

s3 1 0 0 0 0 0 1 1 0

s4 0 0 0 0 0 1 1 1 0

s5 0 0 0 0 0 0 0 1 1

. . .

(a) the lexical matrix

C1 C2 C3 C4 C5 C6 C7 C8 C9

s1 1 1 1 0 0 0 0 0 0

s2 1 0 0 1 1 0 0 0 0

s3 1 0 0 0 0 0 1 1 0

s4 0 0 0 0 0 1 1 1 0

s5 0 0 0 0 0 0 0 1 1

. . .

(b) the “contextual matrix”

Figure 3.1 Ambiguity in the matrix-representation.

Chapter 3. Lexical Language Processing 39

... go run ...

... work ...

... move ...

(a) lexical semantics

Austria’s one of my

color
national

colors
favourite

copying−
paper is

blood
is ...

... is

colored ...

... is

(b) “contextual” seman-

tics

Figure 3.2 Ambiguity illustrated by VENN-diagrams.

3.1 Ambiguity of Words

The creators of WordNet, perhaps the most prominent lexical resource in Computa-

tional Linguistics, define the notion of synonymy as follows:

“According to one definition (usually attributed to Leibniz) two expres-

sions are synonymous if the substitution of one for the other never changes

the truth value of a sentence in which the substitution is made. By that

definition, true synonyms are rare, if they exist at all. A weakened version

of this definition would make synonymy relative to a context : two expres-

sions are synonymous in a linguistic context C if the substitution of one

for the other in C does not alter the truth value.” (Miller et al. 1993)

Chapter 3. Lexical Language Processing 40

This definition clearly follows the lexical idea, and it is called a differential theory

of semantics, because meaning is not represented beyond the property of different

symbols to be distinguishable. For example, move, in a sense where it can be replaced

by run or go, has a different meaning than move, in a sense where it can be replaced by

impress or strike. If we wanted our dictionary to model semantics explicitly, we would

have to formulate statements like “use move interchangeably with run, if you want to

express that something changes its position in space” or “use move interchangeably

with impress or strike if you want to express that something has an emotional impact

on you”. However, in differential approaches to semantics, we model meaning only

implicitly, because we cannot formalize the “if you want to express that...”-part of the

above phrases. All we can do is to formulate statements of the form “there exists

one sense for move, in which it can be interchanged by run or go” and “there exists

another sense for move, in which it can be interchanged by impress or strike”.

In this framework, word-meanings s1, s2, . . . emerge from recording words and

their semantic equivalence. In a lexicon, we represent word-forms explicitly. Such ex-

plicit representations of word-forms are called lemmata. For machine-readable lexica,

they are most commonly ASCII-strings of a word’s written form. Meanings of words

are only represented implicitly, by organizing words into semantic equivalence classes,

where “semantic equivalence” is relative to linguistic context.

Miller et al. (1993) used the lexical matrix to demonstrate this relation between

word-forms and their senses. Figure 3.1(a) represents this relation, considering the

words from our example. If we wanted to analyze the meaning of a word, say run, we

would have to look up its meaning. In this case, we would get multiple senses s3,s4,

Chapter 3. Lexical Language Processing 41

and s5. This ambiguity is called polysemy. Inversely, if we want to express a meaning

by a word, we would have to look up all the word forms that express, for example,

meaning s2. Here we would get multiple word-forms: move, motion and movement.

This ambiguity is called synonymy.

3.2 Ambiguity of Context

We can think of context as another view of differential semantics. Let’s rephrase

Miller’s statement, for that purpose, in order to highlight an interesting isomorphism:

According to one definition two expressions are synonymous if the substi-

tution of one for the other never changes the truth value of the expression

that is substituted. By that definition, true synonyms are rare, if they exist

at all. A weakened version of this definition would make synonymy rela-

tive to a variable: two expressions are synonymous for a linguistic variable

L if the substitution of one for the other does not alter the truth value

contributed by L.

Informally, if we have a lexicon but no text, we know everything about the words,

but nothing about their usage. The ambiguity that arises about the meaning of a word

needs to be resolved by knowledge inherent to linguistic context. Analogously, if we

have a text but no lexicon, we know everything about how the words are used, but

nothing about the words themselves. The ambiguity that arises about the meaning

of a text needs to be resolved by knowledge from a linguistic variable.

Chapter 3. Lexical Language Processing 42

We can think about a linguistic variable as a “gap” in a text written as “. . . ”.

For example, if we see

My favourite color is . . .

we know that “. . . ” must be one of red, green, blue, etc. If, for any reason, the

interpreter of the sentence knows that the speaker does not like the color green, then

the choice is even narrower.

Conversely, we can think about linguistic context as the meaning of “. . . ”. For

example, if we see

. . . green . . .

We know that “. . . ” must be one of Grass is . . . , I bought . . . paint, etc.

Formally, we can think of contexts C1, C2, . . . , Cn, arranged in a matrix, much like

the lexical matrix. Figures 3.2(b) and 3.1(b) show the idea of “contextual semantics”

in analogy to lexical semantics.

In the lexical case, we explicitly expressed words, and senses emerged from the

different configurations of these words appearing interchangeably in any context. In

the contextual case, we explicitly express contexts, and senses emerge from the dif-

ferent configurations of them appearing with any word. The example in Figure 3.2

confronts us with the problem that both red and white are national colors of Austria,

and we do not know anything about “my favourite color”, except that it must be a

color. These are contexts that could equally fit for red and white. If we have a third

contextual clue, like blood is . . . , there is only one word left to fill the gap, which is

red.

Chapter 3. Lexical Language Processing 43

3.3 A Common Approach to Disambiguation

In the previous section, we examined the notion of meaning established by differential

approaches to semantics, either based on words or contexts. For our purposes, it

will suffice to view sense-ambiguity as the phenomenon of the lexical formalization

underspecifying the meaning of a word found in a text, so that additional contextual

clues are needed. For example, from a lexical point of view, we would have to expect

that a lemma represents a meaning. However this is not the case with bank, since

bank has a different meaning in The east river . . . was flooded as in This . . . has the best

interest rates.

Since the notion of context turns out to be rather hard to put in formal terms,

as opposed to words which can be represented by a written form, the first step in

the analysis of a piece of text is to resolve a word by the lexicon. Since move is

underspecified by a lexicon, sense-ambiguity arises; if we want to substitute move

by a synonym, we do not know whether to replace it by movement or by impress,

without changing the overall meaning. Therefore, we have to carry out a second step

in the analysis, which is to disambiguate these competing word-senses. This process

is what is usually abbreviated WSD (short for Word-Sense Disambiguation). Such

disambiguation would have to be based on contextual evidence. The advantage of

first letting ambiguity arise in the lexical analysis, and then bringing context into

the picture by a selection-process has the advantage that such a heuristic selection

can usually be carried out, even if we have only a “rough idea” of the context like a

probabilistic formalization based on a few simple assumptions.

Usually the context of a word w is formalized by a window of ±n words around it.

Chapter 3. Lexical Language Processing 44

For a window of ±3 words, for example, we would pick out 7 consecutive words, as they

appear in the text, and denote then as a vector that contains the 3 words immediately

to the left of the word of interest, the word itself, and the 3 words immediately to the

right (although the word itself is, of course, not significant evidence for disambiguating

its word-sense).

We denote a context with:

C(w) = 〈w−3, w−2, w−1, w0, w1, w2, w3〉,

where w0 = w. Words that are insignificant for sense-disambiguation, like function-

words and prepositions, are usually filtered out. For example, in the sentence

Uncle Steve turned out to be a brilliant player of the electric guitar.

a window of ±2 words would formally be

C(brilliant) = 〈Steve, turned, brilliant, player, electric〉.

If L(w) is the set of all possible senses of a word w we can derive from the lexicon,

then we can consider a sense s ∈ L(w) as a correct interpretation of the word, if it

maximizes the conditional probability of appearing in context C(w),

max
s∈L(w)

P (s|C(w)). (3.1)

We could collect statistics for the probability P (C(x)) by analyzing a corpus (a

statistically representative collection of natural language texts). The simplest ap-

proach would be to sense-tag it by hand, i.e. to assign the correct lexical sense

s ∈ L(w) to each word w, and count how often a particular sense appears in this

Chapter 3. Lexical Language Processing 45

context, therefore providing statistics for the probability P (C(w)|s), which we can

always rewrite in the usual Bayesean manner as

P (s|C(w)) =
P (s)P (C(w)|s)

P (C(w))
.

This is why the method is called a Bayes classifier.

The first problem this approach suffers from is that corpora must be sense-tagged

for the specific lexicon that is to be used, which is a tedious and costly task.

The second problem is that of sparse data. Although there are large corpora

available (for example the British National Corpus, contains over 100 Million untagged

words), even the largest ones would not suffice to collect significant statistics for

larger windows. This is why we collect the statistics of a specific word w appearing

anywhere in the context of a sense s, written P (w|s), from the corpus and estimate

the probability of the complete window by assuming the words are independent. This

leads to

P (C(x)|s) =
n

∏

j=−n

P (wn|s).

Although this approach is successfully applied in part-of-speech tagging (an ex-

perimental setup that is very similar to word-sense-disambiguation, in that it assigns

ambiguous semantic tokens to words) and word-sense-disambiguation, the assump-

tion of the words in a context being independent of each other is somewhere between

linguistically questionable and self-contradictory. (Wasn’t the assumption of a func-

tional dependency between subsequent words the very argument we based the idea

of sense-disambiguation by context on?) This is why the method is called the naive

Bayes classifier.

Chapter 3. Lexical Language Processing 46

Using a naive Bayes classifier, we can rewrite Equation 3.1 as

max
s∈L(w)

P (s)
n

∏

j=−n

P (wn|s),

leaving out the division by P (C(w)), since it is constant for all senses.

3.4 The State of the Art in Disambiguation

Of course, the naive Bayes classifier is not the only way to go about WSD. There

have been many approaches to formalizing context, which can be roughly divided into

approaches based on co-occurrence and approaches based on collocation. The former

observe which words occur together with a particular word-sense, at any position in a

word’s context. Decision-lists are suitable data-structures, simply enlisting, for each

word-sense, the words commonly observed in a sense’s surrounding. The latter con-

centrates on observing words at specific positions in the text surrounding a word, for

example, collecting statistics about certain features of these words to point out the

correct word-sense. Of course many hybrid approaches can be thought of, combin-

ing co-occurence and collocation-features. More accurate formalizations of context

could result, for example, from shallow-parsing a document, so a disambiguator could

concentrate on relationships like verb-object, verb-subject, head-modifier, etc.

Once a probabilistic model and its computational framework is set up, different

algorithms for statistical natural language learning can be used to train the model.

Generally we can distinguish

supervised learning (using a completely sense-tagged corpus)

bootstrapping-methods (starting from a small sense-tagged corpus, but further

Chapter 3. Lexical Language Processing 47

improving the system’s performance by collecting statistics from untagged data),

and

unsupervised methods (using only a lexicon and an untagged corpus)

Progress in this evolving field has been measured, amongst others, in the sense-

val initiative, a large-scale attempt to evaluate WSD systems in a competitive way.

A Gold standard corpus was compiled, by having two human annotators tag a sample

of text. A basic requirement was that it should be replicable, so human annotators

would have to agree at least 90% of the time. This corpus consists of a trial-, a

training-, and a testing-set. In senseval-2, participating teams had 21 days to work

with the training data and 7 days with the test data before submitting their systems’

results to a central website for automatic scoring.

Three criteria were evaluated: Recall is the percentage of correctly tagged words

in the complete test set. This measure is a good estimator for the overall system-

performance since it measures how many correct answers were given overall. Precision

is the percentage of correct answers in the set of instances that were answered. This

measure favors systems that “know their limits”, i.e. ones that are very accurate,

even though they might be limited to solving only a small subset. Coverage is the

percentage of instances that were answered. These measures were compared against

the baseline of always choosing the most frequent sense appearing in the corpus.

A highly precise WSD system will enable very secure systems for lexical steganog-

raphy, since it does not leave suspicious patterns in the steganograms. As far as capac-

ity is concerned, there is a tradeoff between precision and coverage. On the one hand,

systems with high coverage will identify more possibilities of word-substitutions, there-

Chapter 3. Lexical Language Processing 48

fore providing more information-carrying elements, resulting in higher capacities for

coding raw data. However, lower precision will result in higher probabilities of incor-

rectly decoding the information which has to be compensated for by error-correction.

Since the redundancy which needs to be introduced by error-correction raises expo-

nentially with the error-probability, one can say that, usually, precision is a more

important criterion for lexical steganography than coverage.

Figure 3.3 shows the results of senseval-2, for the English lexical sample, sorted

by precision. The performance of the “BCU - ehu-dlist-best” system (Martinez &

Agirre 2002) was particularly impressive. It is based on a decision list that only

uses features above a certainty-threshold of 85%, using 10-fold cross-validation. Un-

supervised methods perform below the most-frequent-sense baseline. However, this

comparison is not quite fair, since the most-frequent-sense heuristic is, of course,

based on a hand-tagged corpus, whereas unsupervised WSD systems do not use any

hand-tagged data.

Resnik (1997) cites personal communication with George Miller, reporting an

upper bound for human performance in sense-disambiguation of around 90% for am-

biguous cases, as opposed to the level of recall for automatic systems of up to 64%, as

evaluated in senseval-2. Clearly, there is room for improvement here, but research

into WSD is still under way, motivated by applications in natural language under-

standing, machine translation, information retrieval, spell-checking, and many other

fields of Natural Language Processing. The results of senseval-3 will be presented

in July 2004.

Chapter 3. Lexical Language Processing 49

Precision Recall Coverage System

0.58 0.32 54.92 ITRI - WASPS-Workbench

0.40 0.40 99.91 UNED - LS-U

0.29 0.29 100.00 CL Research - DIMAP

0.25 0.24 98.61 IIT 2 (R)

0.24 0.24 98.45 IIT 1 (R)

(a) unsupervised

Precision Recall Coverage System

0.83 0.23 28.07 BCU - ehu-dlist-best

0.67 0.25 37.41 IRST

0.64 0.64 100.00 JHU (R)

0.64 0.64 100.00 SMUls

0.63 0.63 100.00 KUNLP

(b) supervised

Precision Recall Coverage System

0.51 0.51 100.00 Lesk Corpus

0.48 0.48 100.00 Commonest

0.44 0.44 100.00 Grouping Lesk Corpus

0.43 0.43 100.00 Grouping Commonest

(c) baseline

Figure 3.3 Results of senseval-2: “English Lexical Sample - Fine-grained Scoring” (Senseval 2001).
Only the top five were given here.

Chapter 3. Lexical Language Processing 50

guitar

instrument

object

entity

Figure 3.4 VENN-diagram for the levels of abstraction for guitar.

3.5 Semantic Relations in the Lexicon

Generally one can say x is a hyponym of y if a native speaker would accept sentences

of the form “x is a kind of y”. The inverse of hyponymy is hypernymy, so if x is a

hyponym of y, then y is a hypernym of x. Hyponymy is basically an inclusion-relation,

adding a dimension of abstraction for words.

The idea of inclusion in the space of word-senses is depicted in Figure 3.4. In many

linguistic systems this inclusion is modelled as an inheritance system, so if x is a kind of

y, then x is viewed to have all properties of y, and is only modified by additional ones.

Lexical inheritance can be found in the glossaries of most conventional dictionaries.

If we looked up the word guitar in a dictionary, it would give us a glossary like “a

stringed instrument that is small, light, made of wood, and has six strings usually

plucked by hand or a pick”. Now what is a stringed instrument? If we looked up that

word in the dictionary, we would get something like “a musical instrument producing

sound through vibrating strings”. What does that tell us about guitars? Obviously,

that a guitar is “a musical instrument producing sound through vibrating strings, that

Chapter 3. Lexical Language Processing 51

entity

objectthing cause substance location

animate o. whole artefact natural o.wall

goods material ... surfacetoy

music-box celesta wind i.calliopestringed i.

instrument

banjo koto pianopsalteryguitar

acoustic g. steel g.electric g.

Figure 3.5 A sample of WordNet’s hyponymy-structure.

is small, light, made of wood, and has six strings usually plucked by hand or a pick”.

Thereby we have resolved one level of lexical inheritance, and could recursively apply

this, looking up instrument, and so on.

Note that hyponymy and hypernymy are semantic relations. As opposed to

synonymy and polysemy, which relate words, hyponymy and hypernymy relate specific

senses of words. For example, for one sense,

{bank, banking company, financial institution} IsA {institution}

but for another sense,

{bank} IsA {geological formation, formation}.

Resnik (1998) sees synonymy and polysemy, as a horizontal kind of ambiguity

Chapter 3. Lexical Language Processing 52

and hyponymy and hypernymy as a vertical kind. This idea gets visible in Figure 3.5.

Analogous to synonymy, which confronts us with the problem of choosing the correct

word to express something, hyponymy confronts us with the problem of choosing the

correct level of abstraction, which might be viewed as another kind of interchange-

ability. In many sentences it would be possible to substitute guitar for electric guitar,

based on the fact that an electric guitar is just a special kind of guitar. For example,

instead of Yesterday I had my electric guitar repaired, one could say Yesterday I had my

guitar repaired.

This idea of inheritance is crucial to how hyponymy establishes substitutability.

While Yesterday I had my instrument repaired would probably still be accepted by a

native-speaker, Yesterday I had my entity repaired would already sound quite peculiar.

This could be viewed as a result of the fact that the speaker of Yesterday I had my

guitar repaired, is using guitar, to refer to an object which has certain properties, for

example that it is a physical object which can easily break, and needs repair. Since

entity has not yet inherited these properties from its hypernyms in the lexicon, the

word does not fit in the context.

3.6 Semantic Distance in the Lexicon

Many measures have been proposed that try to capture a degree of semantic sim-

ilarity of two words in a lexicon. These measures are particularly useful in lexical

steganography, since they use the knowledge from a lexicon for a model capturing the

substitutability of words, which is the central issue in lexical steganography. In par-

ticular, we will introduce measures that rely on WordNet’s hyponymy graph, idealized

Chapter 3. Lexical Language Processing 53

as a tree.1

Leacock & Chodorow (1998) rely on a logarithmic measure of the length len(s1, s2)

of the shortest path between two word-meanings s1 and s2. They scale it by the depth

D of the whole tree.

simLC(s1, s2) = − log(
len(s1, s2)

2D
).

The measure of Resnik (1995) is based on the lowest super-ordinate lso(s1, s2),

also known as most specific common subsumer. It is the root of the smallest subtree

containing both s1 and s2. Resnik (1992) points out that, if lexica vary in the depths

of the “hyponymy-tree” in different parts of the taxonomy, this severely limits the

performance of approaches based on path length, so he uses the probability of the

LSO to occur in a corpus instead, as the basis for the information-theoretic measure,

simR(s1, s2) = − log(P (lso(s1, s2))).

Note that he collects the statistics in such a way that P (super) ≥ P (sub), if sub IsA super,

so the probability-spaces themselves reflect the inclusion-properties of hyponymy-

relations. (see Resnik 1998)

Budanitsky & Hirst (2001) compared the most important similarity-measures

based on WordNet for their overall accuracy. They examined the agreement of the

degree of relatedness predicted by these measurements with data from a study by

Rubenstein & Goodenough (1965) asking human subjects to rate the degree of se-

mantic relatedness. Furthermore they investigated the performance of these measures

1 Strictly speaking, the hyponymy-graph, is not a tree, since WordNet’s lexical inheritance systems

makes use of multiple inheritance, much like polymorphous object-oriented systems, therefore

violating the constraint that a tree-node has exactly one parent.

Chapter 3. Lexical Language Processing 54

in a system for malapropism-detection, an experimental setup that widely parallels

the application in lexical steganography. According to their observations, the most

accurate similarity-measure was that of Jiang & Conrath (1997),

distJC(s1, s2) = 2 log(P (lso(s1, s2))) −
(

log(P (s1)) + log(P (s2))
)

.

This measure has, from an information-theoretic point of view, an intuitive ap-

peal, if we bear in mind the idea of lexical inheritance. log(P (lso(s1, s2))) is the

information both senses s1 and s2 share, since it contains features that are inherited

down to both s1 and s2, which is also the idea behind the measure of Resnik (1995).

However, since this measure is supposed to be a distance, rather than a degree of sim-

ilarity, the expression has a positive sign. This amount of information is then reduced

by the information that distinguishes the senses, the features that are specific to the

words, as captured by log(P (s1)), respectively log(P (s2)).

Chapter 4

Approaches to Linguistic Steganography

We have seen in the previous chapters why the study of steganography needs to

be closely linked to that of the channels supposed to cover steganograms and the

interpretation of the usual cover-datagrams.

The structure of this section is aligned along traditional linguistic lines of layers

accounting for atomic symbols, syntax relating the symbols and semantics expressing

their meanings, approached via lexical, grammatical and ontological models.

Since language is essentially redundant, it will carry information that is irrelevant

for understanding its meaning. In the context of steganographic embedding, a good

model for redundant information in language suitable for steganography is meaning-

preserving substitution. Depending on the approach we employ, the term “meaning-

preserving” has different interpretations.

Lexical steganography makes sure that the interpretation of any specific word

does not raise suspicion. The approach is essentially symbolic. Here we call a

substitution meaning-preserving, if it never changes the actual entity referred

to by the symbol.

55

Chapter 4. Approaches 56

Context-free mimicry makes sure that the interpretation of a set of words and

the formal structure interrelating them does not raise suspicion. This is an

essentially syntactic idea. Here we call a substitution meaning-preserving, if it

does not violate grammatical rules.

The ontological approach makes sure that the interpretation of a set of words, the

formal structure interrelating them, and the meaning that is expressed does not

raise suspicion. It is essentially semantic. Here we call a substitution meaning-

preserving, if an explicit representation of the text’s meaning does not change

when the substitution is made.

4.1 Words and Symbolic Equivalence: Lexical Steganography

The most straightforward subliminal channel in natural language is probably the

choice of words. On the word-level, meaning is traditionally linked to the lexical

relation of synonymy. For example, consider the following set of covers:

C = {Midshire is a nice little city,

Midshire is a fine little town,

Midshire is a great little town,

Midshire is a decent little town,

Midshire is a wonderful little town}

We can use synonymy to encode ten states in the above sentences, since two

information-carrying symbols are available, one of which can take on five values,

whereas the other one can take on two values. The first is the choice for either

Chapter 4. Approaches 57

wonderful, decent, nice, fine or great and the other is for either city or town:

Midshire is a



































































wonderful

decent

fine

great

nice



































































little















city

town















.

We call sets of words that can be used interchangeably synonymy sets or synsets

for short and denote them in standard set-notation as

{wonderful, decent, fine, great, nice},

{city, town}.

We have seen in the previous section, how lexica can be used as a source of such

synsets.

A mixed-radix number is one way to encode a secret state in a sentence, if we

think of state in numeric terms. Mixed-radix numbers can be written using positional

notation in the following way (Knuth 1997, p. 208):








. . . , a3, a2, a1, a0

. . . , b3, b2, b1, b0









for 0 ≤ ai < bi. The numeric interpretation of a mixed radix number is

. . . + a3b2b1b0 + a2b1b0 + a1b0 + a0.

Given the bases of an n-digit mixed-radix number bn−1, . . . , b2, b1, b0, we can al-

ways use this numerical identity to uniquely write each number in the range from 0

to
∏

bi − 1 as a sequence an−1, . . . , a2, a1, a0 where 0 ≤ ai < bi for each i.

Chapter 4. Approaches 58

Since, analogously, each sequence of bits of a length ≤ blog2(
∏

bi)c can always

be thought of as a binary number in that range, we can always find a unique mixed-

radix representation for it, and vice-versa. In practice such a conversion can be done

efficiently using Horner’s rule. Knuth (1997, p. 635) gives some examples.

To establish a direct correspondence between a text and a mixed-radix number

encoding document state, let’s establish the convention that the leftmost word in a

text always corresponds to the most significant digit in the mixed-radix representation

of the text and words from the text that do not fall into any synset can be ignored

for this purpose. If a text contains n words w1, w2, . . . , wn that could be replaced

from synsets S1, S2, . . . , Sn we represent state for the subliminal channel by an n-digit

mixed-radix number with bases |S1|, |S2|, . . . , |Sn|. We can then interpret a mixed-

radix digit ai in the range 0 ≤ ai < |Si| as the choice for the ai-th word in synset Si

with respect to alphabetic order.

Turning back to the example, we would encode one of the ten possible states by

a mixed-radix number in the range from zero to nine:









a1, a0

5, 2









.

If we wanted to encode a bitstring 101, we would interpret it as the numeric value 5,

which clearly is in the range from zero to nine. The number 5 can be written in the

above system as









2, 1

5, 2









= 2 ∗ 2 + 1 = 5,

which corresponds to the following choices of words from the synsets:

Chapter 4. Approaches 59

Midshire is a



































































0 wonderful

1 decent

2 fine

3 great

4 nice



































































little















0 city

1 town















.

Therefore, 101 would encode to the sentence

Midshire is a fine town.

However, mixed-radix-conversion is computationally rather intensive, given that

all we want to achieve is a uniquely decodable representation for a bitstring. A more

efficient approach would be to reconstruct the secret message by concatenating code-

words that are directly associated with a word-choice, instead of using mixed-radix

conversion. The most simplistic approach would be to restrict synsets to cardinalities

that are powers of two. For example:

Midshire is a



































































00 wonderful

01 decent

10 fine

11 great

?? nice



































































little















0 city

1 town















.

The fact that nice is never chosen by the stegosystem, although it is sometimes

chosen by native speakers, could be security-relevant. It would, in such circumstances

be better to allow a random choice between two synonymous words that decode to

the same bitstring.

Chapter 4. Approaches 60

Midshire is a



































































00 wonderful

01 decent

10 fine

11 great

11 nice



































































little















0 city

1 town















.

In this example, when encoding the bitstring 11 using the left synset, a random

number generator decides whether it should be encoded to great or nice.

The restriction to block-codes clearly reduces capacity, since fewer states can

be represented by the same elements. Wayner (1992) uses variable-length codes, the

Huffman code in particular, for his mimic functions. Not only do variable-length codes

lift this restriction, they also make it possible to control the probabilities with which

symbols are chosen, as opposed to block-codes where all choices are equally probable:

Midshire is a



































































0 wonderful .5

10 decent .25

110 fine .125

1110 great .0625

1111 nice .0625



































































little















0 city .5

1 town .5















.

In the above example, the variable-length codewords were chosen according to a Huff-

man tree (see Figure 4.1). Recall that, given any set of symbols, a binary prefix-code

can be constructed by arranging the symbols as leafs in a tree in which each node

has two branches. Thinking of them as labeled either with 0 or 1, we can assign a

binary codeword to each symbol by concatenating all the bits along the path from the

root to the symbol. Prefix-codes have the property that they never assign a codeword

Chapter 4. Approaches 61

wonderful

decent

fine

great nice

0 1

©

0 1

©

0 1

©

0 1

©

Figure 4.1 A Huffman-tree of words in a synset.

that is the prefix of another codeword, which is important because otherwise a string

resulting from concatenation of such codewords could not be uniquely deciphered. If

X and Y are two symbols assigned to leaf-nodes nX and nY , then X will of course be

assigned a longer codeword than Y if nX it is at a greater depth in the tree than nY .

Huffman-trees in particular have the important property that they provide optimal

compression in the sense that if X occurs more frequently in a string of symbols that

is to be compressed than Y , then nX will be at a smaller depth in the tree than nY .

Huffman-trees can be constructed for any alphabet.

The code’s impact on the distribution of words in the cover follows intuitively.

In one of two cases (0, 1), a random bitstring will start with 0. Only in one out

of four cases (00, 01, 10, 11), it will start with 10, etc. The probabilities will, of

course, sum up to one, because some choice is made in any case, and since we are

Chapter 4. Approaches 62

using the binary system, the probabilities are restricted to negative powers of two.

Figure 4.2 demonstrates the use of relative entropy for quantifying the security of such

a system. It can be seen that the restriction to negative powers of two is theoretically

exploitable, however, Wayner (1992) shows some approaches that make more precise

mimicry possible.

All approaches we have seen so far have one basic idea in common: transforming

a sequence of symbols

s1, s2, s3, . . . , sn

into a sequence

T (s1) | T (s2) | T (s3) | . . . | T (sn),

which has a “dual” interpretation, one with regard to the cover-channel, one with

regard to a secret message.

Here T is some code that reinterprets single symbols, and | is some operation

that reconstructs the secret message. We have seen three examples for T : a binary

block-code, a binary variable-length code (in particular the Huffman-code) and num-

bers with respect to alphabetic order. The operation most commonly used for “|” is

string-concatenation, since it is simple and computationally efficient. However, other

operations are possible, such as mixed-radix conversion.

4.2 Sentences and Syntactic Equivalence: Context-Free Mimicry

Wayner (1992) demonstrated a more sophisticated approach with his context-free

mimic functions. It provides higher capacities, since it uses not only the choice for

Chapter 4. Approaches 63

Ý�ÞQÞQß�à�á
â$ã�ä0å ß�æ
à änç´çØè<é

Ý�ÞQÞQß�à�á
ê ß�ë å Ý
á å ëVìPÝ

wonderful íAî ï
decent î#ð í
fine ñ�ð î
great ò ñ
nice ó ñ
city óPï ï
town íAî ï
Σ îPô�ô õ�î

ö ß�÷�÷5Ý�á;ë�ø�ëwÞ ä à�à è Ý#ß åBä á åaä0å�ù á å�ù Þ ä�ã�änç æ
è á ù ázÝ#úLÝ#ß�à/ÞQÝPû#ëVà�æ,Þ,ü ä�ã5ã ë ç�ýtç ë åcþ á1á ä0èÑä
ã ë@øXá;ì0àaÝ#ß�÷!øXü ù Þ;ü ù á ê ë ê ù Þ ä0å ë ê å Ý>÷5à änù á;æ
ùtã ì`ÿ ù ê á;ü ù àaë ù2ã á ù�� æ�ø�Ý�à ê æ*á$ë ã#å ë ã Þ�ëná������ è
ç Ý�Ý	� ùtã ì ä0å ñnô�ô á;ë ã#å ë ã ÞQëná
� ñ�� Ý�ú§øXü ù Þ;ü
øXëVàmë/÷5àmÝ ê ß�ÞQë ê � èwå ü5ë ä �5ÝPû�ëvá å ëVì0Ý�á è á;æ
å ë�
���ÞQÝ�ß ã�å�ùtã ì�øXÝ�à ê æ,Ý�ÞQÞQß�àmë ã ÞQëná
� å ü5ë�àmëVæ
á*ß ç±å áRÝ#ú�øXü ù Þ,ü ä àmë�ì ù û�ë ãUùtã�å ü5ë åaä � ç ë��
� ëVÞ änç´ç-ùtã ìJë���ß ä0å�ù Ý ã_ý î � î �

D(C||E) =
∑

c∈C

PC(c) ∗ log
PC(c)

PE(c)

øXëLÞ äVãOã ÝVø ê ë å ëVà�
 ùtã ë å ü5ëBàmë çtä0å�ù û�ëLë ã æ
å àmÝ�÷ è�ä á

D2(C||E) = 42/200 ∗ log2
42/200

8/32
+ 27/200 ∗ log2

27/200

4/32

+ 17/200 ∗ log2
17/200

2/32
+ 9/200 ∗ log2

9/200

1/32

+ 5/200 ∗ log2
5/200

1/32
+ 58/200 ∗ log2

58/200

8/32

+ 42/200 ∗ log2
42/200

8/32
= 0.0247706

Figure 4.2 An example for relative entropy.

Chapter 4. Approaches 64

a word for steganographic purposes, but also the choice for a syntactic structure, re-

lating the words. His approach closely mimics the real structure of natural language,

since it generates context-free structures, just like natural languages do.

Recall that the Kleene-closure X∗ of a set of symbols X is the set of finite se-

quences that can be constructed by choosing each of its elements from X (including

the empty sequence). Further, recall that a context-free grammar G = (V, T, P, S)

consists of a set of variables V , a set of terminals T , a finite set P of productions and

a designated start-symbol S ∈ V . Following Hopcroft & Ullman (1979), if A → β

is a production of P and α and γ are strings in (V ∪ T)∗, we define a relation ⇒ as

αAγ ⇒ αβγ, (αAγ directly derives αβγ). If
∗⇒ is the reflexive and transitive closure

of ⇒, then the language characterized by the grammar G can be defined as

L(G) = {s|s is in T ∗ and S
∗⇒ s}

Clearly, if a string s is in L(G), there will be a sequence of direct derivations of the

form

S ⇒ α1, α1 ⇒ α2, α2 ⇒ α3, . . . , αm−1 ⇒ s.

If there exists only one such sequence (disregarding permutations) for each string

s ∈ L(G), we call G unambiguous, and this is the only case we wish to consider

furtheron.

A probabilistic context-free grammar (PCFG) associates a probability P (p) with

each production p ∈ P to be chosen. If v is a fixed non-terminal variable, then

all productions (v → α) ∈ P are mutually exclusive and the probabilities of these

productions sum up to one.

Chapter 4. Approaches 65

Wendy might be a computer using such a grammar to observe a cover-channel.

A datagram e will be suspicious if e /∈ L(G) and if D(C||E) > ε, where C is the set

of all productions occuring in the cover-channel and E is the set of productions the

stegosystem actually uses to derive e from S.1

Then, if Alice wants to send a message m to Bob, she first has to randomize

her message to get a bitstring B(m) with bits uniformly distributed. Of course she

can not transmit a 0/1-coded random bitstring over a channel, arbitrated by Wendy,

unless {0, 1}∗ ∈ L(G), but she can use G to generate messages that will be in L(G).

To do so, she starts with S, and applies productions to non-terminal symbols

until she is left with a grammatically correct message. Whenever she expands a non-

terminal symbol v, and when there are several productions expanding v, she can use

these “degrees of freedom” to encode some bits from the message.

In fact, the approach is very similar to that presented in the previous section.

Alice constructs a sequence d that serves a dual purpose. First, d will be a sequence

of productions deriving a message e from S, i.e.

S ⇒ α1, α1 ⇒ α2, α2 ⇒ α3, . . . , αm−1 ⇒ e.

Secondly, Bob will be able to use a code T and an operation “|” such that

T (S ⇒ α1) | T (α1 ⇒ α2) | T (α2 ⇒ α3) | . . . | T (αm−1 ⇒ e)

reproduces B(m). The operation “|” used by Wayner is string-concatenation and the

code T is a Huffman-code, where there is a separate Huffman-tree for each set of

1 Note that Wayner himself does not use this notion of relative entropy, however, it goes well both

with what was presented so far and with Wayner’s ideas underlying the information-theoretic

aspects of mimicry

Chapter 4. Approaches 66

productions expanding a non-terminal. (The same restrictions that were presented

in the previous section apply). Note that it would theoretically be possible to use

block-codes or alphabets, or to reconstruct B(m) by mixed-radix conversion, since

we are dealing with nothing but symbolic steganography, with the restriction that

symbols happen to denote productions from a CFG.

If Alice and Bob agree on some parsing-conventions, this sequence will be uniquely

recoverable, given only the steganogram e and the grammar G, and therefore the

bitstring will be recoverable as well. On the other hand, Alice and Bob can be sure

that C is innocuous to Wendy, and therefore they have exploited a subliminal channel.

Let’s consider the example used by Wayner (1992): Figure 4.3 shows a PCFG. The

probabilities are given in parentheses. We could have measured them by counting the

occurences of the productions in a treebank (a statistically representative collection

of syntax-trees). This grammar will, for example, derive a cover

S
1⇒ c1, c1

5⇒ c2, c2
9⇒ c3, c3

20⇒ C

where the numbers are rule-numbers from Figure 4.3 and

c1 = AB

c2 = Good Golly B

c3 = Good Golly, loving E

C = Good Golly, loving is better than pickles for lunch.

In our example, when reconstructing the bitstring

Chapter 4. Approaches 67

S → AB (.25) 00 (1)

S → AC (.25) 01

S → DC (.25) 10

S → DB (.25) 11 (4)

A → Good Golly, (.25) 00 (5)

A → Whoa, (.25) 01

A → Wow, (.25) 10

A → Zounds, (.25) 11

B → loving E (.5) 0 (9)

B → a winter’s night E (.25) 10 (10)

B → friendship E (.125) 110 (11)

B → snuggling E (.125) 111

C → panthers F (.25) 00

C → pterodactyls F (.25) 01

C → Gila monsters F (.25) 10

C → serpents F (.25) 11

D → Hmmm, (.5) 0

D → Well, (.25) 10 (18)

D → I’m not sure about that, but (.25) 11

E → is better than no hair at all. (.25) 00 (20)

E → is a word for kittens (.25) 01

E → is better than pickles for lunch. (.25) 10

E → shouldn’t be overestimated. (.25) 11

F → shouldn’t be left unattended with kittens (.25) 10

F → aren’t such bad pets in the scheme of things (.5) 0

F → are the meanest part of an end. (.25) 11

Figure 4.3 The example grammar by Wayner (1992).

Chapter 4. Approaches 68

T (S
1⇒ c1) | T (c1

5⇒ c2) | T (c2
9⇒ c3) | T (c3

20⇒ C)

we know that T (c2
9⇒ c3) decodes to 0. If we had T (c2

10⇒ c3) it would be 10 and

T (c2
11⇒ c3) would decode to 110, etc. Figure 4.3 shows the bitstrings, assigned by the

Huffman trees for each of the non-terminals.

We can now go through a complete example. The “•” will be used to denote the

current state in reading the secret bitstring and in grammatical production.

1. Start with a bitstring •11101011 and try to encode it to •S . Choose between

the four possible productions to expand an S. Since the string 11 is a prefix of

the secret message and is associated with production (4), use it to expand S to

DB .

2. Encode bitstring 11 • 101011 to •DB . There are three possibilities to expand

D. Since 10 is a prefix of the message, apply production (18).

3. Encode bitstring 1110•1011 to Well, • B

4. Encode bitstring 111010 • 11 to Well, a winter’s night • E

5. Stop at state 11101011• which encodes to

Well, a winter’s night shouldn’t be overestimated. • .

Note that, as opposed to replacement of lexically synonymous words, mimicry

completely disregards semantic aspects of language. Data is not hidden in linguis-

tic ambiguity, but in semantically significant parts of language. Therefore mimic-

functions, as studied by Wayner, can only fool machines, not humans.

Chapter 4. Approaches 69

4.3 Meanings and Semantic Equivalence: The Ontological Approach

Of the techniques considered herein, the ontological one is the most sophisticated ap-

proach with respect to modelling semantics. Instead of implicitly leaving semantics

intact by replacing only synonymous words while embedding information into an in-

nocuous text, an explicit model for “meaning” is used to evaluate equivalence between

texts.

Consider the following examples:

Steve plays the guitar.

The guitar is played by Steve.

Steve plays Evo.

Stefan spielt Gitarre.

Although the question whether or not one can talk about equal or distinct “meanings”

should be left open with respect to its philosophical implications, let’s pretend we

could capture meaning by what McCarthy (1976) calls an Artificial Natural Language

(ANL). The idea is to define the ANL in such a way, that translation from any of the

above natural language sentences to ANL would yield the same representation.

For this to be successful in the above case, we would have to be able to translate

between English and ANL, between German and ANL, we would have to understand

sentences in active-voice and passive-voice, and we would have to make use of some

knowledge about the world under discussion, such as the fact that Steve’s guitar is

named “Evo”.

One formalism traditionally considered a good candidate for an ANL is First-

Chapter 4. Approaches 70

+subject
subject>predicator
+finite
finite>predicator
finite/auxiliary
subject/noun phrase

Indicative

predicator/infinitive
Imperative

+goal
+process
process=finite, predicator

Material Process

Relational Process
...

+actor
actor=subject
+object
object=goal
predicator>object
object/noun phrase

goal=subject
finite/be
predicator/past−participle

Active

Passive

Voice

Transitivity

Mood

Figure 4.4 A simplified version of the example for systemic grammar presented by Jurafsky &

Martin (2000)

Order Predicate-Calculus. The meaning of all of the four above sentences could be

represented by

∃e, s, g : IsA(e,Playing)

∧ Actor(e, s) ∧ HasName(s, Steve)

∧ Experiencer(e, g) ∧ IsA(g,Guitar) ∧ HasName(g,Evo).

The predicate IsA(x, y) reads “x is a kind of y” or “x is an instance of y” and is

frequently used by computational linguists to state inclusion in the broadest sense.

An important property is that it is transitive. Naturally if IsA(x, y) and IsA(y, z)

then IsA(x, z). Everything that has to do with an event is usually described in terms

of its type, an actor and an experiencer. The type of an event could, for example, be

Playing, Writing, Building, indicating that, in this event, someone plays something,

Chapter 4. Approaches 71

someone writes something, or someone builds something. Here it can be seen that an

event’s type is closely linked to the verb used to describe it. If a is an actor taking

part in event e, Actor(a, e) indicates a as the object that causes the event to happen.

It could be indicated by a sentence’s subject. If x is an experiencer taking part in

event e, Experiencer(e, x) indicates x as an object whose state is in any way altered

in the course of the event. It is usually indicated by a sentence’s object.

With respect to this model, the above expression formalizes the meaning of the

sentence by the assertion “There is an e, such that e is the event of playing something,

the actor taking part in e is s, s has the name Steve, the experiencer taking part in e

is g, g is a Guitar, and g is called Evo.”

Linguists call the “semantic” model, just presented “deep structure”. It is a

very vague way of modeling the semantics behind a natural language sentence, and

therefore it might be questioned whether one can talk about a meaning-representation

in the context of deep structure. However, it demonstrates what it takes for a model

to go beyond purely syntactic issues.

Natural language generation is the problem of translating such an ANL represen-

tation to a natural language. In the course of this translation many decisions must

be made. Formalizing these decisions made in the course of generating a sentence

is the basic idea of systemic grammar. One could say that systemic grammars are

somehow anchored in the “semantic” view of language while context-free grammars

take a “more syntactic” point of view. Therefore systemic grammars are often the lin-

guistic model of choice, when it comes to automatically generating sentences. Figure

4.4 shows an example.

Chapter 4. Approaches 72

In this example, generating natural language sentences from meaning, amounts

to making the following decisions:

1. What is the grammatical mood? Indicative or Imperative? (Steve plays the

guitar. or Steve, play the guitar!)

2. What constraints do we have regarding transitivity? Is it a material process,

where the verb expresses something about its noun, as in “Steve is playing.” or

“Steve is waiting.”, or do we have a relational process as in “Steve plays the

guitar.” or “Steve is waiting for the bus.” where the verb relates a subject and

an object?

3. What mood do we want to use? Active as in “Steve plays the guitar.” or passive

as in “Steve is played by the guitar.”?

If we have a specific meaning “in mind” (or rather represented in ANL), we can

make different sequences of choices, as we traverse this network, that do not affect

meaning. For example, the decision voice in the grammar tells us, that we can go for

active, which means that the semantic actor will syntactically be in subject position,

and the semantic experiencer will syntactically end up in object position. This would

yield Steve plays the guitar. The grammar also offers passive, which means that the

semantic actor will end up in object position, and the semantic experiencer will end

up in subject position. Then, the very same meaning will be expressed as The guitar

is played by Steve. Almost all such grammatical choices are instances of ambiguity,

where one meaning is expressible in many ways. Of course mood is not the only

example, transitivity could also be used, by generating two sentences Steve plays. The

guitar is played.

Chapter 4. Approaches 73

If we did not have an ANL-representation of a sentence’s meaning available, we

could never judge whether or not two sequences of grammatical choices are equivalent

in meaning. Therefore, this basic approach was presented as the “ontological” one,

since it relies on a formal model of the semantics behind the text that should be

generated.

Note that the symbolic approach is not symbolic because it replaces symbols,

but because it replaces them in such a way, that symbolic “correctness” is preserved,

and analogously the syntactic approach is not syntactic because it replaces syntactic

structures, but because it preserves syntactic correctness. This is crucial to the un-

derstanding of the semantic approach, which does not change semantics, but rather

preserves a specific formal interpretation of the semantics behind a natural language

text.

Chapter 5

Systems For Natural Language Steganography

As we are only yet beginning to understand the cryptographic applications of natural

language systems, there are still only a few implementations of linguistic steganogra-

phy:

1. Tyrannosaurus Lex (Winstein n.d.b,n) substitutes words for synonyms in a text,

coding blocks of data in a mixed-radix-fashion.

2. NICETEXT (Chapman & Davida 1997, Chapman 1997, Chapman et al. 2001,

Chapman & Davida 2002, n.d.) degrades corpora to “style-templates” that spec-

ify sequences of word-types, and mimics them by replacing types by dictionary

words, using a binary block-code.

3. Wayner (2002b) published sample-implementations of his mimicry-systems on

the website to his book “Disappearing Cryptography”. Spammimic (n.d.) is not

an implementation in its own right, but a nice application of Wayner’s system.

It employs a grammar that mimics spam.

4. The system by Atallah et al. (2001, 2003), Atallah & Raskin (n.d.) relies

on transformations closed within an ANL-domain. The method of quadratic

74

Chapter 5. Systems 75

“Risky E-Vote System to Expand” Wired
News (01/26/04); Zetter, Kim [...]

“Risky E-Vote System to Expand” Wired
News (01/26/04); Zetter, Kim [...]

She promises that the workplace comput-
ers people use to vote on SERVE will be

fortified(1) with firewalls and other intru-
sion countermeasures, and adds that elec-
tion officials will recommend that home
users install antivirus software on their PCs
and run virus checks prior to election day.

She promises that the workplace comput-
ers people use to vote on SERVE will be

fortified(1) with firewalls and other intru-
sion countermeasures, and adds that elec-
tion officials will recommend that home
users install antivirus software on their PCs
and run virus checks prior to election day.

Rubin counters that antivirus software can
only identify known viruses, and thus is
ineffective against new e-voting malware;

furthermore(0) , attacks could go unde-

tected because SERVE lacks voter(1) ver-
ifiability.

Rubin counters that antivirus software can
only identify known viruses, and thus is
ineffective against new e-voting malware;

moreover(1) , attacks could go undetected

because SERVE lacks elector(0) verifiabil-
ity.

Rubin and the three(1) other researchers
who furnished the report were part of a 10-
member expert panel enlisted by the Fed-
eral Voting Assistance Program (FVAP) to
assess SERVE. Paquette reports that of the
six remaining FVAP panel members, five
recommended that the SERVE trial pro-
ceed, and one made no comment. [...]

Rubin and the three(1) other researchers
who furnished the report were part of a 10-
member expert panel enlisted by the Fed-
eral Voting Assistance Program (FVAP) to
assess SERVE. Paquette reports that of the
six remaining FVAP panel members, five
recommended that the SERVE trial pro-
ceed, and one made no comment. [...]

(a) original text (b) steganogram

Figure 5.1 An article from ACM TechNews 6(598) with the bitstring 1101 embedded by Winstein’s
system.

residues implements additional cryptographic requirements for watermarking.

5.1 Winstein

Winstein’s system is the basis of what was presented in Section 4.1. A dictionary

groups words into interchangeability-sets; substitution from these interchangeability

sets serves as the linguistic ambiguity that is exploited for carrying the steganogram.

The encoder replaces words in a given innocuous text, by looking them up in a lexicon

Chapter 5. Systems 76

and, if found in an interchangeability set, interpreting them as mixed-radix digits in

accordance with their alphabetic order. Winstein was the first to express the idea of

using mixed-radix coding for this purpose. He also brings up a few interesting issues

with lexical steganography in its pure form.

First, there should be a way to adapt the density of word-substitutions to the

amount of information that needs to be encoded. Encoding in a pure left-to-right

manner when iterating through the words of a document, would result in aggressive

substitution of words at the beginning of a document, until the encoder runs out of

secret bits and then leaving the rest of a document untouched. Secondly, no matter

how sophisticated a linguistic model we can employ, it will still be beneficial to let a

human influence the word-choices, at least to some degree.

These problems are tackled by a blocking-scheme making possible a more evenly

distributed pattern of substitutions and a hash-function providing for a one-to-many

mapping from the secret to the word-configuration, which is why the author can

make the final decision for one of many word-choice configurations that would be

appropriate to encode the secret.

We will demonstrate Winstein’s scheme considering the example shown in Figure

5.2. A cover that contains n words s1, s2, . . . , sn that can be replaced from synsets

S1, S2, . . . , Sn is first analyzed for its total capacity in bits (c = blog2(
∏ |Si|)c). If the

number of secret bits is s, the capacity would suffice to encode the secret c
s

times.

The modulation frequency f is defined by Winstein as the smallest integer f

between 1 and a maximum frequency fmax, such that the capacity given by the word-

choices would suffice to hide the secret f times,

Chapter 5. Systems 77

[6]

n
o
p
q
r

m0
1
2
3
4
5

[8]
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7

[8]
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7

[4]
p
q
r
s

0
1
2
3

[8]
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7

[8]
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7

[6]

n
o
p
q
r

m0
1
2
3
4
5

[4]
p
q
r
s

0
1
2
3

[4]
a
b
c
d

0
1
2
3

[6]

n
o
p
q
r

m0
1
2
3
4
5

[4]
p
q
r
s

0
1
2
3

[4]
a
b
c
d

0
1
2
3

[6]

n
o
p
q
r

m0
1
2
3
4
5

[4]
a
b
c
d

0
1
2
3

[4]
p
q
r
s

0
1
2
3

[4]
a
b
c
d

0
1
2
3

0 0
0
0
0
0
0

1
2

2

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111...

101

111

3

3

0 0
0 1
0 2
0
0 4
0 5
0 6
0 7

01
1 1
1 2
1
1 4
1 5
1 6
1 7

110
101
100
011
010
001
000
111
110
101
100
011
010
001
000

001

0

0

0

0

Secret: 001101110

split according to
oversample−factor o=3

... ... 3

2

1

0
0 1
0 2
0 3
1 0
1
1 2

3
0

2 1
2
2 3
2
2 1

0

2
2

0
0
0
0
0
0
0
0
0
0

0 0
1
2
3
0

1 1
2
3
0
1

2 2
3
0
1
2

3 3

0
0
0
1

1
1
2
2

2
3
3
3

0
0
0

0
0
0

0
0
0

0
0
0......

000
001
010
011
100
101
110
111
000
001
010
011
100
101
110
111...

sort by capacity and block in such
a way that capacitty>=2

110

6*6*4=144>=2

4*4*4=64>=2

8*8=64>=2o*f

o*f

o*f

o*f

Figure 5.2 Encoding a secret by Winstein’s scheme.

Chapter 5. Systems 78

f = min{bc

s
c, fmax}.

In our example we have synsets of capacities 4, 4, 6, 8, 8, 6, 4, 4 and we want to use

them to encode the secret 001101110. The capacity is then given by, c = log2(4 ∗ 4 ∗

6 ∗ 8 ∗ 8 ∗ 6 ∗ 4 ∗ 4) = 19.169925, so the word-replacements allow for encoding 19 bits

of data. The secret has only s = 9 bits of data, so we get a modulation frequency of

f = 2.

The secret is seen as a bitstring, which is is divided into blocks, each of which

contains a number of bits equal to what Winstein calls the oversample factor o. In the

example, if we have o = 3, we would divide the secret 001101110 into three blocks:

001, 101, and 110.

The replaceable words s1, s2, . . . , sn are then composed into blocks in such a way

that a block of words is always “responsible” for encoding a block of bits from the

secret. This assignment is made by traversing a list of the text’s words, sorted by

their synsets’ cardinalities. A block is constructed by assigning words to it, as long

as the block’s capacity in bits is smaller than f ∗ o.

In the example we would reorder the word-choices of synsets from the sizes

4, 4, 6, 8, 8, 6, 4, 4 in such a way, that we have 8, 8, 6, 6, 4, 4, 4. Using this list, we could

assign blocks, however we have to make sure, that the number of configurations for

the block is ≥ 2f∗o, in our example 2f∗o = 22∗3 = 64. We start with the element

of capacity 8. Since 8 < 64 we have to assign another element to get a block 8, 8.

Since 8 ∗ 8 ≥ 64, we can use 8, 8 as the first block. We go on to the next element,

we find that 6 < 64, 6 ∗ 6 < 64, and finally 6 ∗ 6 ∗ 4 ≥ 64, so the next block contains

the elements 6, 6, 4, and so on. This ensures that each block provides for f times the

Chapter 5. Systems 79

00
01
10
11

00
01
02

+1

+1

+1

+1
+1

...

Binary

00
01
10
11
00

Bases 4,3

10
11
12
20
21
22
3001

the configuration with
let the author choose

the most appropriate
word−choices

+1

+1
+1

+1

Figure 5.3 Mapping the bitstring 01 to a mixed-radix number representing word-choices (adapted

from Winstein n.d.b)

capacity necessary to encode its block of secret bits. Recall that, in the example the

word-choices had a capacity of over 19 bits, while the secret had only 9. This scheme

simply distributes the unused capacities over all blocks.

As opposed to choosing the words in a left-to-right manner, this method results

in distributing its replacements over the whole text. Sorting by synset-size ensures

that the positions of replacements are chosen in such a way that words that can be

replaced from larger synsets are always preferred to words that have to be replaced

from smaller ones, regardless of their position in the text (in case we would leave

elements unused, which can be the case if we restrict fmax to small values).

The coding U(x) applied within each block is a hash function converting a given

number x from its mixed-radix representation to a binary number of length o

U(x) ≡ x (modulo 2o)

as demonstrated in Figure 5.3.

This has the advantage that, on one side, there will be multiple x which decode

Chapter 5. Systems 80

00
01
10
11
01
10
11
00
10
11

00
01
02
03
10
11
12
13
20
21

+1

+1

+1

+1
+1

+2to discourage
skip one,

falling in sync

...

00
01
02
10
11
12
20
21
22
30

Bases 4,4

?

Binary Bases 4,3

the least

for all choices
digit coincides
significant

+1
+1

+1

Figure 5.4 Word-choices that coincide (adapted from Winstein n.d.b)

to the same secret bitstring, and on the other, the different x will (usually) result

in different mixed-radix digits am . . . , a2, a1, a0 (where the block consists of m words)

so the author could manually choose that x which results in the most appropriate

word-choices.

A problem is that if the l least-significant digits of the mixed-radix representation

of x satisfy

∏

0≤i<l

|Si| ≡ 0 (modulo 2o)

then these l word-choices will coincide for all the possible x. Instead of x (modulo 2o),

Winstein uses the hash-value

U(x) ≡ x + b x

2o
c (modulo 2o)

in order to “discourage falling in sync with the document state”, as he puts it. This

works perfectly for the example demonstrated in his paper (Winstein n.d.b) in which

o = 2, and |S0| = |S1| = 4. However, we would like to point out the straightforward

case in which

Chapter 5. Systems 81

∏

0≤i<l

|Si| + 1 ≡ 0 (modulo 2o)

since it gives rise to the very same problem with the modified word-choice hash, for

example for |S0| = 3 and |S1| = 4, as demonstrated in Figure 5.4.

Despite these technical problems however, the idea is clear: By providing more

word-choice configurations in each block than there are configurations of the bitstring

we wish to encode in the block, we can get some “degrees of freedom” which can

purposely be left unused by the coding. A secret bitstring could therefore result in a

number of different word-choice configurations. The final decision which of them is

used is not made by the steganographic encoding, but by a linguistic model or by the

author.

Winstein derives his dictionary from WordNet, by intersecting synonymy-sets

that are not disjunct, and filtering out all synonymy-sets that contain only one word.

Some text from an article from ACM TechNews 6(598) was given in Figure 5.1, to

provide an impression of the word-replacements. The dictionary contains the following

interchangeability sets:

{bastioned(0), fortified(1)}

{furthermore(0), moreover(1)}

{elector(0), voter(1)}

{iii(0), three(1)}

Therefore, the text has a storage capacity of four bits, since four replaceable words

appear in the text and each word can be replaced by only one alternative. It is pure

coincidence that all of the interchangeability sets in this example contain exactly two

alternative words, leaving the mixed-radix-number in this example with the same

Chapter 5. Systems 82

digits as the binary representation.

5.2 Chapman

Chapman’s system is named NICETEXT, and it is similar to Winstein’s in that it uses

a purely symbolic model of linguistic similarity. It also relies on word-replacements

from disjunct interchangeability sets. However, as opposed to the system of Winstein,

it requires interchangeability sets to have cardinalities that are powers of two so binary

block-codes can be used. Furthermore, Chapman’s approach does not rely on a given

innocuous text in which to replace words, it rather generates supposedly innocuous

text, using the syntactic structure inherent to a style-template. A style-template

originates from a grammar or from a sample-text.

The former approach relies on a context-free grammar, which is randomly ex-

panded, to create sentences. The terminal symbols of that grammar are word-types.

A common kind of word-types are what linguistis call parts of speech, a concept

that turns out to be very hard to define. As we do not want to go into the linguistic

details here, we will stick with the common-sense definitions of noun (N), verb (V),

adverb (Adv), adjective (Adj), pronoun, preposition (P), conjunction, participle, and

determiner (Det).

For example the grammar

S → NP VP

NP → Det N

NP → N

Chapter 5. Systems 83

VP → V NP

could be used to derive the sentence-model

Det N V Det N

as in The boy chases the ball or to

N V Det N

as in Steve plays the guitar. However, this random expansion of grammar-rules serves

only to derive a sentence model. Coding takes place only by substituting actual words

for word-types. This is not to be confused with context-free mimic-functions that use

context-free productions for actually coding data from the secret message.

The second way of generating sentence-models is by extracting them from given

sample-sentences. For example, the sample-sentence

The boy chases the ball.

could be tagged, to derive the sentence-model Det N V Det N by looking up the

sample-words in dictionaries.

NICETEXT ’s word-types are not in any way limited to the linguistic parts of

speech, they can be defined at any level of granularity for linguistic symbols. In the

original approach, Chapman (1997) used parts of speech as word-types. Since a word’s

part of speech is an abstraction for the syntactic role it can play in a sentence, the

system turned out mimicing the syntactic structure of a given corpus. In a later paper,

however, Chapman et al. (2001) describe the usage of synonymy-classes as basis of

sentence-models, as in:

Chapter 5. Systems 84

John’s [synonymOfCar] is [synonymOfReally] [synonymOfNice].

A dictionary that could be used with the above sentence-model is given in Figure

5.5. The encoder generates a text by randomly choosing a sentence model and choos-

ing words for types in accordance with the assigned codeword. This randomness has

the advantage that the same secret bitstring will result in a different text, every time

the encoder is run. Of course this is a degree of freedom that is left unused by the

coding, and therefore constitutes unused potential.

5.3 Wayner

Wayner’s approach of context-free mimicry has already been presented in Section 4.2.

The only resource it relies on is a probabilistic context-free grammar (PCFG) char-

acterizing the covers that should be mimiced. The most prominent such PCFG is

Wayner’s baseball-game-grammar demonstrated in Figure 5.7. It is employed in the

mimicry applet on the homepage to his book Disappearing Cryptography (Wayner

2002b). Spammimic (n.d.) is another website demonstrating mimicry. This imple-

mentation of Wayner’s system employs a grammar that mimics the appearance of

spam. However, no attempts have been made so far to apply Wayner’s algorithm

with larger-scale linguistic resources and in practical scenarios.

However, a direct implementation of the system would, in practice, be limited

by the inadequacy of context-free grammars as models for natural language. Many

features of the English language are known that cannot easily be modelled by CFGs,

and there are even some peculiarities that cannot be expressed by CFGs at all.

Chapter 5. Systems 85

Type Word Code

[synonymOfCar] auto 000

[synonymOfCar] automobile 001

[synonymOfCar] car 010

[synonymOfCar] jeep 011

[synonymOfCar] limousine 100

[synonymOfCar] motorcar 101

[synonymOfCar] sedan 110

[synonymOfCar] vehicle 111

[synonymOfReally] really 0

[synonymOfReally] very 1

[synonymOfNice] nice 00

[synonymOfNice] cool 01

[synonymOfNice] slick 10

[synonymOfNice] wonderful 11

Figure 5.5 A NICETEXT dictionary (Chapman & Davida 1997)

.

Chapter 5. Systems 86

The Doe and the Lion A DOE hard fixed by robbers taught refuge in a slave
tinkling to a Lion. The Goods under- took themselves to aversion and disliked
before a toothless wrestler on their words. The Sheep, much past his will, married
her backward and forward for a long time, and at last said, If you had defended a
dog in this wood, you would have had your straits from his sharp teeth. One day
he ruined to see a Fellow, whose had smeared for its pro- vision, resigning along
a fool and warning advisedly. said the Horse, if you really word me to be in good
occasion, you could groom me less, and proceed me more. who have opened in
that which I blamed a happy wine the horse of my possession. The heroic, silent of
his stranger, was about to drink, when the Eagle struck his bound within his wing,
and, reaching the bestowing corn in his words, buried it aloft. Mercury soon shared
and said to him, OH thou most base fellow? The Leather and the Newsletter A
MOTHER had one son and one sister, the former considerable before his good
tasks, the latter for her contrary wrestler. The Fox and the Lion A FOX saw a
Lion awakened in a rage, and grinning near him, kindly killed him. [...]

Figure 5.6 A sample of NICETEXT output from the “Aesop’s Fables” style-template as presented
by Chapman & Davida (1997).

It’s time for another game between the Whappers and the Blogs in scenic downtown
Blovonia . I’ve just got to say that the Blog fans have come to support their team
and rant and rave . Play Ball ! Time for another inning . The Whappers will
be leading off . Baseball and Apple Pie . The pitcher spits. Herbert Herbertson
swings the bat to get ready and enters the batter’s box . Here’s the fastball . He
tries to bunt, and Robby Rawhide grabs it and tosses it to first . Hey, one down,
two to go. Here we go. Prince Albert von Carmicheal swings the baseball bat to
stretch and enters the batter’s box . Okay. Here’s the pitch It’s a spitter . High
and outside . Ball . No contact in Mudsville ! Nothing on that one . Nice hit into
short left field for a dangerous double and the throw is into the umpire’s head !
Whoa ! The Blogs need two more outs. Here we go. Albert Ancien-Regime adjusts
the cup and enters the batter’s box . Yeah. And the next pitch is a knuckler .
Nothing on that one . The next pitch is a wobbling knuckler . Whooooosh! Strike
! And the next pitch is a smoking gun . He just watched it go by . The last strike
. Only three chances in this game . He’s hefting some wood . Here we go. Sal
Sauvignon adjusts the cup and enters the batter’s box . Yeah. He’s winding up .
What a fast one that looked like it was rising . Whooooosh! Strike ! He’s winding
up . What what looks like a spitball . No contact in Mudsville ! Here’s the pitch
It’s a wobbling knuckler . Whooooosh! Strike ! He’s out of there . That inning
proves why baseball is the nation’s game [...]

Figure 5.7 The secret message INNOCENT, mimiced by Wayner’s baseball-game grammar (Wayner
2002b).

Chapter 5. Systems 87

5.4 Atallah, Raskin et al.

The system developed by Atallah et al. differs from the other systems in that it

does not aim at steganography in general, but watermarking. Watermarking systems

must fulfill additional requirements, such as robustness and resistance to collusion

attacks. Here adversaries are interested in damaging the watermark without seriously

degrading the cover text.

The system of Atallah et al. also differs in a second important respect. As

opposed to the replacement-systems considered so far, that preserve meaning implic-

itly by carrying out meaning-preserving replacements, this system takes an explicit

approach to meaning by representing semantics in an ANL.

Furthermore, Atallah’s scheme does not embed a secret into a natural language

representation of a cover, but into an ANL representation which needs to be translated

back and forth to natural language.

More formally, the embedding-systems we have seen so far encoded a message

m ∈ M into a cover c′ ∈ C ′, by deriving a steganogram x ∈ E from a function e :

M×C ′ 7→ E, which operates directly on the natural language representation of a cover

c′. Atallah’s scheme, in contrast, first analyzes this natural language representation,

by translating it to an ANL. If ANLC′ is the set of all ANL-represented covers c′ ∈ C ′

and ANLE is the set of all ANL-represented steganograms x ∈ E, then his embedding

function is defined as e : M × ANLC′ 7→ ANLE, and the extraction-function is

d : ANLE 7→ M . However, since the covers need to be represented in natural language

for transmission, we need a natural language analyzer a : C ′ 7→ ANLC′ and a generator

g : ANLE 7→ E, so we can derive a steganogram x ∈ E from a cover c′ ∈ C ′, by

Chapter 5. Systems 88

WASHINGTON/RABAT, Afghanistan
(Reuters) - The United States on Friday
carpet-bombed Taliban front lines in
Afghanistan and dispatched two new spy
planes to pinpoint targets, while at home
troops guarded California bridges against
new terror attacks.

WASHINGTON/RABAT, Afghanistan
(Reuters) - The United States on Friday
carpet-bombed Taliban front lines in
Afghanistan and dispatched two new spy
planes to pinpoint targets, while at home
troops guarded California bridges against
new terror attacks.

The anthrax scare spread abroad. One let-
ter in Pakistan was confirmed to contain
spores of the deadly bacteria but initial
fears that the germ warfare weapon had
also spread to Germany appeared to be a
false alarm.

The anthrax scare spread abroad. One let-
ter in Pakistan was confirmed to contain
spores of the deadly bacteria but initial
fears that the germ warfare weapon had
also spread to Germany appeared to be a
false alarm.

“We’re slowly but surely tightening the net
on the enemy. We’re making it harder
for the enemy to communicate. We’re
making it harder for the enemy to protect
themselves. We’re making it harder for the
enemy to hide. And we’re going to get him
and them,” Bush said.

“We’re slowly but surely tightening the
net on the enemy holding the front lines.
We’re making it harder for the enemy to
communicate. We’re making protecting
themselves harder. We’re making it harder
for the enemy to hide. And we’re going
to get him and the fundamentalist,” Bush
said.

The United States has been attacking
Afghanistan for almost four weeks to root
out the ruling Islamic fundamentalist Tal-
iban and their “guest”, Saudi-born militant
Osama bin Laden, whom Washington ac-
cuses of masterminding the Sept. 11 at-
tacks on New York and Washington that
killed almost 4,800 people.

The United States has been attacking
Afghanistan for almost four weeks to root
out the ruling Islamic fu ndamentalist Tal-
iban and their ”guest”, Saudi-born militant
Osama bin Laden, whom Washington ac-
cuses of masterminding the Sept. 11 at-
tacks on New York and Washington that
killed almost 4,800 people.

The Pentagon ordered two new spy planes,
including the unmanned “Global Hawk”, to
the region to start flying over Afghanistan.

The Pentagon ordered two new spy planes,
including the unmanned ”Global Hawk”, to
the region to start flying.

(a) original text (b) steganogram

Figure 5.8 A text-sample of Atallah’s system (Atallah & Raskin n.d.)

Chapter 5. Systems 89

for-profic-organization-1

ministry-1

unknown

2 airplane-1, airplane-2 ¡2 spy-on-1

cardinality members set age purpose

set-2

agent theme

deploy-2 region-1

unknown nation-2

agent path

fly-air-vehicle-1

agent theme destination purpose

command-3

author theme

author-event-1

(a) original tree: 111100000101001010101011

for-profic-organization-1

ministry-1

unknown

2 airplane-1, airplane-2 ¡2 spy-on-1

cardinality members set age purpose

set-2

agent theme

deploy-2 region-1

unknown

¿1

cardinality

set-3

nation-1 organization-division nation-2

milit... members set destination

army-1

theme part-of

carry-2

carry-2.destination

agent path

fly-air-vehicle-1

agent theme destination purpose

command-3

author theme

author-event-1

(b) grafting: 100010110001010101100100

for-profic-organization-1

ministry-1

unknown

2 airplane-1, airplane-2 ¡2 spy-on-1

cardinality members set age purpose

set-2

agent theme

deploy-2 region-1

unknown

”US”

nation-1

agent

assault-1 nation-2

begin/continue multiple

phase iteration

aspect

theme

assault-1.theme

agent path

fly-air-vehicle-1

agent theme destination purpose

command-3

author theme

author-event-1

(c) grafting: 011000111110010101110001

for-profic-organization-1

ministry-1

unknown

2 airplane-1, airplane-2 ¡2 spy-on-1

cardinality members set age purpose

set-2

agent theme

deploy-2 region-1

unknown

agent

fly-air-vehicle-1

agent theme destination purpose

command-3

author theme

author-event-1

(d) pruning: 011000011000110011111110

Figure 5.9 The sample trees given by Atallah & Raskin (n.d.).

Chapter 5. Systems 90

applying x = g(e(a(c′), m)) and we can extract the message again using d(a(x)).

Recall that, in order to maintain unique decodability, an embedding function e

and its extraction function d have to be chosen in such a way that d(e(m, c′)) = m, in

the classical case. For Atallah it means that d(a(g(e(a(c′), m)))) = m, i.e. messages

need to “survive” translation back and forth from the ANL to natural language, which

is not quite trivial. However it should make the scheme robust against attacks by an

adversary who can

1. “Perform meaning-preserving transformations on sentences (includ-

ing translation to another language).”

2. “Perform meaning-modifying transformations on sentences (but note

that this cannot be applied to too many sentences, because of the

requirement that the overall meaning of the text should not be de-

stroyed).”

3. “Insert new sentences in the text.”

4. “Move sentences from one place of the text to another (including

moving whole paragraphs, sections, chapters, etc.)”

(Atallah et al. 2001)

To someone whose “philosophic” background is artificial intelligence, the above

approach seems a bit paradoxical. How can transformation on a meaning-representation

ever be meaning-preserving? Here it might be pointed out that the philosophy in-

herent to Atallah’s approach seems to originate from machine translation rather than

artificial intelligence.

If we think of the ANL as a natural language like Spanish, then the above state-

Chapter 5. Systems 91

ments seem reasonable. First, an English-language text s is analyzed using A(s)

to yield an Spanish translation e. Then meaning-preserving transformations on the

Spanish sentences are made using E(e, m) to yield a watermarked version e′. Finally,

the text is generated using G(e′) to yield s′, the English translation. If the adversary

carries out an attack, by translating the text to German, to yield s′′, then it will

still be possible to recover the watermark, since translating the German text s′′ back

to Spanish will basically assure that A(s′′) = A(s′) yields the same result that was

originally the output e′ from the embedding.

However, this will be difficult in practice. The world’s best translators will prob-

ably not come up with the very same Spanish translation when confronted with an

English language and a German language text, even if the two texts agree in even the

finest connotations.

It is crucial to the understanding of Atallah’s approach, that it essentially works

by exploiting the inadequacy of any language, even an artificial, completely formal

one, to fully capture meaning. This is why I prefer the term ANL to TMR (which

is short for “Text Meaning Representation” and traditionally used in the context

of ontological semantics). If a TMR would, in fact, represent meaning, then what

“meta-meaning” would we judge meaning-preservingness by, when we make “meaning-

preserving” transformations? This paradox is not exclusively of philosophic interest.

It has practical implications in the construction of ontology-based watermarking-

schemes.

First, under the common-sense notion of a text’s “meaning”, the “more adequate”

an ANL gets as a meaning-representation, the more difficult it will be to find meaning-

Chapter 5. Systems 92

preserving transformations closed within this ANL-domain.

Secondly, if we reject the idea of a true meaning-representation, then, considering

the state-of-the-art in linguistics, I doubt that natural language watermarks that

reliably “survive” translation from one natural language to another are near at hand.

The search for the “Universal Grammar” can almost be described as a quest

for the holy grail amongst linguists following the tradition of Chomsky (1965) and

Ross (1967). These landmark papers suggested that there might actually be a set

of features common to all natural languages, modified by a small set of options that

are chosen differently in each language. Designing translation-robust watermarking

schemes would simply amount to coding data within such features common to all

languages, while avoiding to code data in features that are specific to single lan-

guages, and would therefore be destroyed in translation. However approaches to such

universal grammars are far from practical applicability in a completely automated

computational setting.

However, it might be pointed out that the sequences of word-choices, or sequences

of context-free productions, considered so far are nothing but simple ANLs. So, no

matter whether or not one accepts the idea of a true meaning-representation, one

will have to admit that Figure 5.8 is an impressive demonstration of what can be

achieved with more sophisticated ANLs. The sentences that contain the watermark

are highlighted in boldface. The left side shows the original version, the right side

contains a watermark.

Figure 5.9 shows some ANL-represented example sentences, and the impact of

two possible transformations, “grafting” and “pruning”. The basic idea of the coding

Chapter 5. Systems 93

technique is to establish a correspondence between a sentence’s tree-structured ANL-

representation and a secret bitstring. Transformations are then applied to the ANL-

representation until the corresponding bitstring yields the desired secret. If this is

impossible, another sentence is used to encode the secret.

Chapter 6

Lessons Learned

6.1 Objectives for Natural Language Stegosystems

Throughout the previous sections we have discussed and evaluated different theoretical

approaches and practical implementations of stegosystems, taking into account many

different criteria. In this section, we will make these criteria explicit, by first proposing

objectives of the functionality we expect of natural language stegosystems, and then

giving advice on design considerations to keep in mind for their construction and

evaluation. We will motivate them by theoretical results we have discussed so far, and

by practical lessons learned from the stegosystems presented in the previous sections.

Functional objectives

(1) Security: It must not be possible to distinguish between a steganogram and a

naturally occuring cover, without knowing a secret key.

Analyzing security often involves establishing a way to measure a “degree of ful-

fillment” for the above proposition. We have seen the approach of Cachin (1998),

94

Chapter 6. Lessons Learned 95

measuring the security via the Kullback-Leibler distance D(C||E) between the distri-

bution of covers P (C) and the distribution of steganograms P (E). Furthermore, we

have seen that it measures security only from an information-theoretic point of view,

and that it is necessary to take into account many other constraints. These could,

for example, arise from syntactic and semantic restrictions imposed by the usual in-

terpretation of covers. We have discussed why this gets especially difficult to put in

formal terms if this usual interpretation is carried out by humans, as is the case with

natural language steganography.

Furthermore, we have seen that the “impossibility” of telling a steganogram from

a real cover, without knowing the secret key, is achieved by constructing the stegosys-

tem in such a way that testing a datagram for secret messages involves solving a hard

problem. Such a problem could be expressed in terms of its computational complexity

or in terms of information-theoretic considerations about “guessing” a key. We have

seen that an HIP can be such a problem, contributing to a steganogram’s security by

making it more difficult to handle by automated systems.

(2) Robustness: It should not be possible to manipulate a steganogram in such a

way that the secret cannot be extracted any more.

This property of a stegosystem is especially important in the presence of an active

warden. An active warden will try to prevent subliminal communication, by imposing

small changes on all datagrams that pass through a gateway under its control. Robust

steganograms will make it more difficult for an active warden to do so.

For watermarking systems, this feature is absolutely imperative, since watermarks

must not be removable. Watermarking is probably one of the more realistic applica-

Chapter 6. Lessons Learned 96

tions of natural language steganography. Natural language channels do not offer as

much redundancy as other media, so we cannot expect natural language steganograms

to offer high capacities for storing secret messages. This is not usually a problem in

the context of watermarking, since watermarks are not usually required to be very

large. However, for other applications of steganography, capacity usually is an issue.

This is another reason why robustness is an important feature for natural language

steganography systems.

Design Considerations

(3) Kerckhoffs’ principle: It is of central importance never to make assumptions

about the “enemy”, except that he does not know the secret key.

This important design consideration comes from experience with cryptosystems in

military applications and has proven to be a valuable lecture for engineering security

systems. In natural language steganography, we have to be aware of the strategically

problematic consequences of propositions of the form, “suppose the arbitrator is us-

ing linguistic model X...”. Whenever the arbitrator actually uses a better linguistic

model, in terms of more accurately capturing human usage of natural language, the

stegosystem is worthless. This has the consequence that the only reliable benchmark

by which a system’s linguistic performance is to be measured is human ability to under-

stand natural language, as opposed to any formal model. Therefore a steganogram’s

property to be indistinguishable from real covers will have to be evaluated empirically

by humans.

(4) The state of the art in natural language processing is a significant limiting factor,

Chapter 6. Lessons Learned 97

determining what we can expect a linguistic stegosystem to do.

We have seen that models for true natural language understanding in the context of

a symbolic system are still in their infancy, and have discussed the implications on

Atallah’s system, which relies on an explicit meaning-representation. We have men-

tioned the inadequacy of context-free grammars as models for natural language and

discussed the implications on Wayner’s system, which relies on PCFGs to characterize

innocuous covers.

(5) Systems following an approach of generating innocuous text, rather than em-

bedding secrets in given texts, are unlikely to yield practically applicable results

in the near future.

Partially motivated by applicability to watermarking, and as a result of (4), we believe

that embedding is the right paradigm for constructing practical systems for natural

language steganography. None of the generation-based systems constructed so far

could fool a human into thinking their steganograms were innocuous text. The authors

of these systems argued that their systems targeted automated arbitrators operating

according to known formal models. However, this argument is problematic in the

sense of (3).

(6) Every symbol chosen by the stegosystem for coding-purposes that can be directly

observed in a steganogram (e.g. word-choices), or that can be derived from

analyzing it (e.g. context-free productions, deriving a steganogram from a given

grammar), is a potential “clue” for detecting hidden messages. A steganogram

must not contain a clue that is never observed in real covers.

Chapter 6. Lessons Learned 98

Examining a single clue, a steganalyst will always suspect the steganogram to contain

a hidden message, if he knows that it can never occur in innocuous covers. This is, of

course, a direct consequence of (1).

(7) A distribution of clues observable in a steganogram P (E) must not be statisti-

cally significant evidence for distinguishing it from naturally occuring covers.

A reasonable approach might be to formulate P (C), the distribution of clues ob-

servable in natural covers, and construct the stegosystem in such a way that the

Kullback-Leibler distance D(C||E) is as small as possible.

(8) Linguistic models for use in natural language stegosystems must not overgener-

ate.

Accuracy of linguistic models is usually analyzed by two properties, their behavior

of overgeneration and undergeneration. If a system produces texts a human speaker

would usually not produce, we say it overgenerates. If a system never produces text

a human speaker would normally produce, we say it undergenerates. Clearly, as a

result of (6) and (7), a natural language stegosystem must not overgenerate, since

this would make a steganogram suspicious to an arbitrator.

(9) Linguistic models for use in natural language stegosystems should not under-

generate.

(10) If there is a tradeoff between making a system overgenerate and making it

undergenerate, it is preferable to make it undergenerate.

Chapter 6. Lessons Learned 99

Winstein Chapman Wayner Atallah

usage stego stego stego watermarking

arbitrator human computer computer human

model symbolic symbolic syntactic semantic

technique embedding generating generating embedding

statistics uniform uniform mimiced N/A

coding mixed radix binary block Huffman quadratic residues

Figure 6.1 Comparison of schemes.

Natural language stegosystems that heavily undergenerate text will produce texts that

significantly deviate from naturally occuring text, therefore violating (7). However,

the significance of this exploit depends on what portion of the text a stegosystem

“touches” at all, and how many transformations are applied, so (9) will usually be

less important than (8), and the impact of (9) will be less significant for embedding

systems.

6.2 Comparison and Evaluation of Current Systems

Atallah’s system is the only one where we cannot disregard the possibility that it could

fulfill the “wishlist” presented in the previous section. Adapting Winstein’s approach

to take into account the above considerations would be possible as well.

Robustness is an issue considered only by Atallah. His system is the only one

that fulfills (2), by selectively picking the sentences in which transformations should

be applied. This way of accounting for robustness is similar to the famous “battleship”

Chapter 6. Lessons Learned 100

move movement

motion

test

work

go

run

impress strike

(a) disjunct synsets

move

test

work

go

run

impress strike

movement

motion

(b) natural synsets

Figure 6.2 The impact of disjunct synsets on the lexical account for the senses of move.

game. If the active warden happens to correctly guess the position of a data-carrying

sentence, and applies transformations to it that affect its ANL-representation, there

is no way to recover the data.

Limitations in the sense of (4) are especially relevant for Atallah’s system. Nat-

ural language systems that rely heavily on ontologic resources have traditionally suf-

fered from the fact that they could not scale out of the microworld-domains their

ontologies were designed for and tested in. As a result of (3) however, such restriction

to a microworld-domain is not acceptable for natural language steganography. The

problem is that, currently, there is no common-sense ontology. The effort of Lenat

et al. (1990) is a notable exception, however, even their system is far from the vision

of truly capturing all of the common sense necessary to understand natural language.

Therefore, the question whether Atallah’s approach will “scale out of the laboratory”

Chapter 6. Lessons Learned 101

is still open.

Wayner’s system is the only one that takes (7) into account. Winstein’s system

relies on mixed-radix coding, which chooses each digit of a mixed-radix number and

therefore each word at the same probability. Chapman’s system uses a binary block-

code. The problem with these approaches is that the distribution of word-choices can

be traced back to the secret. If the bits in the secret are uniformly distributed, then

the word-choices will be uniformly distributed as well. Chapman et al. (2001) give an

example where the generator replaces the word what by whichsoever. Clearly, texts

where whichsoever occurs just as frequently as what will be suspicious.

Overgeneration of language, in the sense of (8), can occur in Wayner’s system,

depending on the grammar and in Winstein’s system, depending on the lexicon. How-

ever, their systems do not overgenerate as heavily as Chapman’s. Constructing lex-

ica, style-templates or context-free grammars that don’t overgenerate is not usually a

problem. However, it is a problem not to make the system heavily undergenerate as

a result, therefore violating (9).

For example, Winstein’s system undergenerates natural language because it does

not make use of replacements that are sometimes made by human speakers, due to its

restriction to disjunct interchangeability sets. Figure 6.2 shows the impact of disjunct

interchangeability sets. This could be exploited, for example, by analyzing a cover for

word-clusters. Word-clustering methods are well-known techniques, usually used in

the context of statistic natural language learning, to determine words that commonly

appear interchangeably in a given context. If these clusters provide evidence for

strictly disjunct synsets, the cover is clearly suspicious. Neverthless, such evidence

Chapter 6. Lessons Learned 102

is less significant in Winstein’s embedding-framework than in Chapman’s generation-

framework, since the restriction to disjunct interchangeability sets applies only for a

small portion of the words in a text.

A similar phenomenon appears in the context of Wayner’s system. It is manifested

in the fact that all of the demonstration-grammars used with Wayner’s system produce

rather repetitive text, simply due to the fact that the demonstration PCFGs are

far too small. This weakness could be exploited by analyzing a steganogram using

techniques for grammatical rule inference. If it indicates that comparatively small

CFGs could have produced the text, and the text never contains non-context-free

linguistic constructs, this is strong evidence to suggest a hidden message.

We cannot disregard the possibility that similar approaches might make it pos-

sible to exploit Atallah’s limited ontology. We have already shown why an ontology

needs to be comparatively limited, as opposed to the “ontology” used by humans.

6.3 Possible Improvements and Future Directions

From what we have seen so far, the basic approach that is most promising for building

a secure and robust natural language steganography system in the near future is a

lexical replacement system, similar in principle to Winstein’s.

Winstein’s system fulfills (4), since it relies only on lexical resources. Since large-

scale lexica are available, covering a significant portion of the English language, these

resources do not significantly limit the scalability of the whole system. In accordance

with (5), it is based on embedding, which makes undergeneration in the sense of (9)

less significant a topic, makes it possible to use the system for watermarking, and

Chapter 6. Lessons Learned 103

is a more realistic scenario to produce text which will be innocuous, even to human

arbitrators in the sense of (3).

To fulfill (6), it would perhaps be necessary to filter out all terms from the

lexicon that appear very seldom in natural text. (For example, we have seen an

interchangeability set where three is replaced by the Roman number iii).

In order to fulfill (7), one would have to integrate some of Wayner’s ideas into

the system, for example, using a variable-length code to mimic the distribution of

word-choices.

The linguistic model would have to be more accurate, in terms of (8) and (9).

We have to keep in mind that if WordNet contains a synset, then this synset is

relative to a linguistic context, so if we find a replacement for a word in the lexicon,

then all this has to say is that there exists a context in which we could replace the

word. When we don’t examine the actual context of the word in the text where we

make the substitution, the system will overgenerate as a result of substituting the

word, although the context doesn’t permit doing so. As a result of the limitation to

disjunct synsets, the system will undergenerate because there will be replacements a

human would apply that would violate the stegosystem’s constraint of keeping synsets

disjunct.

In order to make the linugistic model more accurate, one would have to lift

the restriction to disjunct interchangeability sets and integrate a statistic word-sense

disambiguator instead. That these techniques cannot always resolve sense-ambiguities

has three interesting side-effects.

First of all, during embedding, whenever the ambiguity cannot be resolved, this is

Chapter 6. Lessons Learned 104

strong evidence that the context does not allow any substitution without significantly

changing the meaning of the overall text. Therefore the system can skip such words,

not making any replacement. We could not get such evidence, from a lexicon with

disjunct synsets.

Secondly, during extraction, it will not always be possible to tell which synset a

replacement was originally chosen from. Chapman and Winstein saw this as a disad-

vantage, because it is a significant obstacle when it comes to automatically extracting

the secret again. I would seriously like to question this. The fact that it is very

difficult in this situation for an automatic analyzer to extract the secret is actually

an HIP keeping an arbitrator from analyzing the secret underlying the text, therefore

providing additional security in the sense of (1). An extractor could be constructed

in such a way that a human would have to choose the senses of “problematic” words.

This will not be a problem for extracting the secret from a cover that is known to be a

steganogram by its legitimate receiver. However, it will be a problem for an arbitrator

when automatically analyzing large amounts of text.

We have already mentioned the need to choose words according to their probabil-

ities of actually occuring in the text. Instead of relying on each replacement for a word

to be equally probable, we need a model capturing the probability of all the possible

replacements in a given linguistic context, so a variable-length code, as mentioned

before, can be constructed. This is the third interesting side-effect, since models for

use with statistic WSD will usually incorporate knowledge about the probability of a

word appearing in the given context.

Chapter 7

Towards Secure and Robust Mixed-Radix

Replacement-Coding

7.1 Blocking Choice-Configurations

If we are not satisfied with establishing robustness implicitly, similarly to how Atallah

did, error-correction quickly becomes an issue. Error-correcting codes would enable

us to actively reconstruct data after receiving it incorrectly (as a result of Wendy,

the active warden, attacking a steganogram by substituting words used for coding the

secret) as long as there are not too many errors.

However, the automatic construction of error-correcting codes is traditionally

studied only in the context of q-ary symmetric channels. Generally we can think of

steganograms and covers as datagrams of a fixed length n represented by n-tuples

s = (s0, s2, s3, ..., sn−1). Datagrams transmitted by q-ary channels are restricted to

choosing each si from a fixed alphabet S of cardinality |S| = q, so that si ∈ S, i.e.

datagrams that can be transmitted over a q-ary channel are chosen from Sn.

However, this is not the case in lexical steganography, if we wish to code the

data into word-replacements s = (s0, s2, s3, ..., sn−1), where each si is chosen from a

105

Chapter 7. Secure and Robust Coding 106

s’ s’0 1

a
b
c
d

x

z
y

p
q
r
s
t

k
l

m
n
o
p

a
b
c
d

m
n
o
p

k
l

p
q
r
s
t

x

z
y

[4] [3] [5] [2] [4]

[20] [24]

s s s s s0 1 2 3 4

Figure 7.1 How word-choices are assigned to blocks.

different synset with a different cardinality, so that si ∈ Si. As opposed to Sn, we

wish to choose our datagrams from S0 × S1 × S2 × ... × Sn−1.

We will not deal with the construction of q-ary error-correcting codes in detail.

For readers unfamiliar with the topic of error-correction, it might be helpful to think

of the simplest form of error-correction which is a repetition-code. For example, in

order to encode a value 0 ≤ x < q for submission over a channel with 3 elements,

we could choose the configuration (x, x, x) from X1 × X2 × X3. If an error happens

(i.e. Wendy changes a value x to y 6= x), then (x, y, x) might be incorrectly received.

We can then correct it by assuming (x, x, x) instead, because one substitution would

suffice to replace (x, x, x) → (x, y, x), whereas two substitutions would be necessary to

replace (y, y, y) → (x, y, x). Assuming that a channel is more likely to transmit each

value correctly than erroneously (since Wendy is trying not to completely destroy the

datagram), we can safely decode (x, y, x) to (x, x, x).

In order to make the well-known techniques for automatic construction of error-

Chapter 7. Secure and Robust Coding 107

correcting codes for q-ary channels applicable in this scenario, we will compose the

word-choices into blocks, and apply error-correction at the block-level rather than to

word-choices. We will define a blocking B as a set partition over the index-set for

word-choices in the datagram. Formally,

⋃

P∈B

P = {0, 1, ..., n − 1},

∀P, Q ∈ B : P ∩ Q = ∅.

That is, a blocking B consists of several blocks s′i′ ∈ B and every word-choice si

is assigned to exactly one block, so that blocks never share word-choices, and none

remain unassigned. One can bring these blocks into an arbitrarily chosen order, and

think of them as an n′-tuple s′ = (s′0, s
′
1, s

′
2, ..., s

′
n′−1) where n′ is the number of blocks.

This sequence of blocks can, itself, be seen as a sequence of elements each of which

takes on a finite number of values, just as the sequence of word-choices. Each block

s′i′ can take on exactly

|S ′
i′| =

∏

i∈s′
i′

|Si|

distinct values. If, for example, a block s′d is assigned to three word-choices sa, sb

and sc, we can see each of the word-choices sa ∈ Sa, sb ∈ Sb, and sc ∈ Sc as an

information-carrying element x ∈ X or we can see the whole block s′d ∈ S ′
d where

S ′
d = Sa × Sb × Sc as an information-carrying element x ∈ X.

Again, we will use the numeric properties of word-choices as digits of mixed-

radix numbers for coding, by defining v(si), the numeric value of a word-choice si, as

v(si) = x, if and only if, si is the x-th replaceable word in Si in alphabetic order. The

correspondence between a block’s numeric value v(s′i′), and the values of each of the

Chapter 7. Secure and Robust Coding 108

assigned word-choices can be defined by the numeric value of a mixed-radix number,

the digits of which are represented by the word-choices assigned to the block. This

property of a block to behave as an abstract element reduces the problem of finding a

configuration for the word-choices (v(s0), v(s1), v(s2), ..., v(sn−1)) to finding a configu-

ration for the blocks’ numeric values (v(s′0), v(s′1), v(s′2), ..., v(s′n′−1)) and determining

the values of the word-choices by expressing them as mixed-radix numbers.

Figure 7.1 shows this graphically. In this example, there are n = 5 word-choices

assigned to n′ = 2 blocks. The word-choices s = (s0, s1, s2, s3, s4) are chosen from

synsets S1 = {a, b, c, d}, S2 = {x, y, z}, S3 = {p, q, r, s, t}, S4 = {k, l} and S5 =

{m, n, o, p}.

We can think of this as a mixed-radix number








v(s0) v(s1) v(s2) v(s3) v(s4)

4 3 5 2 4









.

Alternatively, we can think of the two blocks as a mixed-radix number








v(s′0) v(s′1)

20 24









and reinterpret the digits v(s′0) and v(s′1) as the numeric values of the mixed-radix

numbers established by the word-choices assigned to the blocks as

v(s′0) =









v(s0) v(s2)

4 5









and

v(s′1) =









v(s1) v(s3) v(s4)

3 2 4









.

Chapter 7. Secure and Robust Coding 109

[2]
k
l

[2]
k
l

[2]
k
l

[2]
k
l

b
a

[2]
x
y

[2]
p
q
r

[3]

n
m

o
p
q
r

[6]

n
m

o
p
q
r

[6]
p
q
r

[3]
x
y

[2]

b
a
[2]

b
a

[2]
x
y

[2]
x
y

[2]

b
a
[2]

p
q
r

[3]
p
q
r

[3]

n
m

o
p
q
r

[6]

n
m

o
p
q
r

[6]

Figure 7.2 Blocking by Method I: Each block contains word-choices of equal capacity.

We already mentioned that the reason why we compose the word-choices into

blocks is because we wish to make error-correcting codes for q-ary channels applicable

in this scenario. Two methods to achieve this come to mind.

Method I is to compose all word-choices of equal capacity into blocks. For all blocks

s′i′ ∈ B we have

∀sx,sy∈s′
i′

: |Sx| = |Sy| + ε.

This makes it possible to assume the smallest capacity q = min |Sx| and apply a q-ary

error-correcting code within each block.

Method II is to compose word-choices into blocks in such a way that the resulting

blocks have the same capacity. That is, for all blocks s′x′ ∈ B and s′y′ ∈ B,

|S ′
x′| = |S ′

y′| + ε.

This will make it possible to assume the smallest capacity q = min |S ′
x′| and apply a

Chapter 7. Secure and Robust Coding 110

[2]
k
l

[12]

[12]

[12]

[12]

[2]
k
l

[2]
k
l

[2]
k
lb

a
[2]

x
y

[2]
p
q
r

[3]

n
m

o
p
q
r

[6]

n
m

o
p
q
r

[6]
p
q
r

[3]
x
y

[2]

b
a
[2]

b
a

[2]
x
y

[2]
p
q
r

[3]

n
m

o
p
q
r

[6]

n
m

o
p
q
r

[6]

b
a
[2]

x
y

[2]
p
q
r

[3]

Figure 7.3 Blocking by Method II: Each block has equal capacity.

q-ary error-correcting code to the abstract values of the blocks.

Here ε is a variable summand which allows for some deviation in the blocks’

capacities. It is desireable to keep ε = max ε as small as possible, however, it will be

necessary to allow for some deviation, to allow for efficient assignment of word-choices

to blocks, according to Method II, and to compensate for word-choices of capacities

that appear only once for Method I. Figures 7.2 and 7.3 show examples of how the

two methods would choose the blocks.

7.2 Some Elements of a Coding Scheme

The word/block-choice hash: Let w(x) denote an element’s value for use with

the q-ary code (recall that an element x chosen from X can either be a word-choice

si ∈ Si or a configuration of a block s′i′ ∈ S ′
i′). By definition, a symbol chosen by a

q-ary code can only take on q distinct values, so we could define w(x) as an integer

Chapter 7. Secure and Robust Coding 111

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[3]
0
1
2

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[3]
0
1
2

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[2]
0
1

[4] [6] [8] [8] [6] [4] [4][4]

"physical" elements

"virtual" atomar elements to base coding on

"split" prime factors

[4]
a
b
c
d

[4]
p
q
r
s

[6]

n
o
p
q
r

m
[8]

s
t
u
v
w
x
y
z

[8]
s
t
u
v
w
x
y
z

[6]

n
o
p
q
r

m
[4]

p
q
r
s

[4]
a
b
c
d

0
1
2
3

0
1
2
3

0
1
2
3
4
5

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5

0
1
2
3

0
1
2
3

Figure 7.4 Splitting word-choices into atomic units.

in the range 0 ≤ w(x) < q. This is problematic unless ε = 0, since we assume q to be

the minimum capacity of any element, so there will be elements which actually have a

larger capacity, so that 0 ≤ v(x) < |X|, while 0 ≤ w(x) < q for q < |X|. As a result,

some configurations are never assigned by the code, which could be security-relevant

(very much like the block-code that restricts synsets to specific sizes, resulting in

undergeneration because of the possible replacements that remain unassigned by the

code). A straightforward approach might be to let

v(x) ≡ w(x) (modulo q′)

for a constant q′ ≤ q, so that, given a value w(x) determined by the q-ary code, one

could randomly choose a v(x) that decodes to w(x).

Prime-factorization of capacities: Another improvement might be to split up

the “physical” elements, given by the word-choices into “virtual” elements, atomic

Chapter 7. Secure and Robust Coding 112

units forming the basis for the coding-process. The values for word-choices can be

determined by the numeric value of a mixed-radix number, the digits of which are

the atomic units. These are chosen in such a way, that their capacities are the prime-

factors of the word-choice’s capacity as shown in Figure 7.4. For example, instead of

one single choice s0 from S0 = {a, b, c, d} choosing from |S0| = 4 values, we can think

of two choices v0 and v1 from V0 = {0, 1} and V1 = {0, 1}. Since |V0 × V1| = |S0|

we can establish a one-to-one correspondence, and doing so is straightforward via the

mixed-radix number

v(s0) =









v(v0) v(v1)

2 2









.

This has three important advantages: First, for many error-correcting codes it is

necessary for q to be prime. Secondly, for Method I, we will be able to construct

larger blocks. For example, if we have elements of capacities 6, 8 and 12, it will

suffice to allocate two blocks, one with q = 2 and one with q = 3. Since the rate of

redundancy an error-correcting code needs to introduce in order to correct a given

number of errors saturates logarithmically with a raising number of elements, it will

be preferable to represent a datagram of a given capacity by many elements, choosing

each from a small number of distinct values, as opposed to few elements, choosing

each from a larger number of values. Thirdly, it will be easier to keep ε small, since

smaller elements allow to perform blocking in a more fine-grained way.

Random-assignment of blocking strategies: Another problem that arises in

the context of lexical steganography is of strategic nature. Suppose we constructed a

stegosystem to use either Method I or Method II as a matter of design.

Chapter 7. Secure and Robust Coding 113

In response to a code, constructed with blocking by Method I, Wendy would

pick out exactly one block to attack, since one block is sufficient for the data to be

unrecoverable, and then attack as many units within this block as possible, maximizing

the probability to succeed in making the whole block unrecoverable. In response to

a code constructed with blocking by Method II, she would attack as many blocks as

possible, maximizing the probability of breaking the block-error-correction, but would

attack no more than one unit within each block since one element is sufficient for the

whole block to be unrecoverable.

A simplistic approach to making sure Wendy cannot make use of such strategic

considerations, is to make sure she doesn’t know the blocking. A straightforward way

of achieving this would be to have the encoder “flip a coin” to decide which strategy

to use. That way, Wendy could not rely on any single strategy to be most successful.

However, she will still benefit from choosing one of the above attack-strategies, since

she knows it must be one of the two available strategies, or she could use a clever

combination like picking one block, in which to attack many units and attacking only

one unit in each of the remaining blocks, which would maximize her probability of

succeeding over both strategies.

A more sophisticated approach might be to partition the sequence of units in

two areas and handle one area by Method I and the other by Method II, so that

Wendy never knows how the areas are composed. We could assign units to two areas,

for example, by seeding a random-number generator with a secret key to generate a

bitstring b of length n. Random-number generators have the important property that

they generate a bitstring b in such a way that there are no statistically significant

Chapter 7. Secure and Robust Coding 114

[2]

l

[2]

l

[2]
k
l

[2]
k
l

kk

0 1 1 0 1 0 0 0 1 0

to be used
with Method I

b
a

[2]
x
y

[2]
p
q
r

[3]

n
o
p
q
r

[6]

n
m

o
p
q
r

[6]
p
q
r

[3]
x
y

[2]

b
a
[2]

b
a

[2]

n
m

o
p
q
r

[6]

n
m

o
p
q
r

[6]
p
q
r

[3]

b
a
[2]

x
y

[2]
p
q
r

[3]
x
y

[2]

to be used
with Method II

m

pseudorandom numbersseed

Figure 7.5 Assigning Blocking-Methods to elements.

correlations between any two bits in the string bx and by. The value of bi could be

used to decide upon a blocking-method to use. For example, a value bi = 0 could be

interpreted by the encoding/decoding-mechanisms as “use Method I for unit vi” and

bi = 1 as “use Method II for unit vi”, as depicted in Figure 7.5.

7.3 An Exemplaric Coding Scheme

We can think of a coding-scheme organized in six layers as shown in Figure 7.6.

1. On the first layer, the word-choices s0, s1, s2, ..., s10, from synsets Si are split up

into atomic units v0, v1, v2, ..., v22, where vj refers to the choice for an element

from a corresponding set Vj. Several values vj1, vj2, ..., vjn
determine the word-

Chapter 7. Secure and Robust Coding 115

= = = = = = = =

= =

v
2
22v

2
21v

2
20v

2
19v

2
17v16

3
v
2
10v

2
8v6

3
v
2
5v

2
1v0

2
v
2
2 v

2
3 v

2
4 v

2
7 v

2
9 v11

3
v
2
13 v

2
14 v

2
15 v18

5

v0
2

v
2
1 v

2
5

v6
3
v6
3
v6
3

v
2
8 v

2
20 v

2
21 v

2
22 v6

3
v12
3

v12
3

v16
3

v
2
2 v

2
3 v

2
4 v11

3
v18
5

v
2
7 v

2
13 v

2
14 v

2
15v

2
10 v

2
19v

2
17

r
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7
8

[9]
v(s) s5 5

z
y
x
w
v
u
t
s

[8]

0
1
2
3
4
5
6
7

v(s) s6 6

3
2
1
0

4
5

n
o
m

p
q
r

[6]
v(s) s7 7 s

b
c
d

s

0
1
2
3

a
)v(8 8

4 e

[5]
v(s s

[4]

0
1
2
3

)v(

p
q
r
s

9

y
x
w
v
u
t
s

[8]

0
1
2
3
4
5
6

v(s) s4 4

7 z

3
2
1
0

4
5

n
o
m

p
q
r

[6]
v(s) s3 3s

b
c
d

s
[4]

0
1
2
3

a
)v(2 2v(s s

[4]

0
1
2
3

)v(

p
q
r
s

1 1s

b
c
d

s0

[4]

0
1
2
3

a
)0v(

b
c
d

[4]

0
1
2
3

a
v(10 10)s s

v
2
9

[2
1

2
v]
)=0sv(

[2 2
vv]
)=sv(1

2 3
2 2

vv]
)=sv(2

4 5[[2
vv]
)=sv(3

6 7
3 [2 2

vv v
2]

v(s)=4

8 9 10 [vv]
)=sv(

[2 2
vv v

2]
v(s)=

[2
vv]
)=sv(

[]
)=sv(

[2 2
vv]
)=sv(

[2 2
vv]

5 6 7 8 9 v(s10)=

11 12 13 14 15 16 17
33 3

v18
5

19 20 21 22

0 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0

v0

] 4 5 6
16 15 152 2

3
32

[[[]]]

[]

24

s’ s’ s’ s’s’ s’2s’10

secret secret
15

[

][

360
secret

1.

2.

3.

4.

5.

6.

I II

Figure 7.6 An exemplaric coding-scheme.

Chapter 7. Secure and Robust Coding 116

choices si, and their respective Vj1, Vj2, ..., Vjn
are chosen in such a way that |Vj1×

Vj2×...×Vjn
| = |Si|, so they provide for the right capacity and all |Vjk

| are prime.

In the simplest case, such a correspondence could be established by the value

v(s0) of a mixed-radix number, the digits of which are v(vj1), v(vj2), ..., v(vjn
)

where 0 ≤ v(vjk
) < |Vjk

|. For example, the units v0 and v1 together make up a

mixed-radix number, which is supposed to choose an s0 from S0 = {a, b, c, d}.

The numeric value of this mixed-radix number v(s0) will have to range from 0

to 3, because |S0| = 4. The two digits v0 and v1 that make up this mixed-radix

number need to be chosen from a prime number of values. Since |V0| ∗ |V1| =

2 ∗ 2 = 4 these units are chosen with |V0| = 2 and |V1| = 2.

2. The second layer assigns all units to one of two areas, according to a bitstring

b, generated by a random-number-generator from a secret key. In Figure 7.6 all

elements vi where a corresponding bit bi from the bitstring b is 0, are assigned

to Area I which is to be coded using Method I, and all elements with bi = 1 are

assigned to Area II which is to be coded using Method II.

3. The third layer composes the units v0, v1, v2, ..., v22 into blocks s′0, s
′
1, s

′
2, ..., s

′
6.

I. In Area I, Method I composes the blocks in such a way that all the units

in one block have the same capacity, for example |V6| + 0 = |V12| + 0 =

|V16| + 0 = 3. Here ε = 0.

II. In Area II, Method II composes the blocks in such a way that the blocks

themselves have the same capacity, for example |S ′
4| = |S ′

5|+1 = |S ′
6|+1 =

16. Here ε = 1.

4. Layer four is where Method I applies its error-correction.

Chapter 7. Secure and Robust Coding 117

I. In the simplest case, we could use a repetition-code, and make sure three

adjacent units in Area I, like w(v0), w(v1), w(v5), are always assigned the

same value, in this example the block-value v(s′0). (Recall that we denote

values of elements, as chosen by an error-correcting code as w(x)). Since

ε = 0, v(x) always coincides with w(x).

II. Method II does not carry out error-correction on this layer, so there is no

error-correction involved in Area II. The values v(v2), v(v3), v(v4), v(v7), are

simply a mixed-radix representation of v(s′4).

5. Layer five is where Method II applies its error-correction.

I. As far as Area I is concerned, we can simply interpret the blocks’ numeric

values v(s′0), v(s′1), v(s′2), v(s′3) as digits of a mixed-radix number to deter-

mine v(secretI)

II. Again we use a repetition code but this time we will apply it to the block-

level, making sure that three adjacent blocks are always assigned the same

value. For example w(s′4) = w(s′5) = w(s′6) = v(secretII). Here the hash-

function v(vi) ≡ w(vi) (modulo q) is used, to determine the values v(s′4) =

v(s′5) = v(s′6) randomly. Since ε > 0, these values will not always coincide.

6. Layer six is where we bring Area I and Area II together and compute v(secret)

by interpreting v(secretI) and v(secretII) as digits of a mixed-radix number.

The repetition-code was used in the above setup only as a primitive example

of error-correction. It has many disadvantageous side-effects. For example v22 is

left unassigned in Figure 7.6, and would have to be initialized randomly. The code

Chapter 7. Secure and Robust Coding 118

is very inefficient, since it needs vast amounts of redundancy and corrects only a

comparatively small number of errors. From a strategic point of view, it is not optimal

either. Consider, for instance, the consequences of an error in word-choice s0. It

would result in altering both v0 and v1, leading the error-correction astray when

reconstructing s′0.

All of these limitations could be overcome by using more sophisticated codes, for

example Hamming codes. However, we would like to draw attention to the multi-

layered blocking-scheme, rather than to the details of error-correction. The blocking

scheme introduced above, incorporates some degree of security, since it will not eas-

ily be possible to extract the secret from the word-choices without predicting the

pseudorandom numbers assigning elements to coding-strategies. It also provides for

robustness against some attacks, overcoming the problematic requirement of error-

correcting codes to operate on q-ary channels.

For example , in the situation depicted in Figure 7.6, if we wanted to encode the

value v(secret) = 255 with word-choices, we could do so as depicted in Figure 7.7, by:

6. rewriting v(secret) = 255 = 17∗15+0∗1 as v(secretI) = 17 and v(secretII) = 0,

using mixed-radix conversion.

5-I. rewriting v(secretI) = 17 = 1 ∗ 2 ∗ 2 ∗ 3 + 0 ∗ 2 ∗ 3 + 1 ∗ 3 + 2 ∗ 1 as v(s′0) =

1, v(s′1) = 0, v(s′2) = 1, and v(s′3) = 2, using mixed-radix conversion.

5-II. determining a configuration for w(s′4), w(s′5), and w(s′6) using an error-correcting

code with q = 15. In the simple case of a repetition code, we let w(s′4) = w(s′5) =

w(s′6) = v(secretII) = 0 and use a random-number generator to set v(s′4) = 15,

Chapter 7. Secure and Robust Coding 119

= = = = = = =

= =

=

r
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7
8

[9]
v(s) s5 5

z
y
x
w
v
u
t
s

[8]

0
1
2
3
4
5
6
7

v(s) s6 6

3
2
1
0

4
5

n
o
m

p
q
r

[6]
v(s) s7 7 s

b
c
d

s

0
1
2
3

a
)v(8 8

4 e

[5]
v(s s

[4]

0
1
2
3

)v(

p
q
r
s

9

y
x
w
v
u
t
s

[8]

0
1
2
3
4
5
6

v(s) s4 4

7 z

3
2
1
0

4
5

n
o
m

p
q
r

[6]
v(s) s3 3s

b
c
d

s
[4]

0
1
2
3

a
)v(2 2v(s s

[4]

0
1
2
3

)v(

p
q
r
s

1 1s

b
c
d

s0

[4]

0
1
2
3

a
)0v(

b
c
d

[4]

0
1
2
3

a
v(10 10)s s

1.

2.

3.

4.

5.

6.

[2 2][2 2] 2 2][[2]3 [2 2 2][][2 2 2][2][][2 2][2 2]33 3 5

] 16 152 2 32

[[[]]]

[]

24 15

[

][

360

17

15

2 2 2 2 3 5 2 2 2 2
1 1 11 0 0 0 0

2 2 2 2 2 3 2 2 2 5

2 2 2 2 2 2 2 2 2 2 3 3 3
1

1 0 1 2

1 1 0 0 0 1 1 1 0 2 2 2

2 2 2 2 2 3 3 2 2 2 2 233
1 1 1

33
0 0 02 2 1 1 1 0 1 1 1 1 0 0 0 02

1 1 1 2 0 0 2 2 0 1 1 1 000001111
2=3=4=2=0=5=3=3=3=

0 0

0

16

0

0

0
0=

0

0
0=

0

255

Figure 7.7 Encoding the secret 255.

Chapter 7. Secure and Robust Coding 120

r
s
t
u
v
w
x
y
z

0
1
2
3
4
5
6
7
8

[9]
v(s) s5 5

z
y
x
w
v
u
t
s

[8]

0
1
2
3
4
5
6
7

v(s) s6 6

3
2
1
0

4
5

n
o
m

p
q
r

[6]
v(s) s7 7 s

b
c
d

s

0
1
2
3

a
)v(8 8

4 e

[5]
v(s s

[4]

0
1
2
3

)v(

p
q
r
s

9

y
x
w
v
u
t
s

[8]

0
1
2
3
4
5
6

v(s) s4 4

7 z

3
2
1
0

4
5

n
o
m

p
q
r

[6]
v(s) s3 3s

b
c
d

s
[4]

0
1
2
3

a
)v(2 2v(s s

[4]

0
1
2
3

)v(

p
q
r
s

1 1s

b
c
d

s0

[4]

0
1
2
3

a
)0v(

b
c
d

[4]

0
1
2
3

a
v(10 10)s s

1.

2.

3.

4.

5.

6.

[2 2][2 2] 2 2][[2]3 [2 2 2][][2 2 2][2][][2 2][2 2]33 3 5

] 16 152 2 32

[[[]]]

[]

24 15

[

][

360
255

17

2 2 2 2 3 5 2 2 2 2
1 1 0 0 0 0

2 2 2 2 2 3 2 2 2 5

2 2 2 2 2 2 2 2 2 2 3 3 3
1

1 0 1 2

1 1 0 0 0 1 1 1 0 2 2

2 2 2 2 2 3 3 2 2 2 2 233
1 1 1

33
0 0 02 2 1 1 1 0 1 1 0 0 0 0

1 1 1 0 0 2 2 0 1 1 1 0000011
2=3=4=2=0=3=3= 2=

1 0

1 0

2=
0

0

1 0 0

10

error error

16
0 0

0 0

00

0 0
0= 0=

error−correction

error−correction

0

Figure 7.8 Decoding the secret again, after incorrectly receiving the word-choices.

Chapter 7. Secure and Robust Coding 121

v(s′5) = 0 and v(s′6) = 0. Note that 15 ≡ 0 (modulo 15).

4-I. determining a configuration for w(v0), w(v1), w(v5) using an error-correcting

code with q = 2. Again, using a repetition code, we have w(v0) = w(v1) =

w(v5) = v(s′1) = 1 and, as a result, v(v0) = v(v1) = v(v5) = v(s′1) = 1. Analo-

gously, we get

v(v0) = v(v1) = v(v5) = v(s′1) = 1,

v(v8) = v(v10) = v(v17) = v(s′2) = 0,

v(v19) = v(v20) = v(v21) = v(s′2) = 1, and

v(v6) = v(v12) = v(v16) = v(s′3) = 2.

v(v22) is randomly initialized to 0.

4-II. rewriting

v(s′4) = 15 = 1 ∗ 2 ∗ 2 ∗ 2 + 1 ∗ 2 ∗ 2 + 1 ∗ 2 + 1 ∗ 1 as v(v2) = 1, v(v3) =

1, v(v4) = 1, v(v7) = 1,

v(s′5) = 0 = 0 ∗ 5 + 0 ∗ 1 as v(v11) = 0, v(v18) = 0, and

v(s′6) = 0 = 0 ∗ 2 ∗ 2 ∗ 2 + 0 ∗ 2 ∗ 2 + 0 ∗ 2 + 0 ∗ 1 as v(v9) = 0, v(v13) =

0, v(v14) = 0, v(v15) = 0.

3. bringing the elements from the order used for blocking back into the order, as

assigned by layer 2. (This would not usually incorporate any actual processing,

if we are working with references).

2. bringing the elements from the order used for dividing them into two areas back

into the original order, according to the mixed-radix-numbers assigned by the

prime-factorization on layer 1 (again, not usually incorporating any processing).

Chapter 7. Secure and Robust Coding 122

1. rewriting

v(v0) = 1, v(v1) = 1 as 1 ∗ 2 + 1 ∗ 1 = 3 = v(d),

v(v2) = 1, v(v3) = 1 as 1 ∗ 2 + 1 ∗ 1 = 3 = v(s),

v(v4) = 1, v(v5) = 1 as 1 ∗ 2 + 1 ∗ 1 = 3 = v(d),

v(v6) = 2, v(v7) = 1 as 2 ∗ 2 + 1 ∗ 1 = 5 = v(r),

v(v8) = 0, v(v9) = 0, v(v10) = 0 as 0 ∗ 2 ∗ 2 + 0 ∗ 2 + 0 ∗ 1 = 0 = v(s),

v(v11) = 0, v(v12) = 2 as 0 ∗ 3 + 2 ∗ 1 = 2 = v(t),

v(v13) = 0, v(v14) = 0, v(v15) = 0 as 0 ∗ 2 ∗ 2 + 0 ∗ 2 + 0 ∗ 1 = 0 = v(s),

v(v16) = 2, v(v17) = 1 as 2 ∗ 2 + 0 ∗ 1 = 4 = v(q),

v(v18) = 0 as 0 ∗ 1 = 0 = v(a),

v(v19) = 1, v(v20) = 1 as 1 ∗ 2 + 1 ∗ 1 = 3 = v(s), and

v(v21) = 1, v(v22) = 0 as 1 ∗ 2 + 0 ∗ 1 = 2 = v(c).

Figure 7.8 shows the impact of an error. If Wendy tries to destroy the secret, by

changing element s0 from s to r and element s3 from r to o, we could still recover the

secret.

The error propagates through all the levels of coding, until it is corrected. Since

v(s1) is 2, instead of 3, v(v3) gets 0, instead of 1. This propagates down to the block-

level (since this element happens to be handled by Method II), where the repetition

code would expect w(s′4) = 0, w(s′5) = 0, w(s′6) = 0. The decoder now finds the values

w(s′4) = 10, w(s′5) = 0, w(s′6) = 0 instead. Since 0 was transmitted correctly twice,

w(s′4) = 10 is more likely to be the element which is in error, so the decoder can

assume w(s′4) = 0.

Chapter 7. Secure and Robust Coding 123

Similarly, the error at word-choice s3 changes v(v6) from 2 to 1 and propagates

only down to the unit-level (since this element happens to be handled by Method I)

where the repetition code would expect v(v6) = 2, v(v12) = 2, v(v16) = 2. The decoder

now finds the values v(v6) = 1, v(v12) = 2, v(v16) = 2 instead. Since 2 was transmitted

correctly twice, v(v6) = 1 is more likely to be the unit which is in error, so the decoder

can assume v(v6) = 2, thereby correcting the error and successfully defending against

Wendy’s attack.

Chapter 8

Towards Coding in Lexical Ambiguity

8.1 Two Instances of Ambiguity

Basically, a lexical steganography system deals with two kinds of sense-ambiguity. We

will refer to the sense-ambiguity an encoder is confronted with when deciding which

synset the replacements of a specific word should be chosen from as forward ambiguity,

and the sense-ambiguity a decoder is confronted with, when deciding which synset a

replacement was originally chosen from as backward ambiguity.

Let W be the set of words and S be the set of synsets in a lexicon. We require that

W is enumerable and S ⊆ 2W is a set of synsets with words from W . In accordance

with chapter 3, we use a function L : W 7→ 2S to denote the lexical evidence L(w) of

a word w, which is nothing but the set of synsets that contain w. We use a function

C : W 7→ C to denote the contextual evidence C(w) of an occurence of w in a text

under investigation. We can think of C1 as a set of contexts, but we will not be

concerned with the actual data-structure, since it depends on the model employed

1 Note that we previously denoted by C the set of covers. We can safely redefine it for this

chapter, since there will be no instance where these might be confused

124

Chapter 8. Coding in Lexical Ambiguity 125

move

test

work

go

run

impress strike

movement

motion

(a) “Forward ambiguity”

move

test

work

go

run

impress strike

movement

motion

(b) “Backward ambiguity”

Figure 8.1 Two kinds of ambiguity involved in the replacement of move by run.

by the actual disambiguation system. The disambiguation system will herein be a

function dis : 2S × C 7→ S, so that so = dis(L(o), C(o)) and r ∈ so implies that r is a

correct replacement for o in the specific context C(o).

A text in which a secret is to be embedded could, for example, contain the

word o = move. When the encoder looks up the lemma move in its dictionary, it

will find three synsets: s0 = {move, run, go}, s1 = {move, impress, strike}, and s2 =

{move, motion, movement}. These make up the lexical evidence L(o) = {s0, s1, s2}.

Since there are several alternatives from which to choose, we call L(o) forward-

ambiguous. The disambiguator would be needed to decide upon the correct synset

from which the replacements can be chosen. If it chooses s0 from L(o), we can replace

the original word o = move by a word from s0 determined for coding-purposes, for

example r = run.

When decoding the secret again, the decoder would look up run in its dictio-

Chapter 8. Coding in Lexical Ambiguity 126

nary, and will find several synsets: s0 = {move, run, go}, s3 = {run, go, work},

s4 = {run, test}, which make up the lexical evidence L(r) = {s0, s3, s4}. Since there

are several alternatives, from which to choose, we call L(r) backward-ambiguous. At

this point, the decoder would have to employ a disambiguator to decide upon the

sense the given replacement was originally chosen from. If it chooses s0 from L(r), we

can interpret r as a replacement from s0, therefore correctly decoding the data again.

However, we have to be aware of the fact that the disambiguator might just as well

choose a different sense, a problem we will deal with in the next section.

8.2 Two Types of Replacements and Three Types of Words

The problem of forward-ambiguity is security relevant, since an incorrect identifica-

tion of the replacements will produce unnatural text. Backwards-ambiguity is relevant

for the decoder, since an incorrect identification of the synset the replacements were

originally chosen from will result in incorrectly decoding the data coded by the re-

placement.

If we employ an automated scheme, we cannot do much against the consequences

of forward-ambiguity but to use a highly precise word-sense-disambiguator. However,

we could get better results if we let a human judge, whether the disambiguator’s

decision was correct or not. As long as the human judges on the transmitting and

receiving ends agree, this will not affect the performance of the code. The first draw-

back of this scheme is that this might not always be the case, and the second one

is that it could take many such decisions, discouraging the use of practical systems

implementing such a scheme, because of the user’s additional effort.

Chapter 8. Coding in Lexical Ambiguity 127

In the presence of backwards-ambiguity, it is crucial not to see a word-sense-

disambiguator as a black box where we put in a word, and get out an identification

of the set containing the universally correct replacements. Given the context of a

lexeme C(o) and the lexical evidence about this lexeme L(o), the disambiguator simply

estimates which l ∈ L(o) best fits the context C(o). If we replace o by r, we do not

change the context, so C(o) will always equal C(r), but we have to be aware that L(o)

is not necessarily equal to L(r), and we have to think of the consequences.

For example, the disambiguator employed in the encoder deciding upon the cor-

rect synset to replace move from, might choose the synset also containing the word

run, because both motion and strike are very unlikely to appear in the context. The

problem is that, if we substitute run for move, we change the lexical evidence. If the

decoder would now blindly use a disambiguator to pick the most probable synset to

replace run from, then this synset might well be the one containing test, instead of

the one containing move, because the context might happen to give such evidence.

We can resolve the problem of backward-ambiguity, by letting an encoder ana-

lyze the lexicon, and decide in advance whether a word should be chosen for coding-

purposes or not. It needs to decide for each possible r which could be replaced for

o, whether or not this replacement would lead to backwards-ambiguity. Looking only

at the lexicon, this could potentially be the case whenever L(r) 6= L(o), which is the

reason why Winstein and Chapman required their synsets to be disjunct. However, if

we bring a sense-disambiguator into the picture, a replacement of r for o involves prob-

lematic ambiguity only if the disambiguators resolving the forward- and backward-

ambiguity disagree about the word-sense. Formally,

Chapter 8. Coding in Lexical Ambiguity 128

sf = dis(L(o), C(o)) ∧ r ∈ sf ∧ sb = dis(L(r), C(r)) ∧ sf 6= sb.

It might be desirable to avoid using such replacements, so we can be sure the

decoder will be able to pick the right synset. However, if a human would be able to

pick the correct synset and only a computer would pick the wrong one, then we might

even want to provoke this situation, because it is an HIP, giving an arbitrator a hard

time trying to automatically analyze the text.

Let rep(o) denote the replacements for a word o. It can easily be determined

from the synset

rep(o) = dis(L(o), C(o)).

We can now distinguish between

type-A-replacements repA(o) that can automatically be reversed, and

type-B-replacements repB(o) that cannot.

They are given by

r ∈ rep(o) ⇒ r ∈















repA(o), if rep(o) = rep(r)

repB(o), otherwise.

Building upon this classification of replacements we can distinguish

type-A-words o where repB(o) = ∅. All words in the synset o is replaced from

lead to type-A-replacements. Here we can be sure that a replacement of word o

will always be reversible automatically.

type-B-words o where repA(o) = ∅. All words in the synset o is replaced from

lead to type-B-replacements. Here we can be sure that a replacement of word o

will never be reversible automatically.

Chapter 8. Coding in Lexical Ambiguity 129

type-C-words o where repA(o) 6= ∅ ∧ repB(o) 6= ∅. Some words in the synset o is

replaced from lead to type-A-replacements, some lead to type-B-replacements.

Here the question whether a replacement will be reversible depends on the actual

replacement which is made.

8.3 Variants of Replacement-Coding

We can basically think of three different scenarios for using these replacements in a

coding strategy:

Coding for fully automated extraction restricts us to using only type-A-words

for coding purposes. Here we can be sure that it will be possible to extract all of

the data again, automatically, both for the receiver and for the arbitrator. Since the

type-A-replacements have the property that rep(o) = rep(a) it will still be possible to

automatically identify the synset that was originally used for coding the secret, after

carrying out replacements.

Coding for extraction by humans restricts us to using only type-B-words for

coding purposes. Here we can be sure that no data can be extracted without human

intervention, neither by the receiver, nor by the arbitrator. Since type-B-replacements

have the property that rep(o) 6= rep(b) it will not even be possible to automatically

identify the words that were used for coding the secret any more. The user would have

to manually disambiguate all words, so the decoder knows which words are relevant.

It can do so by checking the judgement of the user, against the automatic judgement

of the word-sense-disambiguator. All words, where the two disagree are then known

Chapter 8. Coding in Lexical Ambiguity 130

to hold the secret.

Coding for maximal capacity This is a variant of the above scheme, in which we

use all words. Here the user will have to manually disambiguate all words, but an

arbitrator will be able to recover parts of the secret automatically. However, since

some words will resolve to the wrong synsets, and some will not, the arbitrator will not

be able to distinguish between correctly and incorrectly decoded data. It will therefore

be possible for the arbitrator to extract parts of the secret, but it will not easily be

possible to identify it, in terms of distinguishing the correctly decoded type-A-words

that hold data from the secret from the noise due to the type-B- and type-C-words

that are incorrectly decoded.

Distinguishing two codings in one document The above scheme has the severe

disadvantage that we have no control over the parts of the secret that can be extracted

automatically and those that cannot. It might therefore be desirable to distinguish

between two data-blocks coded into one text-document. One could be made up of the

type-A- and type-C-words to encode data we can allow to be extracted automatically

(a cryptogram, for instance), and we can use type-B-words to encode data we cannot

allow to be extracted automatically (for example, parts of a key necessary to decrypt

the cryptogram in the other part of the document).

Chapter 9

Conclusions

In this report, it was shown that natural language steganography is a very promising

approach, and that, unfortunately, the topic has received only little attention in the

past.

Relevant background from steganography was systematically presented, by first

presenting the information theoretic characterization of steganography, relying on

meaningless symbolic blackboxes exchanged by sender and receiver and then moving

on to the ontologic demand for models, relating these symbols to each other, in such

a way that we can interpret them and tell whether they are innocuous or suspicious,

from the point of view of a model that accounts for their semantics. Usually the

interpretation of covers we want to hide secrets in is ultimately carried out by intelli-

gent humans. Unfortunately models for the essentially cognitive ability to ultimately

understand the content of datagrams are difficult, if not impossible to construct. This

is where we were confronted with the limits of what we can expect a computer to do,

but it was shown how to use even these limits to improve steganographic security by

exploiting them as human interactive proofs.

131

Chapter 9. Conclusions 132

It was demonstrated that it is crucial for the success of systems based on replace-

ment of dictionary-words to rely upon sophisticated models of lexical semantics, as

investigated in computational linguistics. The ambiguity inherent to a word and to the

context a word is used in was presented as the linguistic phenomenon we are seeking

to exploit when we expect to encode data by substituting words. Computational mod-

els of these ambiguities have been driven by research in word-sense disambiguation,

and are now a well understood topic. The state-of-the-art in this field was sum-

marized. Moving away from purely synonymy-based ideas of substitutability, other

lexical relations found in state-of-the-art computer-readable dictionaries were shown,

and current measures that quantify the degree to which two words can be considered

substitutable, based on lexical evidence, were described.

The ideas and approaches behind current prototypes for natural language steganog-

raphy were described, systematizing them by the kind of linguistic models they employ.

A distinction was made between approaches that measure the degree of distortion im-

posed by the embedding of a hidden message by means of symbolic, syntactic, and

semantic models of language. It was shown that all of these approaches have one

theme in common: manipulating a sequence of symbols in such a way that it can

be reinterpreted by a function to reconstruct a secret message, leaving the usual in-

terpretation of this sequence of symbols intact. The critical distinction of symbolic,

syntactic and semantic approaches to natural language steganography is then simply

the model that accounts for this “common interpretation”. Lexical approaches were

demonstrated to account for symbolic models, context-free grammars to account for

syntactic models, and ontologic analysis of deep-structure to account for semantic

Chapter 9. Conclusions 133

models. These linguistic models were related to the steganographic background, by

pointing out the value of all the symbols originating from either level of linguistic

analysis as relevant “clues” to a steganalyst trying to detect hidden communication.

Moving on from the ideas and approaches behind current prototypes to their

actual design and implementation, special issues that were addressed in these sys-

tems were presented in detail. Winstein’s approach of the word-choice hash was

described, which allows a human author to influence word-choice configurations made

by a stegosystem. Chapman’s approach to model natural language via style-templates

was presented as well as Wayner’s approach to context-free mimicry, using Huffman-

trees to guide the selection of context-free productions from a grammar that charac-

terizes innocuous covers. The use of ANLs was presented to provide for the semantic

side of the “linguistic equation” as stated by Atallah et al.

A summary was then given about the lessons learned from theoretical and prac-

tical issues investigated so far, and objectives for the design and analysis of natural

language stegosystems were proposed. Based on these objectives, the current proto-

types were evaluated, and future research directions were pointed out.

Although current systems for lexical steganography allow encoding data into

natural language text, none of these coding-techniques was designed with theoretically

strong security and robustness in mind. It was shown that these problems are not

quite trivial, for example, due to limitations in the applicability of current techniques

for error-correcting coding. A blocking-scheme was shown that allows us to overcome

these limitations, making the scheme robust. The use of one-way-functions in this

blocking-scheme was described, to address the issue of security. Although no strong

Chapter 9. Conclusions 134

formal claims could be made, it was shown by example that the scheme does indeed

provide for some degree of robustness and security.

Although current systems are already using lexical replacement for coding text,

none of these replacement-strategies has been thoroughly analyzed from a linguistic

point of view. The problem of word-sense ambiguity was investigated for the first

time in this context. The two manifestations of this ambiguity in a coding scheme,

forward- and backward-ambiguity, were identified. Based on these phenomena the

use of lexical ambiguity was shown for constructing coding schemes with different

interesting properties. One coding scheme outlined allows encoding data by carrying

out lexical replacements and automatically decoding the data again. Due to the use of

sense-disambiguators, these lexical replacements are much more adequate than any of

those carried out by current systems. Another coding scheme outlined allows encoding

data in such a way that no computer will be able to extract the data again, confronting

large-scale detection of hidden communication with a serious practical obstacle. Some

hybrid schemes, combining the two, were shown as well.

Summing it all up, one can say that, although we are nowhere near the goal

of constructing provably secure and robust natural language steganography systems

today, this report might have shed some light on the road that could lead us there.

Chapter 10

Evaluation & Future Directions

In this report many relevant issues were presented, from a technical point of view.

However, little has been done to motivate these studies. A more detailed investigation

of applications, and a comparison with current techniques in steganography would

have been interesting. For example, a thorough evaluation of the advantages natural

language-based techniques can offer over image-based techniques could have offered

valuable insights.

An important contribution of this project to natural language steganography is

the linguistic sophistication of the model for word-substitution put forward. The lex-

ical models employed in current substitution-based systems were often criticised and

their inadequate behavior usually described with respect to language theory. These

phenomena could have been demonstrated by example, showing texts and inadequate

replacements carried out by current stegosystems. A more detailed analysis of how

common these critical situations really are in typical text could have given clues for the

construction of such systems, to decide whether the additional complexity introduced

by statistical word-sense disambiguation is worth the effort.

135

Chapter 10. Evaluation & Future Directions 136

Other linguistic models have been studied, in addition to the lexical ones, and

put in relation to each other, and to their use for steganographic purposes. The

steganographic aspects were then covered by information-theoretic models. However,

little has been done to justify this choice. It might have been fruitful to present

other characterizations of steganography and to compare their suitability to natural

language steganography.

A central part of the problem motivating this report was that there are no models

formalizing the design and analysis of natural language stegosystems. Although the

present report somewhat improves the situation, by providing a systematic investi-

gation of the topic, there is still no system to build upon for making formal claims

about security or robustness in the natural language scenario. A more formal, per-

haps axiomatic, treatment of the ideas and concepts that were used herein to evaluate

current stegosystems could have done much to improve this situation.

Two approaches were presented herein, that are of significantly innovative nature.

Unfortunately, both of them had to be presented in this report as position statements.

The first one was the secure and robust coding scheme. At the beginning of

the project, a detailed formal analysis of the security and robustness this scheme can

offer was anticipated. After dedicating much time to this analysis, it turned out to

be too complex a topic for the scope of this project and time did not permit further

investigation, for example carrying out a proof-of-concept implementation.

The second innovative contribution was the lexically more adequate coding tech-

nique. We kept emphasizing the importance of evaluating the property of steganograms

to appear innocuous to humans empirically. A proof-of-concept implementation could

Chapter 10. Evaluation & Future Directions 137

provide important insights, and, most importantly, could be used to carry out such

an empirical investigation.

Discussion & Remarks to Academic Evaluators

Looking back on the project, I believe that I can be satisfied with its overall

outcomes especially in the light of the usual scope of an undergraduate final-year

project. The amount of work that went into this report was about twice as much as

what is expected, considering the time- and word-count- criteria given in the project-

guidelines. I did my best to maintain consistent quality of presentation, throughout

this report, and a high level of commitment throughout the project. In particular, I

tried very hard to put forward innovative material, and to present things in a new way.

This is why I invested much time and effort to original research, directed towards a

more formal treatment and the proof-of-concept implementation I had anticipated in

the original project proposal. However, in the course of this research, I realized that

a theoretical investigation had much more to offer, at the time being, which is also

the reason why the project changed its face from a software engineering and systems

research topic, to the theoretical investigation presented throughout this report. I

am convinced that this decision was correct, since the methods used for the present

analysis are much more suitable than the ones anticipated. A prototype would, due

to the limited time-scope of this project, probably have required making many overly

simplistic assumptions and using highly limited models. This would clearly not have

lead to any contribution to the state of the art worth the effort.

If there is one thing that I can say for certain about this project, then that it

was both demanding and rewarding. Deciding to dedicate significant time to original

Chapter 10. Evaluation & Future Directions 138

research, although this is not expected of an undergraduate, was very demanding

because it was much work and required me to do a lot of background reading, which

turned out to be rewarding because I discovered many exciting areas of research I

would not otherwise have thought I could be interested in. Handing in a contribution

to the 7th Information Security Conference coauthored by my supervisor was very

demanding, since I had never contributed to an academic conference before, but,

although the acceptance decision has not yet been made, it already proved to be

highly rewarding, because I learned so much about technical writing, and the way

academia works.

Most importantly, however, I hope that the impact of this project does not remain

limited to the learning outcome I could claim to have gained for myself, but will

turn out to be an important contribution to the state of the art in natural language

steganography.

Appendix A

Project Proposal

A.1 General Information

Project title Harmless: Human Aided Recognition of Machine-coded Language

in an Electronic Steganography System

Main supervisor DI. Stefan Katzenbeisser

Second supervisor Dr. Franz X. Steinparz

Type of project Research, system development and software engineering.

Hardware and software required There are no requirements, beyond those met

by my own personal computing equipment at home.

Literature and research materials required A single-user version of the British

National Corpus, as distributed by the Oxford University Computing Services has

already been ordered. I have access to all further literature that will be needed

through resources provided by UoD, UDA, the local Johannes Kepler Universität in

Linz, ACM, and IEEE.

139

Appendix A. Project Proposal 140

Research methodology Explorative prototyping and literate programming (Knuth

2001).

A.2 Background and Related Research

There are two disciplines this project will draw on: steganography (also known as

“information hiding”, and closely related to “watermarking”) and computational lin-

guistics. Linguistic steganography is, in a broad sense, steganography dealing with

natural language cover-channels. Computational linguistics has provided Computer

Sciences with sophisticated models about natural languages and their interpretation.

In particular I will use models from statistical language learning, as described by

Charniak (1996). Using such models for linguistic steganography is a relatively new

approach. To my current knowledge, there are only two systems similar to what I

have in mind: NICETEXT (Chapman & Davida 1997, Chapman 1997, Chapman

et al. 2001), and Tyrannosaurus Lex (Winstein n.d.b).

A.3 Motivation

When it comes to information security, the predominating paradigm is cryptography,

which prevents unauthorized reading of data, but which is vulnerable to detection.

This is not a problem, as long as securing information is seen as a legitimate way of

protecting one’s privacy, but it is if it is seen as a tool, useful primarily to potential

terrorists.

I believe that the role of information security has changed a lot over the past

years. Today the “enemy” is not any longer only a potential interceptor seeking to

Appendix A. Project Proposal 141

exploit sensible data, but also governments and organizations with the power, and also

the intention to limit the individual’s freedom of storing and submitting information

securely.

This is why I believe steganography is more important today than ever before, and

linguistic steganography, in particular, is one of the most promising techniques. The

security of steganograms arises from the difficulty of detecting them in large amounts

of data that could potentially cover them, and the vast amounts of information coded

in natural languages could provide for a good haystack to hide a needle in.

A.4 Aims and Objectives

I wish to present a technique using synonymy in natural language texts for steganog-

raphy, similar in purpose to that of Winstein (n.d.b). This system should overcome

some of the basic limitations systems developed so far have had:

Steganograms should not be easily detectable by humans.

Steganograms should not be easily detectable by automated systems, even if

they are specifically designed to deal with linguistic steganography.

Harmless will provide for two different encoding-schemes. One will be de-

signed, such that the steganogram can be easily decoded by machines, with no

human intervention (e.g. for submitting cryptograms). One will be designed,

such that decoding requires a significant amount of human interaction (e.g. for

submitting cryptographic keys, when there is no way of doing so over a fully

trusted channel) in the sense of a so called CAPTCHA1.

1 CAPTCHA: Completely Automatic Public Turing test to tell Computers and Humans Apart.

Appendix A. Project Proposal 142

A.5 Expected Deliverables

A research report detailing on the following:

• the state of the art in software-systems for linguistic steganography

• a description of a software system as described above

working software

sourcecode-documentation in the style of literate programming (Knuth 2001).

(von Ahn et al. 2003, see)

Appendix B

Project Specification

B.1 General Information

Project title Towards Linguistic Steganography: A Systematic Investigation of

Approaches, Systems, and Issues

Main supervisor DI. Stefan Katzenbeisser

Second supervisor Dr. Franz X. Steinparz

Type of project Literature Research, Systems Modelling.

Hardware and software required There are no requirements beyond those met

by my own personal computing equipment at home.

Literature and research materials required I have access to all literature that

will be needed through resources provided by UoD, UDA, the local Johannes Kepler

Universität in Linz, ACM, and IEEE.

Deliverables A detailed report.

143

Appendix B. Project Specification 144

B.2 Background and Related Research

There are two disciplines this project will draw on: steganography (also known as

“information hiding”, and closely related to “watermarking”) and computational lin-

guistics. Linguistic steganography is, in a broad sense, steganography dealing with

natural language cover-channels. Computational linguistics has provided Computer

Sciences with sophisticated models about natural languages and their interpretation.

However, using such models for linguistic steganography is a relatively new approach.

B.3 Motivation

When it comes to information security, the predominating paradigm is cryptography,

which prevents unauthorized reading of data, but which is vulnerable to detection.

This is not a problem, as long as securing information is seen as a legitimate way of

protecting one’s privacy, but it is if it is seen as a tool, useful primarily to potential

terrorists.

I believe that the role of information security has changed a lot over the past few

years. Today the “enemy” is not any longer only a potential interceptor seeking to

exploit sensible data, but also governments and organizations with the power, and also

the intention to limit the individual’s freedom of storing and submitting information

securely.

This is why I believe steganography is more important today than ever before, and

linguistic steganography, in particular, is one of the most promising techniques. The

security of steganograms arises from the difficulty of detecting them in large amounts

Appendix B. Project Specification 145

of data that could potentially cover them, and the vast amounts of information coded

in natural languages could provide for a good haystack to hide a needle in.

B.4 Problem Statement

Although natural language steganography is a very promising approach, the topic

has not received much attention in the past. At the time being there are no models

formalizing the design and analysis of natural language stegosystems. There is no

systematic literature on the topic. No attempts have been made to build practical

systems. Although three very basic prototypes have been constructed, there is no

systematic evaluation of these systems for criteria like security or robustness.

Natural language steganography is, by virtue of its nature, an interdisciplinary

topic. However, current approaches to natural language steganography are based

on very limited ad-hoc models of language. No investigations have been made that

take into account linguistic aspects in detail. Although replacement of dictionary-

words has been the predominant approach in current systems for natural language

steganography, such replacements have never been studied thoroughly from the point

of view of lexical linguistics.

Linguistic models have never been evaluated for their adequacy in natural lan-

guage steganography, nor have models of steganography ever been examined for their

suitability to guide the design and analysis of natural language stegosystems.

Although understanding of natural language is one of the most prominent inabil-

ities of current computer systems, natural language steganography has never been put

in context with human interactive proofs.

Appendix B. Project Specification 146

Robustness is a central issue in steganography, it has never been addressed before

in the context of natural language steganography.

B.5 Aims and Objectives

Clearly, the above problem statement outlines a long way we will have to go. The

present report aims at getting natural language steganography on the way, by provid-

ing a systematic investigation of relevant topics both from a steganographic and from

a linguistic point of view. The design and implementation of the current prototypes

will be evaluated and compared. The ideas and approaches behind these prototypes

will be systematically presented and put into the context of computational linguistics.

Based on these findings, the state-of-the-art in natural language steganography will

be evaluated, and future directions for research on the topic will be identified. Three

very important, but previously unrecognized, issues will be addressed. First, instead of

treating the inability of computers to understand certain aspects of natural language as

limitations, these aspects will be evaluated in the context of human-interactive proofs.

Secondly, we will address the issue of robust coding for natural language. Thirdly, we

will give a linguistically more adequate account of coding machine-readable data into

linguistic ambiguity, by performing lexical replacements.

B.6 Remarks on Project Proposal

In Appendix A, the original project proposal was given, the way it was handed in, in

September 2003. This appendix outlines the project specification, after the completion

of the project in April 2004.

Appendix B. Project Specification 147

Obviously the two versions differ considerably. As stated in the evaluation (Chap-

ter 10), the background reading and the original research carried out between October

2003 and January 2004 lead to the conclusion that the methodologies and research

strategies originally anticipated would have been inappropriate, which is why the pro-

jet changed its face from a software engineering and systems research topic, to the

theoretical investigation presented throughout this report.

Building the kind of prototype outlined in the original project proposal would

have required making many overly simplistic assumptions and using highly limited

models. However such systems have been built already, which is why a prototype

would not have contributed anything to the state of the art worth the effort.

Appendix C

Project Plan

C.1 Milestones

The following figure shows external due-dates and dates for meetings with the super-

visor. Furthermore it depicts, the phases “background reading”, “original research”

and “drafting”.

2004-04-28

VIVA
2003-09-23

proposal

2004-04-23

hand-in

2004-04-02

ISC '04 deadline
2003-12-12

interim report

2003-11-28

meeting

2003-12-26

meeting

2004-01-28

meeting

2004-03-18

meeting

2003-09-01 - 2003-09-23

project definition

2003-09-23 - 2003-11-28

background reading

2003-11-28 - 2004-01-28

original research

2004-01-28 - 2004-04-01

drafting

2004-04-01 - 2004-04-23

review & evaluation

2004-02-26

meeting

148

Appendix C. Project Plan 149

C.2 Tasks

Times are given in the following table in hours in the form “actual/anticipated” and

priorities are rated on an A/B/C-scale, with A the highest priority. They are given

for the “original research” and “drafting” phases. Planning the “background-reading”

phase in such a way would have been inappropriate, due to the fact that it can hardly

be decoupled into separate tasks, however the material I worked with is listed.

time [h] prio.

B Background Reading

B.1. Steganography

B.1.1. Katzenbeisser, S. & Petitcolas, F. A. P., eds (2000),

Information Hiding: techniques for steganography and

digital watermarking, Computer Security Series, Artech

House. chapters 1-4.

B.1.2. Wayner, P. (2002a), Disappearing Cryptography, 2 edn,

Morgan Kaufmann Publishers. chapters 1-3.

B.1.3. Wayner, P. (1992), ‘Mimic functions’, Cryptologia

XVI/3, 193–214.

B.1.4. Wayner, P. (1995), ‘Strong theoretical steganography’,

Cryptologia XIX/3, 285–299.

Appendix C. Project Plan 150

B.1.5. Cachin, C. (1998), An information-theoretic model for

steganography, in ‘Information Hiding, 2nd Interna-

tional Workshop’, Vol. 1525 of Lecture Notes in Com-

puter Science, Springer, pp. 306–318.

B.2. Lexical Language Processing

B.2.1. Jurafsky, D. & Martin, J. H. (2000), Speech and Lan-

guage Processing, Prentice Hall. chapter 17.

B.2.2. Charniak, E. (1996), Statistical Language Learning, MIT

Press. chapter 9.

B.2.3. Resnik, P. (1998), Wordnet and class-based probabili-

ties, in C. Fellbaum, ed., ‘WordNet, An Electronic Lex-

ical Database’, MIT Press, chapter 10, pp. 239–263.

B.2.4. Leacock, C. & Chodorow, M. (1998), Combining local

context and wordnet similarity for word sense identifi-

cation, in C. Fellbaum, ed., ‘WordNet, An Electronic

Lexical Database’, MIT Press, chapter 10, pp. 265–283.

B.3. Prior Work

B.3.1. Winstein, K. (n.d.b), ‘Lexical steganography through

adaptive modulation of the word choice hash’.

Appendix C. Project Plan 151

B.3.2. Chapman, M. (1997), Hiding the hidden: A software

system for concealing ciphertext as innocuous text, Mas-

ter’s thesis, University of Wisconsin-Milwaukee.

B.3.3. Chapman, M. & Davida, G. I. (1997), Hiding the hidden:

A software system for concealing ciphertext in innocu-

ous text, in ‘Information and Communications Security

— First International Conference’, Vol. 1334, Beijing,

China.

B.3.4. Chapman, M., Davida, G. I. & Rennhard, M. (2001),

‘A practical and effective approach to large-scale auto-

mated linguistic steganography’, Lecture Notes in Com-

puter Science 2200, 156–??

B.3.5. Atallah, M. J., Raskin, V., Crogan, M., Hempelmann,

C., Kerschbaum, F., Mohamed, D. & Naik, S. (2001),

Natural language watermarking: Design, analysis, and

a proof-of-concept implementation, in ‘Proceedings of

the 4th International Workshop on Information Hiding’,

Springer-Verlag, pp. 185–199.

B.4. Further Background: Selected topics from

B.4.1. Ash, R. B. (1965), Information Theory, Dover Publica-

tions.

Appendix C. Project Plan 152

B.4.2. Reza, F. M. (1961), An Introduction to Information

Theory, Dover Publications.

B.4.3. Hamming, R. W. (1986), Coding and Information The-

ory, Prentice Hall.

B.4.4. Arazi, B. (1988), A Commonsense Approach to the The-

ory of Error Correcting Codes, MIT Press.

B.4.5. Vanstone, S. & van Oorschot, P. C. (1989), An Intro-

duction to Error Correcting Codes with Applications,

Kluwer.

B.4.6. McEliece, R. J. (1977), The Theory of Information and

Coding, Addison Wesley Publishing Company.

B.4.7. von Neumann, J. & Morgenstern, O. (1953), Theory of

Games and Economic Behavior, Princeton University

Press.

B.4.8. Ettinger, M. (1998), Steganalysis and game equilibria, in

‘Information Hiding, Second International Workshop’,

pp. 319–328.

R Original Research

R.1. lexicon

R.1.1. create datamodel for relevant subset of WordNet 5/5 A

R.1.2. parse WordNet data-files to populate database 20/20 A

Appendix C. Project Plan 153

R.2. steganographic encoder

R.2.1. implement binary/mixed-radix-converter 25/30 A

R.2.2. write basic word-replacement encoder 20/20 A

R.3. lexical disambiguation

R.3.1. create datamodel for trigram count from British Na-

tional Corpus

5/5 C

R.3.2. parse British National Corpus to populate database 25/30 C

R.3.3. augment word-replacement encoder by trigram model 0/30 C

R.4. formal analysis

R.4.1. find code-metric for mixed-radix codes 15/15 B

R.4.2. relate code-metric to error-correcting capability an

error-correcting code

30/30 B

R.4.3. create coding-scheme that provides for security and ro-

bustness

25/15 B

R.4.4. use code-metric in game-theoretic analysis of strategic

robustness

30/20 B

R.4.5. analyze coding-scheme for security with respect to

Chachin’s characterization

0/30 B

∑

= 200/250

Appendix C. Project Plan 154

D. Drafting

D.1. background topics

D.1.1. steganography 25/30 A

D.1.2. lexical language processing 25/30

D.2. previous work 30/30 A

D.2.1. approaches 25/25 A

D.2.2. systems 25/25 A

D.3. evaluation and comparison 30/25 A

D.4. results from original research

D.4.1. secure and robust block-coding 35/30 A

D.4.2. coding in lexical ambiguity 30/30 A

D.5. formal documentation

D.5.1. project specification, project plan 15/15 A

D.5.2. introduction, conclusions, evaluation, abstract 20/15 A

D.6. ISC ’04 contribution 30/30 B

∑

= 265/260

Appendix C. Project Plan 155

C.3 Workflow

The nodes in the following flowcharts adhere to the following form:

anticipated

duration

anticipated

end-time

critical

begin-time

actual

duration

critical

end-time

anticipated

begin-time

task (priority)

The following flowcharts depict the dependencies of tasks in the “original re-

search” and “drafting” phases. Again such treatment is not suitable for the “back-

ground reading” phase.

Appendix C. Project Plan 156

5 5

75 5 80

0

R.1.1 (A)

20 25

80 15 95

5

R.1.2 (A)

30 30

70 25 95

0

R.2.1 (A)

5 5

90 5 95

0

R.3.1 (C)

20 50

95 25 120

30

R.2.2 (A)

30 35

95 25 120

5

R.3.2 (C)

30 80

120 0 120

50

R.3.3 (C)

15 15

10 15 35

0

R.4.1 (B)

30 45

35 30 65

15

R.4.2 (B)

15 60

65 25 90

45

R.4.3 (B)

20 65

60 30 90

45

R.4.4 (B)

30 95

90 0 120

65

R.4.5 (B)

0 0

10 0 10

0

begin

0 95

120 0 120

95

end

120 units ~ 1 month

25 units ~ 1 week

5 units ~ 1 day

1 unit ~ 1 hour

overall time:

anticipated: 250

actual: 200

Appendix C. Project Plan 157

30 30

135 25 160

0

D.1.1 (A)

30 30

135 25 160

0

D.1.2 (A)

30 60

105 30 135

30

D.2.1 (A)

25 85

135 25 160

60

D.2.2 (A)

25 110

160 30 190

85

D.3 (A)

30 140

190 35 225

110

D.4.1 (A)

30 140

195 30 225

110

D.4.2 (A)

15 155

225 15 240

140

D.5.1 (A)

15 170

240 20 260

155

D.5.2 (A)

30 140

195 30 225

110

D.6 (B)

0 0

80 0 80

0

begin

0 170

260 0 260

170

end

120 units ~ 1 month

25 units ~ 1 week

5 units ~ 1 day

1 unit ~ 1 hour

overall time:

anticipated: 260

actual: 265

Appendix C. Project Plan 158

C.4 Schedule & Deliverables

The following figures give a calendaric overview of tasks and milestones in the “original

research” and “drafting” phases. Since my supervisor was resident in Munich during

the time of the project, and I was studying in Leonding, we could not meet very often.

This is why the communication carried out by e-mail was of central importance for

exchanging deliverables to measure and to objectively document progress.

The green numbers shown in the calendar refer to e-mails I sent to Stefan Katzen-

beisser, and the red numbers refer to e-mails he sent me. E-mails depicted by under-

lined numbers contained a major deliverable. All e-mails can be found on the CD and

are identified by the numbers given in the calendar.

For example one deliverable that was revised during most of the “original re-

search” phase, was the “code”-document. It is contained on the CD as well.

Appendix C. Project Plan 159

November 24

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

December 1

2nd REM

assignment

hand-in

022, 023,

024

025, 026 ADT

assignment

hand-in

027

028 029 030 031

032 033, 034 035

January 1

FUZ

assignment

hand-in

036 037

038 FUZ

exam

ADT

exam
040

041, 042 043, 044,

045, 046

28/11/2003 - 22/01/2004

28/11/2003

26/12/2003

14:00 - 17:00

Meeting 1

09:30 - 12:30

Meeting 2

22/01/2004

13:30 - 17:00

Meeting 3

R.4.3

R.4.3

R.4.3

R.2.1

R.2.1

R.4.3

R.4.3

R.4.4

R.4.4

R.4.4

R.4.4

R.4.4

R.1.1
R.1.2 R.1.2

R.1.2 R.3.2R.3.1

R.4.1, R.4.2

12/12/2003

13:29 - 13:29

Interim Report

hand-in

Appendix C. Project Plan 160

January 19

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

047, 048 049 050, 051

February 1

052 053 054 055, 056

057-061 062, 063,

064

065 066 067, 068 069-073

074 075 076 077

March 1

078, 079,

080

081

082,083 084, 085,

086, 087

088, 089,

090

091, 092,

093

094, 095 096, 097

098, 099 100, 101 102

103, 104,

105

106-111 112-117

April 1

118-125 126, 127,

128

22/01/2004 - 10/04/2004

26/02/2004

18/03/2004

13:00 - 13:00

ISC '04 hand-in

D.1.1

D.1.1

D.1.1

D.2.1

D.2.1

D.2.1 D.1.2

D.1.2

D.2.2

D.2.2 D.4.1

D.4.2

D.5.1, D.5.2

10:45 - 13:45

Meeting 4

13:00 - 16:00

Meeting 5

Appendix D

Meetings with Supervisor

D.1 First Meeting

Date: 2003-11-28, 14:00

Location: Technische Universität Wien: Institut für Datenbanken

und Künstliche Intelligenz

Problems Encountered and Progress Made Since Last Meeting After exten-

sive background reading, I have

made myself familiar with the work carried out so far and identified some limi-

tations of the lexical models applied in the systems constructed so far.

thought of combining n-gram models with lexical replacement, in order to over-

come these limitations.

identified the problem that error-correcting codes cannot be applied easily to

the lexical scenario, since they are limited to q-ary channels.

drafted the “code-document” in which I describe a code-metric, I could use to

161

Appendix D. Meetings with Supervisor 162

analyze the error-correcting capability of a non-q-ary channel. (tasks R.4.1 and

R.4.2)

Aims and Objectives for Next Meeting In order to construct a secure and robust

coding scheme, it will be necessary to construct a coding scheme, we think could be

secure and robust, so we can find ways to formally analyze these properties.

Suggested Solutions and Next Steps

Before the next meeting

I will try to find a way to construct an error-correcting code for the lexical

scenario which cannot provide a q-ary channel. (task R.4.3)

I will try to write a binary/mixed-radix converter, that could be used in an

encoder and a decoder. (task R.2.1)

Stefan Katzenbeisser will present our problem to a coding-specialist.

D.2 Second Meeting

Date: 2003-12-26, 9:30

Location: Vienna

Problems Encountered and Progress Made Since Last Meeting

The coding-specialist told us that there are no straightforward ways of con-

structing the kind of error-correcting codes we were thinking of.

I developed a high-performance binary/mixed-radix converter using bitshifting

Appendix D. Meetings with Supervisor 163

operations. This piece of software would have enabled the system to use mixed-

radix coding for the whole document (something Winstein had identified as a

major problem, which he circumvented with his blocking-scheme). (task R.2.1)

I developed the coding scheme described in chapter 7 to circumvent the problem

of directly applying an error-correcting code to the channel. (task R.4.3)

I described my mixed-radix blocking-approach in a new draft of the code-

document.

Aims and Objectives Proposed for Next Meeting In any case, we will have

to finish the original-research-phase and start drafting the final report after the next

meeting in order to stay on schedule for the final hand-in date.

Suggested Solutions and Next Steps

Using the code-metric and the blocking-scheme, it is now possible to relate pa-

rameters of the scheme to its error-correcting capability and robustness-properties.

(task R.4.4)

After analyzing the exact behavior of the error-correction-scheme, it is now

possible to analyze it for security, using Cachin’s characterization. (task R.4.5)

A linguistic model should be constructed, and the necessary data should be

populated to a database (tasks R.1.1, R.1.2, R.3.1, and R.3.2)

Using the linguistic model and the mixed-radix converter, a simple mixed-radix

encoder (without error-correction) can be written (task R.2.2)

The prototype can then be augmented by the trigram model (task R.3.3)

Appendix D. Meetings with Supervisor 164

D.3 Third Meeting

Date: 2004-01-22, 13:30

Location: Technische Universität München: Institut für Infor-

matik

Problems Encountered and Progress Made Since Last Meeting

Task R.4.4 could be partially completed. However, due to my limited back-

ground in game theory and discrete optimization, the new revision of the “code”

document did not reach a satisfactory level of theoretical sophistication, nor did

it provide a suitable treatment of the topic based on technical intuition.

Task R.4.5 could not be carried out without task R.4.4 completed satisfactorily.

The trigram-models I thought could have solved the word-sense ambiguity is-

sue were constructed, thereby completing tasks R.1.1, R.1.2, R.3.1, and R.3.2

satisfactorily.

After detailed study of the issue of word-sense ambiguity, I found out that the

trigram model I had in mind could not perform over a level of accuracy of around

50%. It was therefore not possible to apply this method to lexical steganography.

Task R.3.3 could not be completed.

As a result, task R.2.2 turned out to be pointless.

In order to construct a practically applicable coding-scheme, it would have been

necessary to automatically construct sophisticated error-correcting codes like

Hamming-codes. The topic turned out much too complex, considering the lim-

Appendix D. Meetings with Supervisor 165

ited time that was left.

Aims and Objectives Proposed for Next Meeting The next meetings will be

dedicated to revising drafts of the final report. Relevant outcomes of the research

conducted will be presented as position statements. There must be no further delay

in drafting the final report. Until the next meeting, a third of the report should be

drafted.

Suggested Solutions and Next Steps Tasks D.1.1 and D.2.1.

D.4 Fourth Meeting

Date: 2004-02-26, 10:45

Location: Bibliothek der Technischen Universität Wien

Problems Encountered and Progress Made Since Last Meeting The “Dear

Diary”-introduction and the chapters on steganographic security and approaches to

linguistic steganography were drafted and revised for the first time. The revision

is discussed at the meeting. Thereby tasks D.1.1 and D.2.1 are completed. In the

February issue of Communications of the ACM I read the problem statement about

CAPTCHAs in the text-domain. In response, I drafted a manuscript describing the

use of word-sense ambiguity as HIPs.

Aims and Objectives Proposed for Next Meeting The suggestions and re-

quested changes must be incorporated, and another third of the report written.

Appendix D. Meetings with Supervisor 166

Suggested Solutions and Next Steps Tasks D.1.2 and D.2.2.

Additional Comments The possibility of submitting an article about HIPs in the

text-domain to the 7th Internation Security Conference was discussed for the first

time.

D.5 Fifth Meeting

Date: 2004-03-18, 13:00

Location: Bibliothek der Technischen Universität Wien

Problems Encountered and Progress Made Since Last Meeting The chapters

about linguistic steganography built so far, the background from natural language

processing and the evaluation and comparison of current systems was drafted and the

revision was discussed at the meeting. Thereby tasks D.1.2 and D.2.2 are completed.

The exact outline of the ISC-contribution was discussed, and the management of the

drafting-process was defined.

Aims and Objectives Proposed for Next Meeting The next meeting will be at

the VIVA. Until then, the report will be finished, revised by e-mail and polished for

hand-in.

Suggested Solutions and Next Steps Tasks D.4.1, D.4.2, D.5.1, and D.5.2.

Appendix E

Contents of the CD

The CD, which is included with this document contains no material significant to the

understanding of this report. It is used mainly for archival purposes. It contains

the literature review, and project proposal handed in as REM-assignment

the interim report

the latest working draft of the “code”-document which was subject to revision

in the “original research”-phase.

sourcecode which was written in the “original research”-phase (however this is

no functioning prototype or any kind of running software).

the contribution handed in to the 7th Information Security Conference

all cited online-references in electronic form

all e-mails that were exchanged

electronic versions of this report

the source-code for this report

the figures that went into this report

167

References

Atallah, M. J. & Raskin, V. (n.d.), ‘Watermarking of natural language texts’, Website.

accessed 2004-04-11.

URL: http: // www. cerias. purdue. edu/ homes/ wmnlt/

Atallah, M. J., Raskin, V., Crogan, M., Hempelmann, C., Kerschbaum, F., Mo-

hamed, D. & Naik, S. (2001), Natural language watermarking: Design, analy-

sis, and a proof-of-concept implementation, in ‘Proceedings of the 4th Interna-

tional Workshop on Information Hiding’, Springer-Verlag, pp. 185–199. on the CD:

IHW.AtaRasEtAl.pdf.

Atallah, M. J., Raskin, V., Hempelmann, C., Karahan, M., Sion, R., Topkara,

U. & Triezenberg, K. E. (2003), Natural language watermarking and tamper-

proofing, in ‘Proceedings of the Information Hiding Workshop (IH 2002)’, Vol.

2578 of Lecture Notes in Computer Science, Springer, pp. 197–212. on the CD:

Atallah-2002-NLW.ps.gz.

Bergmair, R. & Katzenbeisser, S. (2004), Towards human interactive proofs in the

text-domain. submitted for publication. on the CD: isc04/.

Budanitsky, A. & Hirst, G. (2001), Semantic distance in wordnet: An experimen-

168

REFERENCES 169

tal application-oriented evaluation of five measures, in ‘Workshop on WordNet and

Other Lexical Resources, Second meeting of the North American Chapter of the As-

sociation for Computational Linguistics’. on the CD: Budanitsky+Hirst-2001.ps.

Cachin, C. (1998), An information-theoretic model for steganography, in ‘Information

Hiding, 2nd International Workshop’, Vol. 1525 of Lecture Notes in Computer Sci-

ence, Springer, pp. 306–318. Revised version, December 2003. on the CD: stego.ps.

Chapman, M. (1997), Hiding the hidden: A software system for concealing ciphertext

as innocuous text, Master’s thesis, University of Wisconsin-Milwaukee. on the CD:

thesis.ps.

Chapman, M. & Davida, G. I. (1997), Hiding the hidden: A software system for con-

cealing ciphertext in innocuous text, in ‘Information and Communications Security

— First International Conference’, Vol. 1334 of Lecture Notes in Computer Science,

Springer. on the CD: icics97.ps.

Chapman, M. & Davida, G. I. (2002), Plausible deniability using automated linguistic

steganography, in G. Davida & Y. Frankel, eds, ‘International Conference on Infras-

tructure Security (InfraSec ’02)’, Vol. 2437 of Lecture Notes in Computer Science,

Springer. on the CD: infrasec02.ps.

Chapman, M. & Davida, G. I. (n.d.), ‘Nicetext system official home page’, Website.

accessed 2004-04-11.

URL: http: // www. nicetext. com/

Chapman, M., Davida, G. I. & Rennhard, M. (2001), A practical and effective ap-

proach to large-scale automated linguistic steganography, in ‘Information Security

Conference (ISC ’01)’, Vol. 2200 of Lecture Notes in Computer Science, Springer,

REFERENCES 170

pp. 156–?? on the CD: isc01.ps.

Charniak, E. (1996), Statistical Language Learning, MIT Press.

Chomsky, N. (1965), Aspects of the theory of syntax, MIT press.

First Workshop on Human Interactive Proofs (2002).

Hopcroft, J. E. & Ullman, J. D. (1979), Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, Reading, MA.

Jiang, J. J. & Conrath, D. W. (1997), Semantic similarity based on corpus statistics

and lexical taxonomy, in ‘Proceedings of the International Conference on Research

in Computational Linguistics’.

Jurafsky, D. & Martin, J. H. (2000), Speech and Language Processing, Prentice Hall.

Katzenbeisser, S. & Petitcolas, F. A. P., eds (2000), Information Hiding: techniques

for steganography and digital watermarking, Computer Security Series, Artech

House.

Kerckhoffs, A. (1883), ‘La cryptographie militaire’, Journal des Sciences Militaires

9, 5–38.

Knuth, D. E. (1997), The Art Of Computer Programming: Seminumerical Algorithms,

Vol. 2, Addison Wesley.

Knuth, D. E. (2001), Literate Programming, CSLI Publications.

Leacock, C. & Chodorow, M. (1998), Combining local context and wordnet similarity

for word sense identification, in C. Fellbaum, ed., ‘WordNet, An Electronic Lexical

Database’, MIT Press, chapter 10, pp. 265–283.

Lenat, D. B., Guha, R. V., Pittman, K., Pratt, D. & Shepherd, M. (1990), ‘Cyc:

toward programs with common sense’, Commun. ACM 33(8), 30–49. on the CD:

REFERENCES 171

p30-lenat.pdf.

Martinez, D. & Agirre, E. (2002), arXiv e-Print Archive Article No. 0204028. accessed

2004-04-12.

URL: http: // arxiv. org/ pdf/ cs. CL/ 0204028

McCarthy, J. (1976), An example for natural language understanding and the ai

problem it raises, in ‘Formalization of common sense, papers by John McCarthy

edited by V. Lifschitz’, Ablex, pp. 70–76. on the CD: mrhug.ps.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D. & Miller, K. (1993), ‘Introduction

to WordNet: An on-line lexical database’. accessed 2004-04-11.

URL: http: // www. cogsci. princeton. edu/ ~wn/ 5papers. ps

Naor, M. (1997), Verification of a human in the loop or identification via the turing

test. Unpublished Manuscript. accessed 2004-04-12.

URL: http: // www. wisdom. weizmann. ac. il/ ~naor/ PAPERS/ human. ps

Resnik, P. (1992), Wordnet and distributional analysis: A class-based approach to

lexical discovery, in ‘Statistically-Based Natural-Language-Processing Techniques:

Papers from the 1992 AAAI Workshop’, AAAI Press.

Resnik, P. (1995), Using information content to evaluate semantic similarity, in

‘Proceedings of the 14th International Joint Conference on Artificial Intelligence’,

pp. 448–453.

Resnik, P. (1997), Selectional preference and sense disambiguation, in ‘Proceedings of

the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What,

and How?’. on the CD: resnik2.ps.

Resnik, P. (1998), Wordnet and class-based probabilities, in C. Fellbaum, ed., ‘Word-

REFERENCES 172

Net, An Electronic Lexical Database’, MIT Press, chapter 10, pp. 239–263.

Ross, J. R. (1967), Constraints on variables in syntax, PhD thesis, MIT.

Rubenstein, H. & Goodenough, J. B. (1965), ‘Contextual correlates of synonymy’,

Commun. ACM 8(10), 627–633. on the CD: p627-rubenstein.pdf.

Senseval (2001), available via HTTP. accessed 2004-04-12.

URL: http: // www. sle. sharp. co. uk/ senseval2/ Results/ all_ graphs.

xls

Shannon, C. E. (1949), ‘Communication theory of secrecy systems’, Bell System Tech-

nical Journal 28(4), 656–715. on the CD: shannon1949.pdf.

Simmons, G. J. (1984), The prisoners’ problem and the subliminal channel, in ‘Ad-

vances in Cryptology, Proceedings of CRYPTO ’83’, pp. 51–67.

Spammimic (n.d.), Website. accessed 2004-04-12.

URL: http: // www. spammimic. com/

Turing, A. M. (1950), ‘Computing machinery and intelligence’, Mind 49, 433–460.

von Ahn, L., Blum, M., Hopper, N. J. & Langford, J. (2003), Captcha: Using hard

ai problems for security, in ‘Advances in Cryptology: Eurocrypt 2003’. on the CD:

captcha crypt.pdf.

von Ahn, L., Blum, M., Hopper, N. J. & Langford, J. (n.d.), ‘Hips’, Website. accessed

2004-04-11.

URL: http: // www. aladdin. cs. cmu. edu/ hips/

von Ahn, L., Blum, M. & Langford, J. (2004), ‘Telling humans and computers apart

automatically’, Commun. ACM 47(2), 56–60. on the CD: p56-von ahm.pdf.

Wayner, P. (1992), ‘Mimic functions’, Cryptologia XVI/3, 193–214.

REFERENCES 173

Wayner, P. (1995), ‘Strong theoretical steganography’, Cryptologia XIX/3, 285–299.

Wayner, P. (2002a), Disappearing Cryptography, 2 edn, Morgan Kaufmann Publishers.

Wayner, P. (2002b), ‘On-line resources for “disappearing cryptography”’, Website.

accessed 2004-04-12.

URL: http: // www. wayner. org/ books/ discrypt2/

Winograd, T. (1971), Procedures as a representation for data in a computer pro-

gram for understanding natural language, Technical report, MIT. on the CD:

AITR-235.ps.

Winstein, K. (n.d.a), ‘Lexical steganography’, Website. accessed 2004-04-11.

URL: http: // alumni. imsa. edu/ ~keithw/ tlex/

Winstein, K. (n.d.b), ‘Lexical steganography through adaptive modulation of the word

choice hash’. accessed 2004-04-11.

URL: http: // alumni. imsa. edu/ ~keithw/ tlex/ lsteg. ps

